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Abstract: The objective of pan-sharpening is to effectively fuse high-resolution panchromatic (PAN)
images with limited spectral information and low-resolution multispectral (LR-MS) images, thereby
generating a fused image with a high spatial resolution and rich spectral information. However,
current fusion techniques face significant challenges, including insufficient edge detail, spectral
distortion, increased noise, and limited robustness. To address these challenges, we propose a multi-
frequency spectral–spatial interaction enhancement network (MFSINet) that comprises the spectral–
spatial interactive fusion (SSIF) and multi-frequency feature enhancement (MFFE) subnetworks. The
SSIF enhances both spatial and spectral fusion features by optimizing the characteristics of each
spectral band through band-aware processing. The MFFE employs a variant of wavelet transform to
perform multiresolution analyses on remote sensing scenes, enhancing the spatial resolution, spectral
fidelity, and the texture and structural features of the fused images by optimizing directional and
spatial properties. Moreover, qualitative analysis and quantitative comparative experiments using
the IKONOS and WorldView-2 datasets indicate that this method significantly improves the fidelity
and accuracy of the fused images.

Keywords: image fusion; multi-frequency; spectral–spatial; pan-sharpening

1. Introduction

High-resolution multispectral (HRMS) image fusion, which has extensive applica-
tions in agriculture, forestry, urban planning, and environmental monitoring [1–4], is a
critical technique for enhancing image resolution and quality. However, due to technical
constraints, remote sensing satellites can only capture low-resolution multispectral (LRMS)
and high-resolution panchromatic (PAN) images, making it difficult to directly acquire
HR-MS images [5]. LRMS exhibits excellent spectral resolution but low spatial resolution,
while PAN images possess a high spatial resolution but low spectral resolution. It is worth
fusing these two kinds of images to generate images with both high spatial and spectral
resolutions [6,7].

Currently, HRMS fusion methods can be categorized into three methods, including
component substitution (CS), multiresolution analysis (MRA), and deep neural network
(DNN)-based methods. CS enhances image details by replacing or adjusting certain compo-
nents of the multispectral image using the high-resolution PAN image. Some CS methods
have been proposed. For example, it has been used in the literature [8] to product an
experimental SPOT image map. PCA [9] was introduced to merge the TM and PAN data
to replace the first principal component. In the literature [10], Gram–Schmidt was used to
capture the spectral responses of the sensors and integrate them into the Gram–Schmidt
spectral sharpening method to generate fused images with the same spatial sharpness.
Brovey [11] discussed two methods based on ratioing of data from different image channels.
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Althrough CS has advantages, it may distort spectral information when intensively replac-
ing luminance or intensity components. Therefore, multiresolution analysis (MRA) was
introduced to decompose the PAN and multispectral images into different scales or levels
using one or more image decomposition techniques. It is enabling independent process-
ing of different frequency components. Common MRA methods include wavelet [12,13],
various Laplacian-based fusion methods with an adaptive spatial injection mode [14],
contourlet [15], and ATWT-M2 [16]. However, MRA methods typically involve complex
computations. The selections of transformation type, number of layers, and other param-
eters significantly impact the quality of the final image, requiring careful adjustment for
optimal results.

DNN-based fusion technology has demonstrated remarkable effects in effectively
handling the integration of multispectral and PAN images. Yuan et al. [17] proposed a
multiscale and multi-depth convolutional neural network (MSDCNN). Zhang et al. [18]
proposed a bidirectional pyramid network (BDPN) to better achieve spectral preservation
and detail extraction. Wang et al. [19] proposed a multiscale U-shaped convolutional neural
network (MUCNN) for fully utilizing the multispectral information of involved images.
Feng et al. [20] conducted a multilevel parallel feature injection network (MPFINet) to
balance spatial enhancement and spectral preservation. A spatial–spectral dual back-project
network (S2DBPN) was introduced by Zhang et al. [21] to fuse images by exploiting BP in
the spatial and spectral domains. After this, Zhang et al. [22] proposed a deep multiscale
LD network (DMLD) to enhance the spatial and spectral information in the fused images.

Despite their advantages, these DNN-based fusion methods often suffer from noise
or negative features which are repeatedly extracted and variously superimposed due to
specific prior knowledge. Moreover, these methods rely on the extraction of multiscale
features, leading to feature redundancy and artifact replication in the learned features.

