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Abstract: Robots assist emergency responders by collecting critical information remotely. Deploying
multiple cooperative unmanned ground vehicles (UGVs) for a response can reduce the response
time, improve situational awareness, and minimize costs. Reliable communication is critical for
multiple UGVs for environmental response because multiple robots need to share information for
cooperative navigation and data collection. In this work, we investigate a control policy for optimal
communication among multiple UGVs and base stations (BSs). A multi-agent deep deterministic
policy gradient (MADDPG) algorithm is proposed to update the control policy for the maximum
signal-to-interference ratio. The UGVs communicate with both the fixed BSs and a mobile BS. The
proposed control policy can navigate the UGVs and mobile BS to optimize communication and
signal strength. Finally, a genetic algorithm (GA) is proposed to optimize the hyperparameters of
the MADDPG-based training. Simulation results demonstrate the computational efficiency and
robustness of the GA-based MADDPG algorithm for the control of multiple UGVs.

Keywords: unmanned ground vehicles (UGVs); genetic algorithm (GA); multi-agent deep deterministic
policy gradient (MADDPG); autonomous navigation

1. Introduction

A network of distributed unmanned ground vehicles (UGVs) and a central controller
is known as a multi-UGV control system [1]. This system enables autonomous domination,
autonomous navigation, and autonomous collaboration. It can operate either within a re-
stricted area or as part of a broader transportation system. Multi-UGV control systems offer
a unique approach to navigation that is highly reliable, more economical, and conducive to
energy savings. In recent years, the urgent demand for multi-UGV navigation systems has
encouraged an increasing amount of discussion from academia [2–5].

The navigation of UGVs in a communication environment has been the subject of
research [6], and traditional optimization methods have yielded good results [7]. To create
an autonomous navigation system, D. Chen et al. [8] developed a heuristic Monte Carlo
algorithm that depends on a discrete Hough transform and Monte Carlo localization, which
ensures low complexity for processing in real-time. Different from the innovation of algo-
rithms, to perform robustly in unknown and cluttered environments, H. U. Unlu et al. [9]
created a robust approach for vision-assisted inertial navigation that can withstand uncer-
tainties. Different from using visual aids, X. Lyu et al. [10] was inspired by a geometric
point of view, and they designed a new adaptive sharing factor-integrated navigation
information fusion technology scheme that has adaptive navigation in the case of nonlinear
systems and uses a non-Gaussian distribution. These traditional optimization methods
mentioned above are easy to implement. However, these methods need to be presented
with preconditions, which makes them suitable only for static environments. Moreover, in
reality, the majority of scenarios involve the collaborative operation of multi-UGVs [11].
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Consequently, multi-UGV systems will encounter these two challenges when handling com-
plex scenarios, and it necessitates the incorporation of machine learning (ML) to effectively
address them [12–14].

There is a strong rationale for employing ML techniques in UGV navigation, con-
sidering the rapid advancements in the field of ML. To achieve improved better-ranging
performance, H. Lee et al. [15] provided a ML technique to calculate the distance between
the BS and UGVs, which enables localization without any additional infrastructure. Rather
than relying on direct ranging, H. T. Nguyen et al. developed a coordination system be-
tween unmanned aerial vehicles and UGVs, enabling effective collaborative navigation [15].
However, as the simulation environment becomes more complex, the effectiveness of the
proposed solution decreases rapidly. To address this challenge, employing reinforcement
learning (RL) algorithms is a promising choice. RL emphasizes how agents can discover the
best policy to maximize all rewards when interacting with the environment, which makes
it well-suited for exploring and adapting to increasingly complex environments [16].

