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Abstract: Low-frequency working standards of inductance are generally uniformly wound toroids on
a ceramic core. Planar inductors made using printed circuit board (PCB) technology are simple and
cheap to manufacture in comparison to inductors wound on toroid cores, but they are significantly
prone to the influence of external magnetic fields. In this paper, we propose the design of a PCB
inductance working standard of 10 µH, consisting of a duplex system of planar PCB coils, electrostatic
shielding, and an enclosure. Alongside an electromagnetic analysis and design procedure, the
measurements on the manufactured prototype included the generated magnetic field, the thermal
time constant of the enclosure, temperature coefficients, and its error analysis. The measurements
show negligible generated magnetic fields (<1.68 nT at 7 cm, 49 mA, 10 kHz). The minimum thermal
time constant of the enclosure is 1270 s and the temperature coefficient of resistance is 0.00384 1/°C.
The presented method of temperature coefficient measurement using a climate chamber allows for
measurements in the temperature range of 10 ◦C to 40 ◦C. In this temperature range, the results show
an inductance variation of 0.05 µH at 50 kHz, while the uncertainty of inductance measurement at
this frequency was 0.03 µH (k = 2).

Keywords: inductance standards; planar coils; duplex system; electrostatic shielding; temperature
coefficients

1. Introduction

Primary inductance standards (at low frequencies) are generally derived quantities
based on AC bridges and standard resistors and capacitors [1–5]. An alternative, more
traditional approach involves a single-layer solenoid composed of copper wire wound
around a cylinder made of glass, ceramic, or marble [6]. Its inductance is calculated from
accurately measured dimensions. On the other hand, low-frequency reference or working
standards of inductance are generally uniformly wound toroids on a ceramic core. Inductors
with solenoidal windings are subject to external magnetic fields, while toroid windings have
negligible external magnetic fields and pickup from external fields [1]. Furthermore, the
sensitivity of inductors with toroid cores to magnetic fields can be additionally decreased
using an additional single turn or duplex winding [6,7]. A stable standard of inductance
with reproducible measurement results can only be achieved with strict control of the
ambient temperature [8–10]. The application of electromagnetic calculation is necessary in
the design of the standard, as well as in the optimization of its properties. Printed circuit
board (PCB) inductors are widely applied in different areas of electronics [11–17] due to
their ease of manufacturing and integration into electronic circuits. PCB coils are also
widely applied as magnetic field sensors [18–22]. Printed-circuit-board (PCB) technology
has already been applied in manufacturing inductance standards of the bifilar type [23].
This technology was introduced in [23] with the primary goal of physical realization of
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inductors at nH levels. Planar inductors made using PCB technology are simple and
cheap to manufacture in comparison to inductors wound on toroid cores, but they are
significantly prone to the influence of external magnetic fields. The increased number of
turns in PCB coils needed to achieve inductances at µH levels leads to its higher influence
in the magnetic environment. In this paper, we propose the design of a PCB inductance
working standard of 10 µH with improved protection against magnetic fields, consisting of
a duplex system of planar PCB coils. The paper is organized as follows: in Section 2, the
proposed system consisting of a duplex system of planar PCB coils, electrostatic shielding,
and enclosure is described. Section 3 discusses the design of the system, analytical and
numerical calculation of the inductance, its tuning, and proposed compensation of the
magnetic field. Section 4 focuses on the design procedure and electromagnetic modeling.
Section 4 gives the methods and Section 5 presents the results of the temperature coefficients
measurement. Finally, Section 6 is the discussion and conclusions.

2. Proposed Compensation of External Magnetic Fields

Inductors with toroid cores are negligibly influenced by external magnetic fields
compared to solenoid inductors. There are two established methods for further suppression
of its influence (and to further decrease the magnetic field generated by the inductor): the
first method uses compensation with an additional single turn (Figure 1), while the second
method (Figure 2) applies duplex winding [6,7,24]. Compared to them, plane inductors
made using PCB technology suffer from greater influence from the external fields, similar
to inductors with solenoid cores. To minimize this influence, we propose a planar duplex
system, with two equal spiral PCB inductors. The concept is depicted with two circular
loops in Figure 3.
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Figure 3. Two circular loops with their magnetic fluxes supporting (a) and subtracting (b).