To address the limitations of existing methods, we propose a multi-frequency enhanced
fusion network that integrates the benefits of spectral–spatial interaction fusion and multi-
frequency feature enhancement. Our approach involves analyzing the correlation between
the source image and the high-resolution image, leveraging frequency domain information
to enhance spatial information and generate high-resolution multispectral (HRMS) images.
Additionally, we thoroughly explore the potential of the panchromatic (PAN) image by
considering the characteristics of each band in the multispectral (MS) image. We employ a
wavelet transform to perform a multi-resolution analysis on the MS image, capturing both
global features and local details. This approach optimizes the directionality and spatial
alignment of the source image, ensuring more precise alignment of texture and structural
information across different scale images. The main contributions of this work include:

1. A novel multi-frequency spectrum–spatial interaction enhanced fusion network (MF-
SINet) is proposed, leveraging a multi-resolution analysis to integrate complementary
features from both the spatial and frequency domains, thereby enhancing the quality
of pan-sharpened fusion.

2. A spectral–spatial interaction fusion block has been developed to construct multi-scale
spatial and spectral interactions. This approach promotes the effective fusion and
interaction of information across different scales at both the spectral and spatial levels.

3. We propose a multi-frequency feature enhancement scheme that fully leverages the
advantages of wavelet transform in multi-frequency analysis and edge-preserving
fusion. This approach accurately represents image texture and structural information
from both directional and spatial perspectives.

4. Extensive experiments conducted on the IKONOS and WorldView-2 datasets demon-
strate that our method is comparable to state-of-the-art algorithms in both qualitative
and quantitative analyses.

The structure of this article is outlined as follows. Section 2 describes the related work
on spectral–spatial interactive and multi-frequency feature enhancement. Subsequently,
Section 3 details the analysis of the proposed MFSINet network architecture. Section 4
evaluates the performance of the proposed MFSINet by comparing it with other state-of-
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the-art methods on both full-resolution and reduced-resolution datasets. Conclusions are
drawn in Section 5.

2. Related Work
2.1. Spectral–Spatial Interactive Fusion

Spectral–spatial interactive fusion is an advanced image processing technique that
dynamically fuses spectral and spatial information to produce high-quality, high-resolution
fused images, making it particularly suitable for a variety of remote sensing image process-
ing tasks, including pan-sharpening applications. In this technique, spectral features reflect
the importance of spectral information across different bands, while spatial features reveal
the significance of spatial information within the multispectral image bands. The high
correlation between spectral and spatial features is central to this approach. To maintain
the integrity of fused features and maximize feature utilization, current methodologies
attempt to combine spectral information and spatial features effectively through the con-
struction of multiscale feature fusion platforms. For instance, the SENet [23] architecture
enhances model performance by focusing on the relationships between channels in feature
maps, incorporating SE blocks that adaptively adjust channel feature responses to boost
the network’s representational power. Shen et al. [24] constructed a fusion framework,
where iterative optimization algorithms were used to refine the fusion model. Mei et al. [25]
proposed a spectral–spatial attention network for hyperspectral image classification that
learns the correlations within the spectral continuum and the spatial relationships between
adjacent pixels. Nie et al. [26] developed a spectral–spatial attention interaction network
that extracts and iteratively interacts with features to efficiently transfer spectral–spatial
information, significantly enhancing information integration efficiency. He et al. proposed a
novel pan-sharpening approach (MSDDN) [27] by exploring the distinguished information
in both the spatial and frequency domains to capture multiscale dual-domain information,
generating high-quality pan-sharpening results. Moreover, a batch of excellent deep learn-
ing algorithms has also been developed. Xu et al. [28] proposed two optimization solutions
with deep prior regularization. A gradient projection algorithm was used, and the iterative
steps were generalized. After that, an improved and advanced purely transformer-based
model for pan-sharpening was proposed [29].

