
Citation: Zi, L.; Pan, X.; Cong, X.

MFSC: A Multimodal Aspect-Level

Sentiment Classification Framework

with Multi-Image Gate and Fusion

Networks. Electronics 2024, 13, 2349.

https://doi.org/10.3390/

electronics13122349

Academic Editor: Ioannis

Hatzilygeroudis

Received: 7 April 2024

Revised: 31 May 2024

Accepted: 12 June 2024

Published: 15 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MFSC: A Multimodal Aspect-Level Sentiment Classification
Framework with Multi-Image Gate and Fusion Networks
Lingling Zi †, Xiangkai Pan *,† and Xin Cong

College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China;
zll@cqnu.edu.cn (L.Z.); cx@cqnu.edu.cn (X.C.)
* Correspondence: 2022110516034@stu.cqnu.edu.cn
† These authors contributed equally to this work.

Abstract: Currently, there is a great deal of interest in multimodal aspect-level sentiment classification
using both textual and visual information, which changes the traditional use of only single-modal
to identify sentiment polarity. Considering that existing methods could be strengthened in terms of
classification accuracy, we conducted a study on aspect-level multimodal sentiment classification
with the aim of exploring the interaction between textual and visual features. Specifically, we
construct a multimodal aspect-level sentiment classification framework with multi-image gate and
fusion networks called MFSC. MFSC consists of four parts, i.e., text feature extraction, visual feature
extraction, text feature enhancement, and multi-feature fusion. Firstly, a bidirectional long short-
term memory network is adopted to extract the initial text feature. Based on this, a text feature
enhancement strategy is designed, which uses text memory network and adaptive weights to extract
the final text features. Meanwhile, a multi-image gate method is proposed for fusing features from
multiple images and filtering out irrelevant noise. Finally, a text-visual feature fusion method based
on an attention mechanism is proposed to better improve the classification performance by capturing
the association between text and images. Experimental results show that MFSC has advantages in
classification accuracy and macro-F1.

Keywords: sentiment analysis; multimodal sentiment classification; fusion network; multi-image gate

1. Introduction

Multimodal aspect sentiment classification (MASC) is a subtask of multimodal aspect
sentiment analysis that aims to classify the sentiment of a particular aspect, where an
aspect refers to a word or phrase that describes any attribute related to an entity [1].
Nowadays, e-commerce platforms have many consumer reviews, which are very important
for customers who are about to purchase goods. Categorizing consumer reviews through
MASC enables customers to swiftly gain insights into various product aspects without
the labor of manually evaluating each aspect on online retail sites. As shown in Figure 1,
for text-image pairs that contain aspects of price–performance ratio, our inputs are text
information, image information related to the text, and aspect information for a particular
aspect. Our output is the result of classifying the emotional polarity of a particular aspect.
We categorized the outputs into eight categories based on the level of satisfaction of the
consumers and used eight different scores to indicate the different categories. A higher
score means that consumers are more satisfied with an aspect of the product and a lower
score means that consumers are less satisfied.
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formal introduction of deep learning by Hinton et al. [3], deep learning has achieved 
impressive success in the field of natural language processing. Specifically, deep learning 
architectures, such as convolutional neural network, recurrent neural network, and their 
variants like long short-term memory networks, have demonstrated remarkable 
performance across a range of natural language processing tasks. Similarly, as a subtask 
of natural language processing tasks, it is also widely used in aspect sentiment 
classification tasks [4]. 
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Figure 1. An example of MASC task. 

For aspect sentiment classification, image information is usually complemented and 
associated with text information in some way. On the one hand, for a short text message 
containing only one aspect, it is difficult to judge the affective polarity of a particular 
aspect by its text information due to the brevity and possibly informality of the text 
information. For example, for the aspect ‘appearance and feeling’, consumers only 
commented on the ‘appearance and feeling really ...’. At this point, our affective analyses 
of the aspect weigh heavily on their associated images. On the other hand, text and images 
are generally highly correlated with aspect sentiment. For example, when reviewing the 
‘screen’ of a mobile phone, a customer might write a positive text message and add a 
picture of a high-definition mobile phone screen with no screen anomalies to his review 
to show that he is satisfied with the screen, or this consumer might express negative words 
and upload a picture of a mobile phone with a cracked or spotted screen to show his 
disappointment with the screen. In summary, aspect-level sentiment classification of 
multimodal data has a variety of complementarities and correlations. And there is a lot of 
noise from text and images in multimodal data compared to unimodal. 