The currents in loops depicted in Figure 3 can be arranged in two ways: with magnetic
fluxes supporting (a) and subtracting (b). In a usual solenoid inductor, the individual turns
to produce supporting axial magnetic fluxes.

A single circular loop can be for large distances ( r ≫ r′) approximated as a magnetic
dipole with a magnetic moment

→
m =

→
n 0 IS, where I denotes the electric current, S is the

area of the loop, and
→
n 0 is the unit normal vector (Figure 4). The scalar magnetic potential

and associated magnetic flux density are [23] (p. 179):

Φ =

→
m ·→r
4πr3 (1)

→
B = −µ∇Φ (2)
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Figure 4. Circular loop as a magnetic dipole.

In the proposed planar duplex system of loops (arranged as an anti-Helmholtz pair),
with currents flowing in opposite directions, at large distances, the total magnetic scalar
potential vanishes since the magnetic dipole moments of two loops are opposite one another.
Consequently, the magnetic flux density vanishes too. In addition, if such a planar duplex

system is exposed to an external time-varying homogenous magnetic field
→
B ext, the induced

voltages vext will have the same magnitude in both loops, thus leading to cancelation
(Figure 5). Note that the loops are connected in series, while in traditional toroidal duplex
windings, the coils are paralleled. In a non-homogenous magnetic field, cancelation will
also occur, albeit imperfectly, if the distance between loops is small compared to their radius.
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Figure 5. (a) Planar duplex system in a homogenous magnetic field; (b) equivalent diagram (neglect-
ing capacitances and resistances) of the planar duplex system including induced voltages vext due to
the external magnetic field.

The external inductance of a single circular loop (Figure 6a) is equal to [25,26]:

Lv = µ(r0 + r)

[
r0

2 + r2

(r0 + r)2 K(k)− E(k)

]
, k =

2(r0r)1/2

r0 + r
(3)

where µ denotes magnetic permeability, K(.) is the complete elliptic integral of the first
kind, and E(.) is the complete elliptic integral of the second kind. The inner inductance is:

Lu =
µ

4π
2πr0 =

1
2
µr0, (4)

yielding the self-inductance of the loop as L = Lu + Lv. For R≪ r0, the self-inductance of
the loop is approximately:

L = Lu + Lv = µr0

[
ln
(

8r0

R

)
−3

2

]
(5)
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Mutual inductance of the system (Figure 6b) can be determined as [26]:

L12 = 2µ
(r 1r2)

1
2

k

[(
1 − 1

2
k2
)

K(k)− E(k)
]

, k2 =
4r1r2

(r 1 + r2)
2 + z12

2
(6)
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If k is close to 1, an approximate formula for mutual inductance is:

L12 = µ
(r 1r2)

1
2

k

[(
ln

4
k′

)
− 2

]
, k

′2
=

(r 1 − r2)
2 + z12

2

(r 1 + r2)
2 + z12

2
=

ϱ0
2

4r1r2 + ϱ02 (7)

Analytical formulas for the self- and mutual inductances of planar spiral and rectangu-
lar coils can be found in [27–32]. Self- and mutual inductances of a system of two multi-turn
coils can also be calculated using software for numerical electromagnetic analysis, like
finite element analysis (FEA). The equivalent inductance of two loops connected in series,
if their magnetic fluxes are subtracting, is:

Leq = 2(L − L12) (8)

Here, L12 < L will always be satisfied for each two inductors with equal induc-
tance [25]. In this way, with two identical loops connected in series in the anti-Helmholtz
configuration (or planar duplex configuration), an inductor can be designed with signif-
icantly reduced sensitivity to external magnetic fields. The same combination will also
generate significantly lower magnetic fields compared to a single planar loop or a wound
inductor with a solenoid core. Moreover, by adjusting the distance z12 between coils, the
equivalent inductance of the system can be precisely adjusted during manufacturing. Con-
sidering parasite capacitances and resistances, as well as self- and mutual inductances, the
equivalent circuit diagram of the planar duplex system of two loops is depicted in Figure 7,
which is similar to the equivalent diagram of two adjacent circular rings in transformer
windings [33]. The presented concept of two circular loops can be extended to a pair of
multi-turn planar spiral coils (circular or rectangular) to achieve higher inductances of
the system.
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3. Design of the System
3.1. Inductance of a Spiral Rectangular Coil

The inductance of the printed planar inductors can be estimated using several an-
alytical expressions. Figure 8 depicts the square realization of the planar inductor. The
planar inductor is specified by the number of turns n, the turn width w, the turn spacing
s, the outer diameter dout, and the inner diameter din. Furthermore, the average diameter
davg = 0.5(dout + din), and the fill ratio is ρ = (dout − din)/(dout + din).