2.2. Multi-Frequency Feature Enhancement

Multi-frequency feature enhancement technology aims to improve image detail and
contrast by enhancing features across multiple frequency bands. This technology involves
the use of multiscale feature enhancement networks, which adjust their processing ap-
proach based on the specific characteristics of the data at different scales or frequency bands,
thus optimizing image processing outcomes. Wavelet transform [30,31] is a key method
for achieving multi-frequency feature sparse enhancement, allowing the decomposition of
an image or signal into different frequency components, each representing local frequency
characteristics at a specific scale. The advantages of wavelet transforms [32] lie in its ability
to simultaneously provide spatial and frequency detail information, which is crucial for
applications involving multiscale or multi-frequency features such as image compression,
denoising, feature extraction, and feature enhancement. The orthogonal multiresolution
wavelet [33] representation defined by S.G. Mallat has been widely applied in data com-
pression, texture differentiation, and fractal analysis of image encoding. Shu et al. [34]
developed a wavelet-based video compression algorithm, demonstrating the compressive
capabilities of wavelet transforms in video file processing. Guo et al. [35] designed a
deep convolutional neural network to predict the “missing details” in wavelet coefficients
of low-resolution images to achieve super-resolution (SR) results. Liu et al. proposed a
novel multi-level wavelet CNN (MWCNN) [36] model that better balances receptive field
size and computational efficiency. Moreover, Some sparse representation image fusion
algorithms have been widely used for pan-sharpening problems [37,38]. By leveraging the
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sparse properties of images, these algorithms effectively preserve edges and texture details,
maintain spectral information, and perform better in reducing spectral distortion.

3. Proposed Method
3.1. Motivation

Existing methods primarily utilize spatial information to generate pan-sharpened
images, often overlooking the interrelationship between frequency domain and spatial
information. To address these challenges, we thoroughly consider incorporating frequency
domain information into the fusion of MS images, utilizing a spectral–spatial interaction
fusion block to enhance the rich texture information. Moreover, it is noteworthy that
high-resolution multispectral image fusion poses another challenge: the issue of scale
mismatch. Different regions exhibit significant characteristic differences at varying spatial
scales. Therefore, we adopt a multi-frequency feature enhancement scheme, fully exploiting
the advantages of wavelet transform variants in resolution analysis and edge-preserving
fusion. This approach accurately represents image texture and structural information from
both directional and spatial perspectives.

3.2. Network Framework

As shown in Figure 1, due to the differing scales of LRMS and PAN images, the
MFSINet architecture first performs upscaling on the low-resolution multispectral (LRMS)
image to match the scale of the panchromatic (PAN) image. Subsequently, the super-
resolution processing of the LRMS image is optimized using the spatial and frequency
domain features of the PAN image. Through the spectral–spatial interactive fusion (SSIF)
subnetwork, an interactive mechanism for MS image fusion is established. This mechanism
leverages the rich spectral information of the LRMS image and the clear spatial information
of the PAN image to more accurately capture the complex features within the images. The
results of this fusion process are then passed to the second stage: the multi-frequency feature
enhancement (MFFE) subnetwork. Here, the high spatial resolution of the panchromatic
image and the rich spectral data of the multispectral image are used to process data with
local characteristics and multiscale information, producing images that maintain a high
spatial resolution and spectral characteristics. Through the integration of spatial domain
and multi-scale information across three stages, a high-resolution HRMS fusion result is
obtained. The entire network operation is as follows:

H = UP4 + F(UPL, P) (1)

F(·) = SSIF◦3 c⃝MFFE◦3 c⃝FR (2)

where UP represents the upsampling convolution operation, F(·) represents the Fusion re-
sult output, SSIF◦3 represents the spectral–spatial interactive fusion module, and MFFE◦3

represents the multi-frequency enhancement module. The symbol c⃝ represents the cas-
cading between modules. The symbol ◦3 denotes three serial operations. Additionally,
FRrepresents the fine reconstruction model operation. UP is crucial for increasing the
spatial resolution of the input feature maps, ensuring that the subsequent fusion process
can integrate fine-grained details. The SSIF module enhances the fusion process by leverag-
ing both spectral and spatial information through attention mechanisms, thus preserving
critical structural and textural information. The MFFE module applies multi-frequency
analysis to capture and enhance features at various frequency scales, which is essential for
maintaining high-quality image reconstruction. Finally, FR further refines the fused image,
improving detail and accuracy by utilizing convolutional layers, activation functions, and
pooling operations to balance local information and global features. This comprehensive
approach ensures that the output image retains both a high resolution and high fidelity in
the spectral and spatial domains.
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Figure 1. Framework of the proposed MFSINet.