We aim to reduce noise and enhance the integration of text and visual information to 
improve sentiment classification of aspects in multimodal consumer reviews on e-
commerce platforms. Our main contributions are as follows: 
• A multimodal aspect-level sentiment classification framework with multi-image gate 

and fusion networks called MFSC is proposed, which uses a bidirectional long short-
term memory network (LSTM) to extract text features and aspect features and uses a 
memory network to augment text features. Meanwhile, in image feature extraction, 
a more powerful ResNet-152 is used to deeply mine visual information. 

• In the text feature enhancement stage, we propose a text feature extraction method. 
It utilizes the synergy of the text memory network and an adaptive weighting 
mechanism to extract text features. The method carefully extracts valuable 
information at each hop of the text memory network to ensure that no relevant details 
are overlooked. In addition, the adaptive weighting strategy dynamically adjusts the 
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In past research, most scholars have used traditional machine learning methods to
solve sentiment classification problems. This type of method is based on manually labeling
a portion of the data as a training set, then constructing a classification model by extracting
features and learning from the data in the training set, and finally using the model to predict
the unlabeled data to achieve classification automatically [2]. With the formal introduction
of deep learning by Hinton et al. [3], deep learning has achieved impressive success in
the field of natural language processing. Specifically, deep learning architectures, such
as convolutional neural network, recurrent neural network, and their variants like long
short-term memory networks, have demonstrated remarkable performance across a range
of natural language processing tasks. Similarly, as a subtask of natural language processing
tasks, it is also widely used in aspect sentiment classification tasks [4].

For aspect sentiment classification, image information is usually complemented and
associated with text information in some way. On the one hand, for a short text message
containing only one aspect, it is difficult to judge the affective polarity of a particular aspect
by its text information due to the brevity and possibly informality of the text information.
For example, for the aspect ‘appearance and feeling’, consumers only commented on the
‘appearance and feeling really . . .’. At this point, our affective analyses of the aspect weigh
heavily on their associated images. On the other hand, text and images are generally highly
correlated with aspect sentiment. For example, when reviewing the ‘screen’ of a mobile
phone, a customer might write a positive text message and add a picture of a high-definition
mobile phone screen with no screen anomalies to his review to show that he is satisfied
with the screen, or this consumer might express negative words and upload a picture of
a mobile phone with a cracked or spotted screen to show his disappointment with the
screen. In summary, aspect-level sentiment classification of multimodal data has a variety
of complementarities and correlations. And there is a lot of noise from text and images in
multimodal data compared to unimodal.

We aim to reduce noise and enhance the integration of text and visual information to
improve sentiment classification of aspects in multimodal consumer reviews on e-commerce
platforms. Our main contributions are as follows:

• A multimodal aspect-level sentiment classification framework with multi-image gate
and fusion networks called MFSC is proposed, which uses a bidirectional long short-
term memory network (LSTM) to extract text features and aspect features and uses a
memory network to augment text features. Meanwhile, in image feature extraction, a
more powerful ResNet-152 is used to deeply mine visual information.

• In the text feature enhancement stage, we propose a text feature extraction method. It
utilizes the synergy of the text memory network and an adaptive weighting mechanism
to extract text features. The method carefully extracts valuable information at each
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hop of the text memory network to ensure that no relevant details are overlooked.
In addition, the adaptive weighting strategy dynamically adjusts the importance of
the extracted features at each hop. This results in a comprehensive and fine-grained
extraction of the text.

• In the visual feature extraction stage, we propose a multi-image gate mechanism
designed to integrate multiple images in a sample while filtering out irrelevant noise.
This innovative approach first fuses visual features through two attention mechanisms
to ensure that the relevant parts of the images are integrated. Subsequently, our
method utilizes image gates to filter out irrelevant noise so that the most relevant
image features are preserved.

• In the multi-feature fusion stage, we propose a feature fusion mechanism that combines
text and images, i.e., using an attention mechanism to combine text features and image
features. This fusion mechanism captures the association between text and images,
which in turn improves the performance of the MFSC.

The remaining part of this paper is structured as follows: Section 2 gives a brief review
on the related work. Section 3 describes the proposed MFSC framework in detail. Section 4
shows experimental simulations. Finally, Section 5 concludes this paper.