Based on the work of Mohan et al. [27], the modified Wheeler formula for the induc-
tance of the square realization of the spiral inductor is:

Lmw = 2.34µ0
n2davg

1 + 2.75ρ
(9)

There is also an expression based on current sheet approximation and mean
distances [27]:

Lgmd =
1.27µ0n2davg

2

[
ln(2.07/ρ) + 0.18ρ + 0.13ρ2

]
(10)
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3.2. FEM Calculations

The design procedure started from the nominal inductance of 10 µH for each spiral
PCB coil, setting the trace thickness (35 µm), trace width (1 mm), the space width between
traces (1 mm), and inner diameter din (Figure 8).

Using the Wheeler formula, i.e., Equation (9), the initial number of turns N was
calculated, where N = 18 gave a slightly lower value, while N = 19 gave a slightly greater
value than nominal. After that, a finite element method (FEM) model with 19 turns was
created in Ansys Maxwell 2024 R1 (24.1) software, and the space between the last two turns
was increased in steps of 0.5 mm to more finely adjust the inductance closer to the desired
value. Table 1 summarizes the results, and Figure 9 presents the final design of the PCB
inductor, containing 19 turns and space between the last two turns equal to 2 mm. The PCB
was manufactured in standard FR-4 laminate. The thickness of the laminate was 1.6 mm to
assure mechanical stability and stiffness.
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Table 1. Dependence of equivalent inductance on the space between the last two turns—results of
finite element method analysis.

Number of Turns (N) Space between the Last
Two Turns (D), mm Inductance (L), µH

18 1 8.91
19 1 10.25
19 1.5 10.21
19 2 10.17

Using the FEM model of a two-coil system (Figure 10), the distance between the
coils was calculated to determine the nominal inductance of the system. Table 2 gives the
inductances for 4 different distances, which correspond to the equivalent inductance of
the system in the vicinity of the nominal value of 10 µH. The two nearest points to the
nominal value (8.5 mm and 15 mm) were used in linear interpolation to determine the
distance used in the manufacturing of brass spacers. The fine-tuning of the inductance was
performed experimentally during assembly, using additional washers and fine machining
of the spacers. The entire system was positioned in the middle of a cubic aluminum case
(air bath), which ensures electrostatic shielding.
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Table 2. Dependence of equivalent inductance on the space between coils—results of finite element
method analysis.