3.2.1. Spectral–Spatial Interactive Fusion Block (SSIF)

In the spectral–spatial interactive fusion block, both LRMS and PAN images are
sampled simultaneously and mapped into the feature space. The SSIF framework is
illustrated in Figure 2. Given the scale discrepancy between the two images, they are
mapped to matching dimensions through upscaling/downscaling processes. This approach
maintains the structural and textural information of the images by leveraging multiscale
global and local features. This interaction, facilitated by spectral and spatial attention
mechanisms [39], helps capture more detailed information and features within the images.
The spectral attention mechanism [40,41] weights the spectral channel features to enhance
the model’s efficiency in using spectral information, focusing on locally significant spectral
data. Conversely, spatial attention focuses on the pixel arrangement, assigning weights
to each pixel position to emphasize or suppress feature representations accordingly, thus
enhancing the model’s capability in spatial representation. This is formulated as follows:

SSIF = DOWN[SSF(CONVL, PAN)] (3)

(X1, X2) = Split(L, P) (4)

X′ = CONV[SPEA(X1)× SAPE(X2)] (5)

X′′ = CONV{IN[CONV(L, P)] cat Res(L, P)} (6)

SSF = X′ + X′′ (7)

where DOWN represents the downsampling convolution operation, SSF represents the
spectral and spatial fusion block, Split represents the channel split operation, SPEA rep-
resents spectral information, SAPE represents spatial attention, IN represents instance
normalization, and Res represents the residual connection.

Hierarchical instance normalization [42] is used to interact with features across dif-
ferent layers, facilitating richer feature extraction and promoting information transfer and
integration. Therefore, in the SSIF module, we integrate spatial and frequency features to
fuse the local multiscale characteristics of LRMS and PAN images in the spatial domain.
Additionally, we utilize the global and local spatial features of the PAN image to optimize
the detail and structural feature learning of the LRMS image.
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Figure 2. Framework of the proposed SSIF.

3.2.2. Multi-Frequency Feature Enhancement (MFFE)

Directly outputting the SSIF fusion results can lead to missing local features. Therefore,
we employ the multi-frequency feature enhancement (MFFE) module to integrate the
prominent spatial and multi-frequency features from SSIF. By using wavelet transform to
capture multi-resolution information, the MFFE module enhances the quality of the fused
image. The MFFE framework is illustrated in Figure 3. Initially, the images are convolved
to extract preliminary features. Using wavelet transforms, these features are decomposed
by frequency, yielding representations at various frequency scales. Our method utilizes the
wavelet function: a simple yet powerful function that decomposes the input signal into
approximation coefficients and detail coefficients using low-pass and high-pass filters. The
resulting coefficients are in complex form. Operations Fabs and Fangle generate amplitude
and phase components, respectively, with Fabs extracting amplitude information indicative
of signal magnitude and Fangle extracting phase information indicative of relative phase or
timing delays. The wavelet transform generates both low-frequency and high-frequency
information, encompassing LL (low-frequency approximation), LH (horizontal detail), HL
(vertical detail), and HH (diagonal detail) coefficients. Subsequent convolution and inverse
wavelet transform (IDWT) processes reconstruct the signal details [43,44], comprising
A (low-frequency), H (horizontal high-frequency), V (vertical high-frequency), and D
(diagonal high-frequency) components. This step is essential in wavelet analysis for image
reconstruction and denoising, formulated as follows:

MFFE = IDWT[DWT(CONVMs, CONVPan)] (8)

DWT = Dec(LL, LH, HL, HH) (9)

(LL, LH, HL, HH) = Complex{Abs[LP(L, P)], Angle[HP(L, P)]} (10)

(A, H, V, D) = CONV(LL, LH, HL, HH) (11)

IDWT = Rec(A, H, V, D) (12)
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where DWT represents the wavelet transform and IDWT represents the inverse wavelet
transform. CONV represents convolution processing, which performs high-pass and low-
pass filtering on MS and PAN images to extract features. Dec represents decomposition
using a wavelet function, breaking the input signal into four parts: LL, LH, HL, and HH
coefficients. The combination of these coefficients is used to extract different frequency
components of the image, each processed separately to enhance specific features of the
image. Complex refers to decomposing the wavelet transform results of the MS and PAN
images into amplitude and phase. The amplitude part reflects the intensity information
in the image, while the phase part contains the structural information. By processing
these pieces of information separately, the details and features of the image can be better
preserved during image fusion. Abs represents calculating the magnitude, and Angle
represents calculating the phase. (A, H, V, D) represent the combination of new low-
frequency and high-frequency sub-bands generated in the inverse wavelet transform.
Rec represents reconstruction, where the input tensor is divided into four sub-tensors
corresponding to the low-frequency and high-frequency coefficients of the inverse wavelet
transform. The original signal is reconstructed from these coefficients through the inverse
wavelet transform.