2. Related Work

Multimodal aspect sentiment analysis consists of two primary subtasks: one is mul-
timodal aspect term extraction (MATE) and the other is multimodal aspect sentiment
classification (MASC). For MATE, the input is text-image pairs, and the output is all the
aspect terms contained in the text. For example, an adaptive co-attention network [5] was
proposed to extract aspect terms using text and images from tweets. A multi-modal graph
fusion method [6] is proposed, which does not directly utilize the entire image, but finds tar-
geted visually guided regions in the image for visual information extraction. Zhai et al. [7]
developed a model containing a suggested bi-axial attention module in order to address
the core bottleneck of previous structured sentiment analysis methods. Considering that
one of the subtasks of structured sentiment analysis is the extraction of level words, the
model is perfectly suited to be combined with image features for aspect term extraction.

For MASC, it aims to classify the sentiment polarity of the specific target or aspect
words in the current sentence, which is a fine-grained sentiment classification task [8–17].
The traditional method is text-based aspect sentiment classification, which aims to classify
the sentiment of a specific aspect term. Initially, machine learning techniques are utilized to
accomplish the sentiment classification task [18–21]. With the rapid development of deep
learning in the fields of natural language processing (NLP) and computer vision (CV), it
has been used to improve classification performance over machine learning techniques,
such as LSTM [22] and its variant GRU [23], memory network [24,25], interactive attention
network [26], target-sensitive memory network [27], multi-grained attention network [28],
and so on. Specifically, LSTM can integrate aspect information and significantly improve
the accuracy of sentiment classification. The memory network can explicitly capture
the significance of every contextual word to infer the sentiment polarity of an aspect.
In addition, it can also include relevant information about the neighboring aspects in
the sentiment classification, modeling the relationship between the target aspect and
neighboring aspect while filtering out irrelevant information. The interactive attention
network uses two LSTM models to learn the initial representations of context and aspect,
respectively, and then obtains the final text and aspect representations through the attention
mechanism. The multi-grained attention network solves the problem of aspect sentiment
not being solely dependent on contextual inferences.

The rise of multimodal content in e-commerce platforms, including text, images, and
videos within reviews, has led to the recognition of the limitations of text-based sentiment
analysis and the growing academic focus on MASC. Xu et al. [29] first proposed the new task
of aspect-based multimodal sentiment classification and presented a new multi-interactive
memory network model, which achieved good results on the publicly available dataset
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Multi-ZOL. However, it adopts the same memory network model for text and image and
interacts text and image information at each hop of the two-memory network, so it does
not consider the problem of noise present in the image and therefore the performance
of the model needs to be improved. Based on this, Yu et al. [30] proposed an aspect-
sensitive attention and fusion network to accomplish this task. The model first generates
aspect-sensitive text representations using an attention mechanism, then removes the noise
information from images using a gate mechanism, and finally further fuses the text and
image features to obtain cross-modal features. However, Yu et al. only used LSTM to
extract text features, which is not enough to mine text features and also leads to suboptimal
results. To solve the problem of users posting tweets that are too short to easily recognize
their emotions, Khan et al. [31] proposed a transformer architecture for object detection,
and used the generated model to transform the image into the input space of a pre-trained
language model, and then constructed an auxiliary sentence to feed the translated image
into the BERT (Bidirectional Encoder Representations from Transformers) [32] language
model, so that the resulting features can be used for multimodal aspect-level sentiment
classification. Ling et al. [33] manually annotated a dataset of image and evaluation object
matching and proposed a new image and evaluation object matching model, which is
mainly a network structure from coarse-grained to fine-grained matching. Ju et al. [34]
first proposed to jointly perform two sub-tasks: multi-modal aspect terms extraction
and multi-modal aspect sentiment classification. Their approach can not only model the
cross-modal relation between text and image, determining how much visual information
contributes to text, but also separately mine the visual information for two sub-tasks instead
of collapsed tagging with the same visual feeding. Zhao et al. [35] drew inspiration from the
concept of curriculum learning and proposed a multi-grained Multi-curriculum Denoising
Framework (M2DF). It achieves denoising by adjusting the order of training data rather
than by filtering image noise through threshold settings. Han et al. [36] proposed a model
based on selective attention and natural contrastive learning, which uses a probe-based
strategy to implement high attention weights for regions of higher importance. Moreover,
the low memory consumption at runtime of this model is a prominent advantage compared
to other methods. Lu et al. [37] proposed a language-guided reasoning network called
LGR-NET. Instead of simply fusing textual and visual features, LGR-NET alternates the
extracted textual features for text-guided cross-modal alignment and fusion. In addition,
they designed a novel cross-modal loss to enhance cross-modal alignment between text
and images.