Research has been driven by discussions on using RL to solve the multi-UGV coopera-
tive navigation issue recently [17]. To avoid collisions with obstacles, X. Huang et al. [18]
proposed an innovative deep RL-based UGV local path planning navigation system that
leverages multi-modal perception to facilitate policy learning to generate flexible navigation
actions. Different from single UGV navigation, to improve the average spectral efficiency,
S. Wu et al. [19] proposed trajectory optimization technology based on a joint multi-agent
deep deterministic policy gradient (F-MADDPG), which inherits the ability of MADDPG
to drive multi-UGVs cooperatively and uses joint averaging to eliminate data isolation
and to accelerate convergence. Significant progress has been achieved by these RL-based
UGV navigation methods. However, they overlook the limitations of static communication
environments and convergence issues arising from the complexity of the environment.
These two elements are crucial to take into account while planning cooperative navigation
in a communication setting.

Considering the constraints of cooperative communication coverage navigation for
UGVs, there are three main challenges to overcome, such as the difficulty of simulta-
neous control of UGVs, the variation in communication coverage, and the complexity
of the cooperative control environment for UGVs. Firstly, traditional control methods
such as Q-learning [20], proportional-integral-derivative (PID) control [21], and deep Q-
network [22] often yield suboptimal performance in terms of communication coverage
when multi-agents require simultaneous control. Secondly, considering the variability in
the communication environment during multi-UGV navigation, it is common to encounter
areas with poor communication, which hinders effective collaboration among multi-UGVs.
However, a promising solution to tackle the challenges of multi-agent cooperative control
is offered by multi-agent RL algorithms [23]. These algorithms guide multi-agent collab-
oration through the centralized training–decentralized execution (CTDE) paradigm [24].
Additionally, in our proposed approach, we introduce a movable UGV BS integrated with
the UGVs, allowing for dynamic changes to the fixed communication environment. This
collaboration effectively supports the navigation tasks of the UGVs. However, the increased
complexity of the constructed environment may pose challenges to algorithm effectiveness
and convergence. Fortunately, we mitigate convergence difficulties by adaptive update
dynamic hyperparameters using a genetic algorithm (GA) [25]. More fortunately, there
has been some research on integrating GA for hyperparameter tuning in RL frameworks.
A. Sehgal et al. used a GA to find the hindsight experience replay (HER) used in a deep
deterministic policy gradient (DDPG) in a robot manipulation task to help the agent accel-
erate learning [26]. Different from modifying a single parameter, for the flexible job shop
scheduling problem (FJSP), Chen R et al. proposed a GA parameter adjustment method
based on Q-learning that changes several key parameters in Q-learning to obtain higher
reward values [27]. However, this rewards-based approach is prone to falling into local
optimality. Moreover, these methods are not suitable for scenarios where the number of
agents increases. To address these issues, Alipour et al. proposed hybridizing a GA with
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a multi-agent RL heuristic for solving the traveling salesman problem. In this way, a GA
with a novel crossover operator acts as a travel improvement heuristic, while MARL acts as
a construction heuristic [28]. Although this approach avoids the risk of local optimality,
it abandons the learning process of MARL and only uses it as a heuristic, instead using
GA for training, which means that the algorithm will not pay too much attention to the
collaboration between intelligent agents. Liu et al. used a decentralized partially observable
multi-agent path planning method based on evolutionary RL (MAPPER) to learn effective
local planning strategies in mixed dynamic environments. Based on multi-agent reinforce-
ment learning training, they used GA to iteratively extend the originally trained algorithm
to a more complex model. Although this method avoids performance degradation in long-
term tasks, iterative GA may not necessarily adapt well to more complex environments [29].
In our research, we combine the advantages of the above-mentioned GA papers and adopt
the CTDE paradigm to conduct research in a multi-agent RL framework. The GA assigns
different weights to algorithm updates based on the transition’s contribution, which means
that we pay more attention to the hyperparameters that contribute more to model updating
rather than those that achieve greater reward values. This allows us to avoid falling into
local optimality while increasing the number of agents.