Multi-frequency feature enhancement (MFFE)
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Figure 3. Framework of the proposed MFFE.

The multi-frequency feature enhancement strategy decomposes the input features into
sub-bands of different frequencies, concentrating the primary energy of the signal into a
few specific sub-bands. This facilitates better capture of salient features in image fusion,
as each sub-band is dedicated to processing information within distinct frequency ranges.
Moreover, the orthogonality property of wavelet transform reduces redundant information
in feature fusion, avoiding the so-called noise iteration and thereby enhancing the model’s
performance in feature extraction and task resolution.

3.2.3. Fine Reconstruction

The fine reconstruction module, implemented through multiple convolutional layers,
activation functions, and pooling operations, aims to utilize the processed image’s local
information and channel interdependencies to compensate for global features. This further
refinement and restoration aims to improve the details and accuracy of image processing
results, yielding higher-quality or more precise HR images.

3.3. Loss Function

To effectively optimize the model’s accuracy in both spatial and frequency domains,
we employ a spatial and frequency L1 loss function aimed at closely approximating the
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generated fusion results to the source images. The loss function for our proposed MFSINet
can be represented as follows:

Loss =
1
K

k

∑
{i=1}

| f (Pk, Lk)− Hk|1 (13)

where the GT is denoted as Hk, where the combination of LRMS and PAN images resilts in
(Pk, Lk)(k = 1, 2, . . . , k) as the network output.

4. Experimental Results and Analysis

In this section, we provide a detailed description of the experimental setup, hyperpa-
rameter settings, and dataset details, including a comparative analysis of data at reduced
and full resolutions. Finally, we demonstrate the superiority of our proposed method in
terms of performance metrics through ablation study analysis.

4.1. Experimental Details
4.1.1. Datasets

Two publicly available datasets, namely IKONOS and WorldView-2 (WV-2), are em-
ployed to train and test the proposed method. The IKONOS dataset comprises 120 training
samples and 80 testing samples. In contrast, the WorldView-2 dataset provides high-
resolution imagery across 8 spectral bands, with 400 training samples and 100 testing
samples. Due to the unavailability of the pan-sharpened ground truth (GT) [45], we
adopted Wald’s protocol [46] to construct the reduced-resolution datasets. Specifically,
we downsampled the MS and panchromatic (PAN) images by a factor of four. We used
the original MS images as the ground truth (GT), resulting in low-resolution MS images
sized 64 × 64 and high-resolution PAN images sized 256 × 256, while the full-resolution
MS and PAN images both measured 256 × 256. These synthesized datasets were used for
training purposes.

4.1.2. Implementation Details and Metrics

We trained the proposed MFIFNet using a single NVIDIA 4090 GPU with 24 GB of
RAM, a 12th Gen lntel Core i9-12900K CPU (lntel, Santa Clara, CA, USA), and a 64-bit
Windows 11 operating system. The implementation was performed using PyTorch 1.11.0.
Measurement metrics were computed using MATLAB R2023a, and we employed a Adam
optimizer with a learning rate of 0.0001. The training process lasted for 500 epochs, with
the model being saved every 100 epochs. For the reduced-resolution dataset, the fused
results were evaluated using metrics such as the Erreur Relative Globale Adimensionnelle
de Synthèse (ERGAS) [47], spectral angle mapper (SAM) [48], spatial correlation coefficient
(SCC) [49], and image quality (Q) [50]. ERGAS measures the global relative error in image
quality, SAM and SCC evaluate the spectral similarity and spatial correlation between
the fusion result and source images, and Q assesses image quality by comparing the
similarity of the test image to the reference one in terms of brightness, contrast, and
structure. Moreover, the quality with no reference (QNR) [51] was used, which is expressed
as QNR = (1 − Ds)α(1 − Dλ)

β [52]. Dλ (spectral distortion) and Ds (spatial distortion)
were utilized to assess the full-scale fused results by calculating both spectral and spatial
distortions [53].