In summary, our proposed framework takes into account the noise problem in visual
features and extracts text features in more detail, and also exploits the interaction between
textual and visual features in the final feature fusion stage.

3. Proposed Methodology

This section presents the proposed MFSC framework to accomplish multimodal aspect-
level sentiment classification. First, Section 3.1 describes the task definition, followed
by giving an overview of the MFSC framework in Section 3.2. Then, the details of the
implementation are elaborated in Section 3.3.

3.1. Task Definition

Given a sample B(T, I) of a multimodal dataset, where T denotes a text set containing
N words W and I denotes an image set, T = {W1, W2, . . ., WN} (|W| = N) and I = {I1,I2,
. . ., IM} (|I| = M). Meanwhile, an aspect set A = {A1, A2, . . ., AP} (|A| = P) is also given.
Our task is to predict the sentiment polarity Y with a given aspect phrase Ai. Y ∈ {C1, C2,
. . ., CS} (|C| = S). Here, each C is described by a score, where a larger score indicates that
the consumer’s sentiment attitude is the more satisfied and a smaller score represents the
consumer’s more dissatisfied sentiment attitude.
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3.2. Overview of MFSC

The framework of MFSC is shown in Figure 2 and it consists of four modules: text
feature extraction, visual feature extraction, text feature enhancement, and multi-feature
fusion. In the text feature extraction module, the text information and aspect information
are converted into vectors through word embedding, and the obtained ones are then
separately put into the Bi-LSTM network to obtain their corresponding hidden states. In the
visual feature extraction module, the residual network [38] is used to extract image features
and pass the obtained raw image information to multi-image gate. And for the multi-image
gate, two novel attention mechanisms are used and final visual features are obtained. On
this basis, the text feature can be enhanced in the text memory network, and the attention
mechanism is adopted to fully learn the text context, thus highlighting the important text
information. Finally, the text features Vt, visual feature Vvis and Vt-vis are concatenated
through softmax function, so as to achieve the task of sentiment prediction. For easy
presentation, Table 1 summarizes the notations used in the proposed MFSC framework.
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Table 1. Notations.

Notation Description

Wi the vector representation of the i-th text word
hi the hidden representation of the i-th text word
H the text hidden representation set
at the vector representation of the t-th aspect word
St the hidden representation of the t-th aspect word
S the aspect hidden representation set

VA the final aspect feature vector
Wt t ∈ {v, r}. Wv, Wr are learnable parameters in the tanh function
uT the learnable parameters in Equation (9)

bi i ∈ {null, img, vis, z, tex, t-vis}. b, bimg, bvis, bz, btex, bt-vis are
learnable parameters in the tanh function

α all weight of attention mechanism
cT the learnable parameters in Equation (12)
σ the sigmoid function
λi the i-th adaptive weight
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3.3. Implementation of MFSC
3.3.1. Text Feature Extraction

In order to utilize the contextual information in both the front and back directions of the
text sequence so that the framework can better understand the whole text sequence, and con-
sidering the limited computational resource, we use a Bi-LSTM for text feature extraction:

wi = embed(Wi) (1)

hi = Bi− LSTM(wi) (2)

where embed denotes word embedding, Bi-LSTM denotes Bi-LSTM, H = {h1, h2, . . ., hN}
denotes the text representation obtained after Bi-LSTM and i ∈ [1, N]. Similarly, the repre-
sentation of aspect features is shown below:

at = embed(At) (3)

st = Bi− LSTM(at) (4)

We use the set S = {s1, s2, . . ., sP} to denote the aspect representation obtained after
Bi-LSTM, and t∈[1, P]. Then, we perform the same process as in [29], i.e., we take the
average of all hidden representations as the final aspect feature vector:

vA =
1
P

P

∑
t=1

st (5)