Distance between Coils (d), mm Equivalent Inductance (Leq), µH

20 15.7
15 13.86
8.5 9.8
7.5 8.81

3.3. Enclosure and Electrostatic Shielding

Inductors not contained within a conducting box have a capacitance to their surround-
ings [24] (p. 84). Enclosing the inductor within the conductive shielding also eliminates
external electric fields [24] (p. 86). To further enhance shielding against electric fields and
make all capacitances well-defined, additional shielding in the form of a comb-shaped
copper shielding on the reverse side of the PCB is added (Figure 9, blue trace). Comb-
shaped shielding (Figure 11a) was applied as electrostatic shielding in [34,35], while a
similar type of shielding against electric fields was also implemented in PCB magnetic field
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probes [18–22]. The star grounding of the system was ensured connecting all PCB shields
and the enclosure to the “ground” binding post (Figure 11b), using individual conductors
for each shield. All connectors were red binding posts with tellurium copper contacts and
gold plated (Mueller Electric 15A, Mfr. Part No.: BU-P3770-2) to assure their low impedance
and low thermal emf. The inductance standard is equipped with two connection termi-
nals, and three shorting terminals (Figure 12a) in an arrangement typical for inductance
standards with low nominal inductances [6]. This allows for shorting the inductor using
the external ground strap or connecting the ground strap in series with the inductor and
consequently allows for measurement of the cable inductance and resistance in bridge
measurements without disconnecting the inductor. Temporarily, instead of the external
ground strap, a wire is soldered between the terminals, thus allowing for DC resistance
measurement using a 4-wire connection. Within the enclosure, two PT100 temperature
probes, (class A) (Keysight, 34152A), were mounted. One of them was mounted laterally
on the upper panel, while the second was positioned freely in the air, in the middle of the
enclosure, with the aim of monitoring the temperature and determining the time constant
of the enclosure. A hole was drilled in the front panel for wire contacts of the temperature
probes and sealed after assembly of the system to reduce its influence on the heat transfer
to the interior of the enclosure.
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Magnetic flux density in the vicinity of the inductance standard was measured using a
shielded magnetic field pick-up coil (Rohde & Schwarz, HZ-10 and a spectrum analyzer
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(Keysight, N9332C) at several positions in the vicinity of the enclosure. The distance
between the enclosure and the pick-up coil was 7 cm, using the spacing plate supplied
with the coil. Figure 12b depicts the position of the maximum measured magnetic flux
density. Besides the position presented in Figure 12b, the pick-up coil was positioned
symmetrically at the edge of the enclosure, with its plane forming an angle of 45 degrees
with the sides of the enclosure. Finally, the enclosure was rotated vertically at 90 degrees,
and measurements were repeated in the same positions. During measurements, the current
through the inductor was set to approximately 50 mA, corresponding to a dissipation of
5 mW in the inductor, which was estimated to cause negligible change in the resistance
and inductance of the standard. The current was generated using a a function generator
(GW Instek, AFG-2005) and a protective resistor (Vishay) with a nominal value of 50 Ω
mounted in a shielded box, connected in series with the inductor. The magnetic flux density
was measured for frequencies 10 kHz and 100 kHz. To prevent additional current loops
associated with direct measurement of the current using a digital multimeter (DMM), the
current was measured indirectly, using the voltage of the inductor (measured using a
digital multimeter) (Keysight, 34465A) and its impedance, measured using an LCR meter
(Keysight, E4980AL). For 10 kHz, the measured maximum magnetic flux density was
1.68 nT, where the current was 48.86 mA. The limit error for the current measurement
was 0.17 mA, using data supplied by the manufacturers. The corresponding input signal
level on the spectrum analyzer was −75.77 dBm, which is below the lowest signal level
(−50 dBm) with accuracy data supplied by the manufacturer. As a comparison, a signal
level of −50 dBm would be produced with the same pick-up coil at a magnetic field density
of 32.70 nT. For that magnetic field density, the type-B uncertainty of magnetic flux density
measurement would be 4.68 nT (k = 1), using data supplied by Keysight and the calibration
certificate of the pick-up coil. For 100 kHz, the maximum measured magnetic flux density
was 1.47 nT, again below −50 dBm. The measured current was 50.15 mA, with a limit error
of 0.75 mA. At a frequency of 100 kHz, a signal level of −50 dBm would be produced at a
magnetic field density of 12.57 nT, with associated type-B uncertainty of 2.12 nT (k = 1). The
resonant frequency of the inductor standard was measured using a vector network analyzer
(VNA) (Keysight, E5061B) and a calibration kit (Keysight, 85033E). An adapter consisting of
two short litz wires soldered to an SMA connector (f) was made to enable connection of the
RF cable to the binding posts. The resonant frequency was calculated from the phase angle
of reflection coefficient s11, using linear interpolation between measured samples to find
the frequency of phase angle zero. The measured resonant frequency of the standard was
7.66 MHz. Corresponding magnitudes of s11 (>0.9) are in the region where its phase angle
measurement introduces inaccuracies generally less than 2◦ [36], although the VNA data
sheet does not specify accuracies with any SMA calibration kit applied, including 85033E.
Problems and methods arising with accurate device radio frequency (RF) characterization
using scattering parameters are discussed in [37,38]. Assuming a maximum phase angle
error of reflection coefficient equal to 2◦, the limits of resonant frequency lie in the frequency
region between 7.14 MHz and 8.18 MHz. Since the inductor standard is a low-frequency
device, it is all well above its operational frequency range and very similar to the typical
resonant frequency of a General Radio 1482-AA inductance standard (7.5 MHz).