4.1.3. Compared Methods

Our MFIFNet is compared against eight state-of-the-art ones, including Brovey [11] from
CS, ATWT-M2 [54] from MRA, MSDCNN [17], BDPN [18], MUCNN [19], MPFINet [20],
S2DPBN [21], and DMLD [22]. Note that the first two ones are traditional methods, whereas
the latter six ones are DL-based methods. In particular, to ensures a fair comparison, all
DL-based methods were re-trained on the same training and testing datasets.
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4.2. Comparative Analysis
4.2.1. Experiments on Reduced-Resolution Datasets

Figures 4 and 5 provide qualitative comparisons of the reduced-resolution dataset
results for IKONOS and WorldView-2, respectively. These figures present a more intuitive
representation of the effectiveness of each fusion method by including absolute error
maps of the fusion results relative to the ground truth for each band. Figure 4 clearly
demonstrates that the fusion results obtained by ATWT-M2 exhibit significant blurring
with a grayish appearance, while Bovey’s results tend to have a bluish tint. DL-based
methods demonstrate the closest resemblance to the ground truth in terms of spatial details
and spectral fidelity. MSDCNN, BDPN, DMLD, and MPFINet show improvements in
spectral preservation. However, some loss of information is still noticeable, such as the
blurring of edge structures around the two blue dots in the top left corner of Figure 4
and significant spectral distortion on the red roofs in the middle part of the images, as
observed by MUCNN and S2DPBN. In Figure 5, traditional methods display significant
image blurring, whereas the DL-based methods also exhibit spatial distortions, such as the
presence of brightly colored spots on the rooftops in the upper right corner. Compared to
the ground truth, the DL-based methods show noticeable color distortions or aberrations,
resulting in confusion when labeling and a loss of spectral information related to the
rooftop. The absolute error maps also reflect significant reconstruction errors in texture and
edge areas, as well as a notable loss of spatial details, indicating an inability to accurately
reconstruct the fused images. Importantly, our proposed method demonstrates similarity
in both spectral and spatial information fusion with the ground truth, effectively reducing
information redundancy and improving the pan-sharpening results.

On the other hand, Tables 1 and 2 present the performance metrics for reduced-
resolution data, with optimal scores highlighted in red. It is evident that our method
outperforms the others across all metrics, particularly in terms of quantitative performance
compared to traditional methods. Specifically, on the IKONOS dataset, our method demon-
strated improvements of 0.05, 0.36, and 0.91 in Q4, ERGAS, and SAM over BDPN. On the
WV-2 dataset, compared to the previously best method, MPFINet, the proposed algorithm
improved by 0.17 in ERGAS and 0.07 in SAM, achieving the best performance across four
assessment metrics and better preservation of spectral information and spatial details.

Brovey ATWT-M2 BDPNMSDCNN MUCNN

MPFINet S2DPBN DMLD Ours GT

Brovey ATWT-M2 MSDCNN BDPN MUCNN MPFINet S2DPBN DMLD Ours

Figure 4. Results images of the nine methods and GT on the IKONOS simulated dataset, as well as
images of the absolute error.
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Brovey ATWT-M2 BDPNMSDCNN MUCNN

MPFINet S2DPBN DMLD Ours GT

Brovey ATWT-M2 MSDCNN BDPN MUCNN MPFINet S2DPBN DMLD Ours

Figure 5. Resulting images of the nine methods and GT on the WV-2 simulated dataset, as well as
images of the absolute error.

Table 1. Quantitative comparison of all methods on the IKONOS simulation dataset. ↑ indicates that
larger values are preferable, while ↓ indicates that smaller values are preferable.