3.3.2. Visual Feature Extraction

In aspect-level sentiment analysis, since many sample sentences are very short and
contain information that is often insufficient for a single-text model to make a correct
judgment, visual information is very important for analyzing sentiment polarity, which
contains rich content that can effectively enhance the robustness of the framework. In
order to solve the problem of difficulty in training neural networks with too much depth,
the residual network [38] was first proposed and it has shown amazing performance in
the image domain. Considering its excellent performance, here we use the pre-trained
ResNet-152 for image extraction; its use of residual connectivity preserves the original
features, making the learning of the network smoother and more stable, further improving
the accuracy and generalization of the framework:

rm = resnet(Im), m ∈ [1, M] (6)

In Equation (6), rm is a 2048× 7× 7 feature vector, which indicates that for each image,
it is divided into 49 visual blocks, and for each visual block its 2048-dimensional visual
features are extracted. Here, M is 5, which indicates that for a sample, we only consider the
features of its first five images. The detail view of the visual feature extraction is shown in
Figure 3.
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Then, we apply multi-image gate to process the visual feature extracted by Equation (6),
i.e., the visual feature will go through two attention modules and one image gate, and the
first attention module is represented as follows:

qm = u>tanh(WvvA + Wrrm + b) (7)

αm = exp(qm)/
5

∑
b=1

exp(qb) (8)

rimg =
5

∑
m=1

αmrm (9)

where αm (m ∈ [1, 5]) is the weight of the first attention mechanism we obtained, and from
this we obtain the first layer of visual features rimg, which is a 2048 × 7 × 7 feature vector.
The second attention module is represented as follows:

gi
img = c>tanh(Wv

imgvA + WR
imgri

img + bimg) (10)

αi
img = exp(gi

img)/
49

∑
w=1

exp(gw
img) (11)

rvis =
49

∑
i=1

αi
imgri

img (12)

Rvis = tanh(Wvisrvis + bvis) (13)

In which αi
img (i ∈ [1, 49]) is the weight of the second attentional mechanism, and from

this we obtain the second layer of visual features rvis, which is a 2048-dimensional feature
vector. Finally, we perform a nonlinear transformation in order to align the dimensions of
the visual feature with the dimensions of the text features and thus obtain Rvis.

For image gate, the output is determined by the textual context and the visual context.
The output value of the gate varies from 0 to 1. The size of the output value determines the
size of the contribution of a certain part of the image. According to [30], the expression is
shown below:

Z = σ(Wv
zVt1 + WR

zrvis + bz) (14)

Based on the output of the image gate, we can then obtain the final visual feature Vvis,
where ◦ represents the Hadamard product:

Vvis = Z ◦ Rvis (15)

3.3.3. Text Feature Enhancement

The text memory network extracts important words for sentiment and aggregates
text memory with the representation of the given aspect to account for the influence that
the aspect brings to texts. According to [29], we adopt three memory hops to extract text
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contextual and aspect information. But unlike [29], we do not take the output of the last
hop as the final text features; instead, we utilize the outputs of each hop and multiply the
outputs of each hop by an adaptive weight to obtain the final text feature. We did not
consider the interaction between textual and visual features; we believe this could provide
rich visual information for textual features, but it may also introduce a large amount of
redundant noise at each hop. The formula of the first hop is shown as follows:

li
1 = tanh(Wtex

1hi + Wtex
1vA + btex) (16)

αi
tex = exp(li

1)/
N

∑
i=1

exp(li
1) (17)

v1
tex =

N

∑
i=1

αi
texhi (18)

Vt1 = gru(v1
tex, vA) (19)

where i ∈ [1, N], Vt
1 is the text feature of the first hop obtained after the GRU module.

Similarly, the formula for the second and third hop is expressed as follows:

li
j = tanh(Wtex

jhi + Wtex
jVtj−1 + bj

tex) (20)

αi
texj = exp(li

j)/
N

∑
i=1

exp(li
j) (21)

vj
tex =

N

∑
i=1

αi
texjhi (22)

Vtj = gru(vj
tex, vA) (23)

where i ∈ [1, N], j = [2, 3], Vt
2 and Vt

3 are the text features obtained after the GRU module
for the second and third hop, respectively.

The final text feature formula obtained from adaptive weighting is represented
as follows:

λi = exp(wi)/
3

∑
i=1

exp(wi) (24)

Vt =
3

∑
i=1

λiVti (25)

where wi and i (i = 1, 2, 3) is the initialized weight parameter, and Vt is the final text feature.