4. Temperature Coefficients—Materials and Methods

Within the scope of this research, the thermal time constant and temperature coefficient
of resistance (TCR) of the inductance standard were determined. Also, the influence of
temperature on inductance was examined. The characterization of the inductance standard
was performed in the temperature range of 10 ◦C to 40 ◦C. All measurements were con-
ducted in the Laboratory for Process Measurement (LPM) within the Faculty of Mechanical
Engineering and Naval Architecture at the University of Zagreb. This laboratory maintains
the Croatian national standard for temperature, pressure, and humidity, ensuring that all
temperature measuring equipment used is directly traceable to the primary temperature
standard [39]. Traceability was ensured using a thermostatic calibration bath (Kambič,
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OB-15/2) filled with water and a standard platinum resistance thermometer (Hart Scien-
tific, 5628) connected to a precision thermometry bridge (Isotech, ASL F18). The standard
thermometer was primarily characterized via calibration at fixed points in LPM with an
uncertainty of less than 5 mK, while the traceability of the ASL F18 was achieved through
the calibration of fixed resistors.

4.1. Measurement Setup

The thermal characterization of the inductance standard was performed using a
climatic chamber for the simulation of different thermal conditions for the inductance
standard. The measurement setup can be seen in Figure 13. The inductance standard was
placed in the middle of the working volume of the climatic chamber (Vötsch, VC-0033).
During the determination of the thermal time constant, the temperature was measured with
eight Pt100 probes connected to a precision thermometry AC resistance bridge (Isotech,
ASL F700) via a multi-channel switchbox (Isotech, ASL SB148/01) and interface (Isotech,
ASL SB158). All Pt100 probes were previously calibrated, and their uncertainties were
determined to be 30 mK. Two measuring probes were placed inside the standard and six
were placed outside the housing of the standard, one at each panel. The determination of
the temperature coefficient of resistance was performed using the same setup, with an addi-
tional digital multimeter (Keithley, 2010) for DC measurement of resistance. The inductance
and ac series resistance at different temperatures were measured using a precision LCR
meter (Keysight, E4980AL) with Kelvin test leads (Keysight, 16089B-C20). The LCR meter
was commercially calibrated at Keysight Servicezentrum (Böblingen, Germany) accredited
by the United Kingdom Accreditation Service (UKAS) on a yearly basis.
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4.2. Determination of the Temperature Coefficient of Resistance (TCR)

For the determination of the temperature coefficient of resistance (TCR), the DC resis-
tance of the inductance standard was measured in the temperature range of 10 ◦C to 40 ◦C
with a 5 ◦C interval between measuring points. After the detection of the thermal stabi-
lization of the chamber and inductance standard, the 4-wire DC resistance was measured
with compensation of the thermal voltage offset across the inductance standard (“Offset
compensation” mode). The interchange of the connecting leads was performed between
two measurements to account for their influence. Hysteresis was determined with repeated
measurements at 20 ◦C and 35 ◦C. The measurement uncertainty analysis of the measured
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resistance included the influence of temperature measuring equipment, the DMM, the
inductance standard, and the temperature inhomogeneity of the climatic chamber.

4.3. Determination of Thermal Time Constant

The thermal time constant (τ) of the inductance standard is the time required for the
standard to reach 63.2% of its final (asymptotic) temperature after a step change in its
ambient temperature. A step change in the ambient temperature was achieved by inserting
the inductance standard in the preconditioned chamber from the ambient temperature or
by removing the thermally stabilized inductance standard from the chamber to the ambient
laboratory environment.

The determination of T was conducted with two methods. In the first method, the
initial (ϑ0) and final (asymptotic) temperature ( ϑ∞) were detected from the measurement
data. From Equation (11), the temperature when ϑ(t = τ) was calculated. The exact time
when the inductance standard reached this temperature, was then interpolated from the
closest two measured data points.

ϑ(t) = ϑ∞ + (ϑ0 − ϑ∞)·e−
t
τ , (11)

The second method was the least-squares method that involved fitting the measured
data into Equation (11) and finding the τ that resulted in the smallest difference between
the measured and fitted data, using the Microsoft Excel Solver add-on.