Methods
Reduced Resolution Full Resolution

Q4↑ ERGAS↓ SAM↓ SCC↑ QNR↑ Ds↓ Dλ↓

Brovey 0.7347 2.5267 3.4047 0.8880 0.7084 0.2143 0.1097
ATWT-M2 0.6919 2.8690 3.4583 0.8323 0.7605 0.1559 0.1089
MSDCNN 0.8766 1.6187 2.3738 0.9474 0.8563 0.1071 0.0468
BDPN 0.8434 1.9006 3.0374 0.9277 0.7802 0.1545 0.0802
MUCNN 0.8822 1.5532 2.2227 0.9476 0.8333 0.1026 0.0812
MPFINet 0.8754 1.6211 2.1946 0.9491 0.8405 0.1123 0.0624
S2DPBN 0.8655 1.6726 2.4063 0.9469 0.8409 0.0924 0.0788
DMLD 0.8560 1.8216 2.6823 0.9397 0.8387 0.1081 0.0694
OURS 0.8905 1.5405 2.1238 0.9493 0.8840 0.0713 0.0504

Table 2. Quantitative comparison of all methods on the WV-2 simulation dataset. ↑ indicates that
larger values are preferable, while ↓ indicates that smaller values are preferable.

Methods
Reduced Resolution Full Resolution

Q8↑ ERGAS↓ SAM↓ SCC↑ QNR↑ Ds↓ Dλ↓

Brovey 0.8212 6.3161 7.9286 0.9007 0.8688 0.1088 0.0251
ATWT-M2 0.7234 7.3883 7.9224 0.8382 0.8389 0.1088 0.0587
MSDCNN 0.9605 3.2738 5.1168 0.9632 0.8731 0.0940 0.0363
BDPN 0.9483 3.7056 5.8499 0.9470 0.8732 0.1005 0.0293
MUCNN 0.9543 3.4941 5.3528 0.9558 0.8709 0.0966 0.0360
MPFINet 0.9601 3.3807 5.0055 0.9601 0.8886 0.0740 0.0403
S2DPBN 0.9587 3.3087 5.1763 0.9619 0.8614 0.0885 0.0550
DMLD 0.9552 3.4982 5.3348 0.9581 0.8660 0.1076 0.0296
OURS 0.9623 3.2097 4.9357 0.9643 0.8948 0.0796 0.0278
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4.2.2. Experiments on Full-Resolution Datasets

To validate the effectiveness on the practical application, we conducted further ex-
periments using full-resolution data from IKONOS and WorldView-2. The experiment
results are illustrated in Figure 6 and 7. Since real MS images in full-resolution scenarios
are not available in the real world, we provide magnified views of certain details below the
fused results for a more intuitive visual comparison. These details are distinguished by
blue and red boxes. As depicted in Figures 6 and 7, the results obtained by Brovey appear
noticeably blurred, whereas the results of ATWT-M2 exhibit an overall whitening effect
on the image. MSDCNN, BDPN, and DMLD display undersaturated colors, resulting in
spectral distortions, as shown in Figure 7, where the rooftop colors shift from red and blue
to yellow and light green. Moreover, MPFINet, MUCNN, and S2DPBN overly enhance the
red and blue parts of the rooftops, leading to significant spatial distortions and blurred
edge contours.

On the other hand, we employ QNR, Dλ, and Ds as metrics for quantitative evalu-
ation, and the results are depicted in Tables 1 and 2. It can be observed in Table 1 that
our method reinforces the excellence by showcasing the highest scores across all of the
evaluated parameters. Then, based on Table 2, our method exhibits superior performance
in terms of QNR and ranks second in the Dλ and Ds metrics. Moreover, the proposed
method outperforms all competing pan-sharpening techniques in terms of the fused results,
as depicted in Figures 6 and 7, preserving spatial and spectral information within the
fused images.

LRMS Brovey ATWT-M2 MSDCNN BDPN

MUCNN MPFINet S2DPBN DMLD Ours

LRMS Brovey ATWT-M2 MSDCNN BDPN

MUCNN MPFINet S2DPBN DMLD Ours

Figure 6. Resulting images of the nine methods on the IKONOS real dataset. The lower part indicates
the magnified details of the fused results (red and blue boxes).
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LRMS Brovey ATWT-M2 MSDCNN BDPN

MUCNN MPFINet S2DPBN DMLD Ours

LRMS Brovey ATWT-M2 MSDCNN BDPN

MUCNN MPFINet S2DPBN DMLD Ours

Figure 7. Resulting images of the nine methods on the WV-2 real dataset. The lower part indicates
the magnified details of the fused results (red and blue boxes).