3.3.4. Multi-Feature Fusion

The final fusion layer consists of text feature Vt, feature Vt-vis, and visual feature Vvis,
where Vt-vis is obtained through an attention module using both textual feature H and
visual feature Vvis. Considering that the image feature not only provides rich feature,
but also helps to find out the important feature in the text, here we include an attention
mechanism in the final fusion layer to help find out the important text information, i.e., Vt-vis
is calculated as follows:

ei = tanh(Wt−vishi + Wt−visVvis + bt−vis) (26)

αi
t−vis = exp(ei)/

N

∑
i=1

exp(ei) (27)
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Vt−vis =
N

∑
i=1

αi
t−vishi (28)

We concatenate Vt, Vvis, and Vt-vis to generate the final multimodal representation,
where ⊕ denotes concatenation:

V = Vt ⊕Vvis ⊕Vt−vis (29)

Finally, we feed the multimodal representation V to the softmax function for classifica-
tion of sentiment polarity:

pred = so f tmax(W>mutiV + bmuti) (30)

4. Experiments and Discussion

In this section, the experimental results of MFSC are examined. MFSC is implemented
on an Nvidia GeForce GTX3060 GPU with RAM 12 GB. And due to the high computational
complexity of the framework, which can take up a lot of memory, the minimum memory
for the device is 32 GB. Accuracy and Macro-F1 are analyzed compared to existing methods.
Among them, accuracy is the most common metric used to measure the performance of
classification models. It is simply the ratio of correctly predicted observations to the total
number of observations. Macro-F1 is the average F1 score across all classes. It gives equal
weight to each class, which is particularly useful in multi-class classification problems
where some classes may have a small number of instances.

4.1. Datasets and Experimental Parameters

We conducted experiments on a publicly available multimodal sentiment classification
dataset collected from (https://github.com/xunan0812/MIMN/tree/master/datasets/
zolDataset, accessed on 15 April 2023), where each comment contains text content, a set of
images, and at least one but no more than six aspects. The sentiment classification labels are
represented as scores from 1.0 to 10.0. In this case, 1.0 means that consumers are extremely
dissatisfied, and as the score increases, so does the level of consumer satisfaction, i.e., a score
of 5.0 represents neutral consumer sentiment, and a score of 10.0 means that consumers
are extremely satisfied. There are 22,743 training samples, 2843 validation samples, and
2843 test samples in the dataset.

For a fair comparison, we followed the experimental parameter settings in [29]. The
number of the hops in the text memory network is 3, which is the optimal hop count in
previous experiments. The dimension of the hidden representation of LSTM is 100. The
maximal padding length of the text content is 320, and the maximal padding length of
the aspect words is 4. For the images, we resized them to 224 × 224 and fed them into a
pre-trained neural network ResNet152 [38] to extract 2048× 7× 7 dimensional embeddings.
The maximum fill number of M is 5. The dropout is 0.2, the learning rate is 0.001, the batch
size is 128, and the early stopping is 10; during the training process, it can monitor the
performance on the validation set. Once performance begins to decline, training will stop to
avoid overfitting. This method helps to find the optimal point for training time to achieve
optimal generalization performance. In addition, we chose the cross-entropy loss function
and updated the parameters using the Adam optimizer.

4.2. Comparative Methods

We compare our proposed framework with several comparative methods, including
the representative text method and multimodal method, shown in Table 2.

https://github.com/xunan0812/MIMN/tree/master/datasets/zolDataset
https://github.com/xunan0812/MIMN/tree/master/datasets/zolDataset
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Table 2. The descriptions of comparative methods.

Comparative Methods Description

Text-based method

LSTM A method to learn text features and perform sentiment classification using
LSTM [39].

AEAT-LSTM A method to learn text features and perform sentiment classification using
LSTM incorporating attention mechanisms [39].

RAM A method to learn text features and perform sentiment classification using
Bi-LSTM [40].

BERT A method that enables understanding of contextual representations [32].

Multimodal method

Co-Memory + Aspect Unlike Co-Memory, it adds the aspect feature on the inputs [41].

MIMN A method for utilizing text memory network and image memory network and
interacting between them [29].

TomBERT A method for multimodal sentiment classification using pre-trained BERT [42].
ESAFN A method for introducing a gate mechanism to eliminate picture noise [30].
EF-CapTrBERT A method for adding text information using image captioning [31].

MFSC-BERT A method where we replace Bi-LSTM in MFSC with BERT for text
feature extraction.