4.4. Measurement of Inductance

The series inductance LS and series resistance RS were also measured at seven temper-
ature points in the range of 10 ◦C to 40 ◦C with 5 ◦C intervals. Before measurement at each
temperature point, the inductance standard was left in the chamber for thermal stabilization.
After reaching the required stability, the standard was taken out of the chamber and con-
nected to the precision LCR meter via specialized test leads, and the measurement sequence
at three frequencies (10 kHz, 50 kHz, and 100 kHz) was completed within 30 s, to avoid
the significant temperature drop. Also, prior to the commencement of the measurements,
compensation of the test leads was performed. Hysteresis was determined by repeating
the measurements at 20 ◦C. The low-frequency equivalent circuit of an inductor is a simple
series circuit consisting of an ideal resistor and an ideal inductor. At high frequencies, the
more accurate representation includes the lumped parameter approximation of the stray
capacitance between turns of the inductor (Figure 14) [1,6]. Starting from the equivalent
lumped parameter model of the inductor (Figure 14) [1,6] we define series inductance LS
and series resistance RS using its equivalent impedance ZL(jω) :

ZL(jω) = RS + jωLS =
R

(1 − ω2LC) + (ωRC)2 + j
ωL

[(
1 − ω2LC

)
−

(
CR2/L

)]
(1 − ω2LC) + (ωRC)2 (12)

where ω denotes the angular frequency. It is noteworthy that measurement of LS and
RS over a wide range of frequencies (using an LCR meter) generally gives frequency-
dependent series inductance and resistance. Nevertheless, at low frequencies, the influence
of C is negligible, and Equation (12) simplifies to ZL(jω) = R + jωL.
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5. Results
5.1. Temperature Coefficient of Resistance

The results of the determination of the temperature coefficient of resistance can be seen
in Table 3 and Figure 15. An increase in temperature leads to a linear increase in resistance.
Measurement uncertainty analysis considers the combined influence of temperature mea-
surement equipment and the climatic chamber; and the influence due to the characteristics
of the DMM and the inductance standard, with the thermal inhomogeneity of the chamber
as the largest contributing factor. The uncertainty of the measured DC resistance increases
toward the upper and lower limit of the temperature range, which corresponds to larger
spatial temperature gradients and temporal instability in the climatic chamber at those
temperatures. This is especially significant at 10 ◦C, which is the lower temperature limit
of the chamber.

Table 3. The DC resistance of the inductance standard in the temperature range of 10 ◦C to 40 ◦C.

Temperature, ◦C Resistance, mΩ Measurement Uncertainty (k = 2), mΩ

10.49 1810.9 0.7
15.41 1847.2 0.5
20.32 1883.3 0.4
25.20 1919.3 0.4
30.15 1955.7 0.5
35.11 1992.1 0.5
40.11 2028.9 0.5
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Figure 15. Temperature coefficient of resistance.

The temperature coefficient of resistance [1] is defined as:

α =
dR(T)/dT

R(T)
(13)

where T denotes the reference temperature. Using linear regression from Figure 15, we
obtain the temperature coefficient of resistance equaling 0.00384 °C−1 at the reference
temperature 25 °C.

5.2. Determination of Thermal Time Constant τ

The determination of the thermal time constant was divided into two parts since there
were two environments for thermal stabilization after the temperature step change in the
inductance standards with different characteristics. Figure 16 shows the thermal behavior
of the inductance standard after the step change in its ambient temperature, from laboratory
ambient air to a stable thermal environment inside the climatic chamber.



Electronics 2024, 13, 3009 13 of 18

Electronics 2024, 13, 3009 13 of 19 
 

 

40.11 2028.9 0.5 

 

Figure 15. Temperature coefficient of resistance. 

The temperature coefficient of resistance [1] is defined as: 

α =
𝑑𝑅(𝑇)/𝑑𝑇

𝑅(𝑇)
  (13) 

where T denotes the reference temperature. Using linear regression from Figure 15, we 

obtain the temperature coefficient of resistance equaling 0.00384 ℃−1  at the reference 

temperature 25 ℃. 