4.3. Ablation Study

To demonstrate the validity of the proposed components in our method, we imple-
mented six degraded versions. The corresponding metric results are presented in Table 3.
First, on the IKONOS dataset, the spectral–spatial interactive fusion model mainly consists
of three SSIF stages, and we removed the first SSIF, the second SSIF, and all SSIF blocks,
respectively, as the first three degraded versions. Then, on the WorldView-2 dataset, the first
MFFE, the second MFFE, and all MFFE modules were removed as the last three degraded
versions, respectively.

Table 3. Average objective evaluation of different model combinations in the ablation study on the
IKONOS (top) and WV-2 (bottom) simulation datasets. ↑ indicates that larger values are preferable,
while ↓ indicates that smaller values are preferable.

Dataset Versions SSIF I SSIF II SSIF III Q4↑ ERGAS↓ SAM↓ SCC↑

IKONOS

I ✓ × × 0.8820 1.5890 2.1990 0.9467
II ✓ × × 0.8815 1.5948 2.2166 0.9461
III × ✓ × 0.7960 2.2295 3.0067 0.8942

Ours ✓ ✓ ✓ 0.8905 1.5405 2.1238 0.9493

Dataset Versions MFFEI MFFEII MFFE Q8↑ ERGAS↓ SAM↓ SCC↑

WV-2

I ✓ × × 0.9607 3.2439 4.9906 0.9623
II ✓ × × 0.9603 3.2551 5.0307 0.9625
III × ✓ × 0.9398 4.0128 6.0383 0.9397

Ours ✓ ✓ ✓ 0.9623 3.2097 4.9357 0.9643

Regarding subjective vision, Figure 8 demonstrates that the degraded fused results of
IKONOS exhibit both noise and blurriness in structure and detail, especially for the regions
with red rooftops. Similarly, it is evident for the WorldView-2 dataset that the absence of all
MFFE modules leads to the poorest fusion performance. Therefore, the absolute error maps
demonstrate that, compared to the other degraded models, the proposed spectral–spatial
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interactive fusion block and multi-frequency feature enhancement block components are
more robust in the training process.

w/o SSIFⅠ w/o SSIFⅡ w/o SSIF Proposed

w/o MFFEⅠ w/o MFFEⅡ w/o MFFE Proposed

Figure 8. Resulting images of different types of ablation experiments on the IKONOS (top) and WV-2
(bottom) simulated datasets, along with the absolute error images.

Moreover, as depicted in Table 3, the proposed method achieved the best index value
in terms of objective evaluation, whereas the removal of all the SSIF and MFFE blocks
led to significantly inferior fusion results, highlighting the crucial role of SSIF and MFFE
in enhancing network performance. The removal of all SSIF or MFFE blocks leads to
significantly inferior fusion results, highlighting the crucial role of SSIF and MFFE in
enhancing network performance.

5. Conclusions

To better achieve the fusion of LR-MS images with PAN images, we propose a novel
remote sensing image pan-sharpening network, MFSINet, which leverages multi-scale and
multi-resolution analyses of source images to guide the super-resolution of LR-MS images
via salient features in both the spatial and frequency domains. Initially, we constructed
the spectral–spatial interactive fusion block to extract and integrate spectral and spatial
information, enhancing and preserving the accuracy of the extracted details. Building upon
this, we designed the multi-frequency feature enhancement block, which utilizes multi-
frequency information and multi-scale methods to enhance the pan-sharpening effects,
thereby improving spatial resolution and spectral fidelity.
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Experiments on low-resolution and full-resolution datasets from the IKONOS and
WorldView-2 satellites demonstrate the effectiveness of our proposed MFSINet. Specifically,
on the IKONOS dataset, our method improved in Q4, ERGAS, and SAM by 0.05, 0.36, and
0.91, respectively, over BDPN. On the WV-2 dataset, it outperformed MPFINet, with im-
provements of 0.17 in ERGAS and 0.07 in SAM, achieving the best performance across four
assessment metrics and better preservation of the spectral information and spatial details.

Our method outperforms traditional and contemporary methods, showcasing a robust
generalization capability. Despite its effectiveness, our approach currently relies on a
supervised strategy due to the lack of ground truth for pan-sharpening. Unsupervised
learning-based pan-sharpening methods, which do not require ground truth for training,
hold significant practical value and have become a research hotspot. As part of future
research, we plan to investigate an unsupervised framework to improve the generalization
capability. Additionally, we will focus on extending the application of our framework in
the agricultural domain.
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