Text-based method: These models only use text information, include LSTM [39],
which is a model based on a long- and short-term memory network to learn text features
and perform sentiment classification. AEAT-LSTM [39] adds aspect information to text
information to perform sentiment classification. RAM [40] is a memory-based model which
builds memory on the hidden states of a Bi-LSTM and generates aspect representation also
based on a Bi-LSTM. BERT [32], which is a pre-trained natural language processing model
that uses the Transformer architecture for bidirectional training, is capable of understanding
and generating contextual representations of human language.

Multimodal method: These models use information from both text and image modali-
ties. Co-Memory + Aspect is a variant of Co-Memory [41] that adds aspect information to
the original paper as input to both the textual and visual memory networks. MIMN [29]
is the first model to begin investigating multimodal aspect-level sentiment classification,
which primarily utilizes a multi-hop memory network to extract textual and visual repre-
sentations. TomBERT [42] is the earliest method to utilize pre-trained BERT for multimodal
aspect-level sentiment analysis. Because the Multi-ZOL dataset is a Chinese dataset, we
utilize bert-base-Chinese rather than bert-base-uncased, which was used by the original
authors. ESAFN [30] is an aspect-sensitive attention and fusion network, which incor-
porates a gate unit to remove noise from the image, but since we cannot divide the text
from the Multi-ZOL dataset into left and right texts, we did not conduct the experiment
by separating the text into left and right as performed in ESAFN. Instead, we processed
it in a manner consistent with our method. EF-CapTrBERT [31], which uses translation
in the input space to translate images into text, is followed by multimodal fusion using
an auxiliary sentence input to the encoder of a language model. MFSC-BERT is a method
to replace Bi-LSTM in MFSC with BERT for text feature extraction. We do this to verify
that Bi-LSTM as a lighter weight text feature extraction method is more suitable for our
framework than BERT.

4.3. Experimental Results

We show the results of all the compared methods in Figure 4. From this figure, we
can see the following points. (1) Multimodal methods based on images and texts generally
perform better overall than the text-based unimodal method, suggesting that visual infor-
mation is useful information for consumer reviews and that it is an important complement
to text features. (2) Our framework consistently outperforms text-based unimodal methods,
which suggests that relying on text information alone is not sufficient for the model to make
correct judgements. For multimodal methods, visual information can bring additional
features to the model or bring features with different meanings than those expressed by
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text features, which can help the model to diversify its considerations and make correct
judgments. (3) It can be seen that the MFSC outperforms the compared methods on accu-
racy and macro-F1. Among them, text feature enhancement can extract text features more
fully, multi-image gates can filter image noise effectively, and the interaction of text features
and image features can also increase useful information. This validates the effectiveness of
our proposed framework in multimodal aspect-level sentiment classification.
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To further demonstrate the validity of MFSC, we show three test examples in Table 3.
Where the first row represents the input image, the second row represents the input text,
and the third row represents the input aspect information. MIMN, TomBERT, and ESAFN
are all comparative multimodal methods. Here, the red score denotes the classification
result is wrong and the blue score means the classification result is correct. In the first
example, MIMN and TomBERT predicted a sentiment score of 6.0. For the second example,
all but ESAFN predicted the correct result. For the third example, only MIMN predicted a
sentiment score of 6.0. With all examples, our method predicts the correct category, which
demonstrates the strength of our MFSC framework in predicting sentiment classification.

Table 3. Prediction of three test samples by different methods.
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passion and youth; there is nothing
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4.4. Ablation Study

To explore the impact of the modules of MFSC on the overall performance, different
variants are tested, as shown in Table 4.
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Table 4. Results of ablation experiments.

Module Accuracy (%) Macro-F1 (%)

ResNet-152-only 69.19 68.97
w/o Multi-Image Gate 69.96 69.83
w/o Text-Image Attention 70 69.97
w/o Adaptive Weights 71.02 70.90
MFSC 71.54 71.47

ResNet-152-only: Only visual features are extracted using ResNet-152; text features
are extracted using LSTM, text features are processed using the text memory network, and
textual and visual features are spliced together in the feature fusion stage.

w/o Multi-Image Gate: Using only ResNet-152 in the visual feature extraction stage,
text features are extracted using LSTM and enhancing text features using the text memory
network and adaptive weighting. The correlation is improved between text and images
using the attention mechanism in the feature fusion stage. In this way, we investigate the
impact of the Multi-Image Gate on MFSC.