5.2. Determination of Thermal Time Constant τ 

The determination of the thermal time constant was divided into two parts since 

there were two environments for thermal stabilization after the temperature step change 

in the inductance standards with different characteristics. Figure 16 shows the thermal 

behavior of the inductance standard after the step change in its ambient temperature, from 

laboratory ambient air to a stable thermal environment inside the climatic chamber. 

 

Figure 16. Thermal time constant of the inductance standard in the climatic chamber. 

The thermal time constant was determined for every temperature difference using 

the two methods. The results can be seen in Table 4. The agreement between the results 

obtained with both methods is within 3%. 
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The thermal time constant was determined for every temperature difference using
the two methods. The results can be seen in Table 4. The agreement between the results
obtained with both methods is within 3%.

Table 4. Thermal time constant in the climatic chamber (forced convection).

Initial Temperature
(ϑ0), ◦C

Final Temperature
(ϑ∞), ◦C

Thermal Time Constant (τ), s

Method 1 Method 2

21.45 40.07 1553 1511
21.91 9.95 1467 1451
22.01 35.10 1279 1270

When the thermally stabilized inductance standard in the chamber was exposed to
the ambient air temperature in the laboratory, significantly larger time constants were
determined, as can be seen in Table 5 and Figure 17. This can be attributed to the fact that
the heat exchange between the standard and the ambient air in this case is mostly governed
by natural convection in comparison to the forced convection in the chamber due to the
circulation of air caused by the fan.

Table 5. Thermal time constant in the laboratory environment (natural convection).

Initial Temperature
(ϑ0), ◦C

Final Temperature
(ϑ∞), ◦C

Thermal Time Constant (τ), s

Method 1 Method 2

35.11 21.25 5293 5767
9.90 21.09 4143 4415
40.11 21.87 3507 3467

Since the behavior of the ambient air in the laboratory cannot be strictly controlled,
thermal time constants for different temperature step changes differ significantly in compar-
ison to the ones obtained with step changes induced by insertion into the climatic chamber.
The differences between the time constants determined using the two methods are slightly
higher in this case but do not exceed 9%.
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Figure 17. Thermal time constant of the inductance standard in the laboratory environment.

5.3. Measurement of Series Inductance and Series AC Resistance

Results of the measurements of series inductance with the LCR meter are shown in
Figure 18 and Table 6. Inductance measured at all three frequencies follows the same trend
with values lower than average in the temperature range of 20 ◦C to 30 ◦C, as can be seen in
Figure 18. At higher frequencies, the measured series inductance is lower. The dependence
of the measured series inductance on temperature together with associated uncertainties is
shown in Figure 18.
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Figure 18. Series inductance (Ls) of the standard measured in the temperature range from 10 ◦C to
40 ◦C.

Table 6. Series inductance (Ls) in the temperature range of 10 ◦C to 40 ◦C at different frequencies.

Temperature,
◦C

Inductance (Ls), µH

at 10 kHz U (k = 2) at 50 kHz U (k = 2) at 100 kHz U (k = 2)

10.11 9.88 0.06 9.85 0.03 9.82 0.04
14.98 9.88 0.06 9.85 0.03 9.83 0.04
20.17 9.86 0.06 9.84 0.03 9.80 0.04
25.11 9.84 0.06 9.82 0.03 9.80 0.04
30.03 9.85 0.06 9.82 0.03 9.80 0.04
35.00 9.89 0.06 9.86 0.03 9.84 0.04
39.98 9.88 0.06 9.87 0.03 9.81 0.04
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Measurement uncertainty of the series inductance stated in Table 6 and graphically
presented in Figure 18 includes the influence of the standard deviation of the measured
results, LCR meter accuracy, and hysteresis.

The series resistance measured with the LCR meter exhibits higher values at higher
frequencies, as can be seen in Figure 19 and Table 7. The temperature dependence of the
measured series resistance agrees with the values obtained during measurements with the
DMM, showing a positive linear increase in resistance with temperature.
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The measurement uncertainty stated in Table 7 takes into account the influence of the
LCR meter, the standard deviation of the measured resistance, and hysteresis.

Table 7. Series AC resistance (Rs) in the temperature range of 10 ◦C to 40 ◦C at different frequencies.