w/o Text-Image Attention: In the visual feature extraction stage, visual features are
extracted using ResNet-152 and noise is filtered using the Multi-Image Gate. Text features
are extracted using LSTM and text features are enhanced using the text memory network
and Adaptive Weight and finally text features and visual features are stitched together, in
order to study the effect of Text-Image Attention on MFSC.

w/o Adaptive Weight: In the visual feature extraction stage, visual features are
extracted using ResNet-152 and noise is filtered using the Multi-Image Gate. Text features
are extracted using LSTM; text features are enhanced using the text memory network. And
finally, features are obtained from text features, visual features, and Text-Image Attention,
in order to study the effect of Adaptive Weight on MFSC.

As can be seen from Table 4, after greatly changing the structure of the framework,
i.e., removing the Multi-Image Gate, the Text-Image Attention, and the Adaptive Weights,
there is a significant decrease in the performance of the framework. This indicates that
there is a significant deficiency in the features obtained from the network by relying solely
on image feature extraction. Compared to our framework, the accuracy and macro-F1
value of the framework with the Multi-Image Gate removed decreased by 2.35% and 2.5%,
respectively. This suggests that the Multi-Image Gate plays a role in fusing the feature
information of multiple images and removing noise, which helps the model to capture
the critical information of the images efficiently. The accuracy and macro-F1 value of the
framework also decreased after the absence of the features obtained based on the Text-
Image Attention, which reflects the importance of the interaction between text and image,
and it illustrates that the interaction between text and image can improve the framework
performance. In addition, there is a significant decrease in performance on the framework
without Adaptive Weights, which indicates that the text features obtained at each hop of
the text memory network are valuable.

4.5. Parameter Analysis
4.5.1. Impact of Different Hops

MFSC uses a memory network-based method for extracting text features. Therefore,
the number of memory hops is a major hyperparameter that affects the performance.
Referring to the MIMN [29], we show the experimental results of MFSC with 1 to 5 memory
hops and compare them; the results are shown in Figure 5. When the number of the
memory hop is 1, this leads to its worst results due to its inability to adequately learn the
interaction of text and aspect features. The performance of MFSC becomes better as the
number of memory hops increases, and it reaches its best performance when the memory
hop is 3. However, when the memory hop is more than 3, the performance of MFSC does
not become better; this is because it has higher complexity and lower generalization with
the increase in the number of memory hops.
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Figure 5. Results of different memory hops. Left figure shows the accuracy results and right figure
shows the macro-F1 results.

4.5.2. Impact of Different Batch Sizes

In this section, the effect of batch sizes on the experimental results is tested, where
batch sizes denote the number of data samples captured in a training session. The size of
the batch sizes affects the model training; larger batch sizes yield more precise gradient
estimates but can cause memory issues, slow convergence, and reduced generalization.
And smaller batch sizes can lead to a better generalization error, but it will bring noise and
even lead to non-convergence. Therefore, the choice of batch sizes is also an important
issue. The results of the variation of accuracy and macro-F1 values under different sizes of
batch sizes are shown in Figure 6, and we can see that MFAC works better when the batch
size is 128.
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5. Conclusions

In this paper, we propose a novel MFSC framework for aspect-level multimodal
sentiment classification. MFSC utilizes multi-image gates to efficiently filter noise from
multiple images, highlighting important visual information. Meanwhile, it enhances text
features using a text memory network and adaptive weights. And the association between
textual and visual information is enhanced using text-image attention in the multi-feature
fusion stage. The effectiveness of MFSC is verified through comparison experiments with
other methods. In practical terms, the MFSC framework can be applied to e-commerce
platforms. For example, online retailers can use MFSC to analyze customer reviews that
include text and images to gain insights into the sentiment expressed towards different
aspects of products, such as quality, design, and functionality. This information can help
in making decisions about marketing strategies and product improvements. We believe
that by replacing pre-trained word-embedding vectors in other languages, this model can
also be applied to other languages. The limitation of our approach is that the framework is
somewhat complex, which makes the computation slower and leads to overfitting. Our
subsequent work is how to streamline the structure of the framework so that the parameters
and computation time of the framework can be reduced without affecting the performance
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of the framework. We believe that small and high-performance models are a promising
direction for future research.
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