Temperature,
◦C

Resistance (Rs), mΩ

at 10 kHz U (k = 2) at 50 kHz U (k = 2) at 100 kHz U (k = 2)

10.11 1809.3 3.4 1823.8 5.3 1856.9 8.7
14.98 1845.8 3.5 1860.2 5.3 1893.1 8.7
20.17 1884.1 3.5 1898.3 5.3 1930.9 8.7
25.11 1920.1 3.5 1933.8 5.3 1965.7 8.7
30.03 1956.2 3.6 1969.7 5.4 2001.4 8.7
35.00 1992.9 3.6 2006.3 5.4 2037.8 8.8
39.98 2029.9 3.7 2043.2 5.4 2074.5 8.8

6. Discussion and Conclusions

The proposed design encompasses the ease of manufacturing and low cost of PCB
inductors with low levels of generated magnetic flux densities in the vicinity of the inductor
enclosure. The thermal time constant of the enclosure varies with the environment. In the
laboratory environment (with the natural convention), it does not exceed 3467 s, while
in the climatic chamber (forced convection), it does not exceed 1270 s. Such a relatively
long thermal time constant of the enclosure ensures that temporary changes in the environ-
mental temperature will affect the temperature of the inductor to a lesser degree during
its operation, while the electrostatic shielding of the inductor ensures that all capacitances
are well defined. Furthermore, the thermal time constant of the enclosure is long enough
to allow the standard to be taken out of the climatic chamber after reaching thermal stabi-
lization, thus simplifying the measurement campaign for the determination of the thermal
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coefficient of inductance and AC series resistance. The measured DC resistance and AC
series resistance show the expected linear trend. For DC resistance, the slope of linear re-
gression is 7.36 mΩ/°C, with a corresponding temperature constant of resistance equaling
0.00384 °C−1 at 25 °C. This parameter can be applied for indirect estimation and monitoring
of the inductor temperature during its operation. The temperature dependence of AC series
resistance measured with the LCR meter exhibits linear trends for all frequencies, with
expected higher resistances associated with higher frequencies due to the proximity and
skin effects. At the lowest frequency (10 kHz), where the impedance has a dominantly
resistive character (thus reducing the measurement error of the series resistance relatively),
the temperature coefficient of resistance equals 0.00384 °C−1 at 25 °C, the same as the
DC resistance. Regarding the temperature coefficient of the series inductance, inductance
measured at all three frequencies follows the same trend, with values lower than average in
the temperature range from 20 ◦C to 30 ◦C. Ls also shows a decrease with frequency for the
three applied frequencies (i.e., 10 kHz, 50 kHz, and 100 kHz), which can be also attributed
to the proximity and skin effects [11]. With further increases in frequency in the MHz
range, Ls exhibits an increase with frequency, which is in line with the lumped-parameter
model of the real inductor with constant inductance, resistance and capacitance. In the
temperature range spanning from 10.11 °C to 39.98 °C and for a frequency of 50 kHz, the
minimum measured inductance was 9.82 µH and the maximum measured inductance was
9.87 µH, while uncertainty was 0.03 µH (k = 2). Thus, the difference between minimum
and maximum inductance is 0.05 µH, which is very close to uncertainty in inductance
measurements. A similar ratio between minimum and maximum measured inductance
and corresponding uncertainty is visible for the other two frequencies. To investigate a
possible hidden linear trend, the linear regression was calculated for all three frequencies,
using the entire temperature range from 10.11 °C to 39.98 °C. The calculated temperature
coefficients of the inductances using linear regression were scattering as −5.1 µH/H/°C
(at 10 kHz), 40.6 µH/H/°C (at 50 kHz), and −10.2 µH/H/°C (at 100 kHz). More consistent
results would be expected with more precise measurement of inductance, which is planned
in the future as well as the monitoring of the long-term drift. The PCB inductors were
manufactured using a standard trace thickness of 35 µm, resulting in the DC resistance of
the inductor being equal to approximately 1.8 Ω. The connection of two PCB inductors
in series, which reduces the magnetic field in the surroundings and the sensitivity of the
inductor to external magnetic fields, also doubles the resistance (compared to a single PCB
inductor). The future re-design will include thicker copper traces, which will decrease
resistance, reduce power losses, and increase the resonant frequency. With reduced resis-
tance, the same temperature rise and corresponding heating effects on the parameters of
the inductor would occur at higher currents.
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