To address these three challenges and achieve cooperative navigation in complex
environments, a new multi-UGV communication coverage navigation method is pro-
posed, which is based on a multi-agent deep deterministic policy gradient with GA (GA-
MADDPG). The following summarizes the key contributions of the multi-UGV communi-
cation coverage navigation method:

• A comprehensive multi-agent pattern is combined into the multi-UGV collaborative
navigation system, and the optimal coordination of multi-UGVs within the communi-
cation coverage area is formulated as a real-time multi-agent Markov decision process
(MDP) model. All UGVs are set as independent agents with self-control capabilities.

• A multi-agent collaborative navigation method with enhanced communication cover-
age is proposed. By introducing a mobile base station, the communication coverage
environment is dynamically changed. Simulation results show that this method
effectively improves the communication quality during navigation.

• A GA-based hyperparameter adaptive approach is presented for optimizing UGV
communication coverage and navigation. It assigns weights to hyperparameters
according to the degree of algorithm updating and makes a choice based on the
size of the weight at the next selection, which is different from the traditional fixed-
hyperparameter strategy and can escape local optima.

The essay is organized as follows for the remaining portions. The modeling of multi-
UGV communication and navigation systems is thoroughly explained in Section 2. The
details of the RL method we present is outlined in Section 3. Several experimental compar-
isons in Section 4 serve to verify the efficacy of our approach. Eventually, we discuss future
research directions and summarize the key points of the article in the conclusion Section 5.

2. MDP for Navigation and Communication Coverage for Multi-UGVs in Environments

To emulate the decision-making of multi-UGVs in real-world systems, we adopt
an MDP model. With the quick advancement of multi-agent RL, MDP has turned into
a trustworthy decision model [30]. In this study, we construct a complex environment
with three UGVs and one mobile BS collaborating and which includes various obstacles.
Furthermore, we introduce a concept of communication whereby the communication
coverage is determined by four fixed BSs and one mobile BS collectively.

2.1. Problem Description

The primary goal of our article is to accomplish multi-agent navigation tasks in a
wide range of large-scale, unknown, and complex environments as quickly as possible.
The navigation task requires that the UGVs can collaborate according to different environ-
mental characteristics, with the ability to overcome external environmental information
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interference, and with the ability to efficiently and autonomously track targets in real-time.
More specifically, the extent of communication coverage is collaboratively established by
both the stationary BSs and the mobile BS. Within this communication coverage area, the
mobile BS and the UGVs engage in cooperative navigation. We construct a task scenario
with multiple optimization objectives. The objective of the UGVs is to successfully reach
the destination, while the mobile BS is tasked with dynamically adjusting communication
coverage in real-time, aiming to optimize the communication quality for the UGVs. The
UGVs and mobile BS perform globally optimal cooperative navigation to achieve their
respective and common goals.

2.2. Modeling of the Environment

Our work involves simulating a real environment where multi-UGVs collaborate to
reach a target point. Additionally, this environment includes obstacles that obstruct the
movement of the UGVs, replicating real-world scenarios. We utilize a multi-agent particle
environment (MPE) [24] as the base environment for our secondary development, as shown
in Figure 1. In this environment, we utilize M UGVs (where M is defined as three), W
mobile BSs (where W is defined as one), and a certain number of obstacles. The objective of
the UGVs is to collaboratively avoid collisions and reach their respective optimal target
points while taking into account communication in the global state. In simpler terms, the
UGVs choose an obstacle avoidance route with better communication to coordinate their
movement towards the target point (the communication model will be elaborated on in
Section 2.3). The task of the mobile BS is to enhance communication for the three movable
units by adjusting the communication coverage in the global state, which is exhibited in
Figure 1b.

(a) (b)

Figure 1. Schematic diagram of the collaboration of a swarm of UGVs in a communication-enabled
environment. (a) 3D urban environment. (b) Top view of the visualized communication environment.

2.3. Modeling of the Communication Coverage

In our simulation, we integrated communication into the MPE environment and used it
as a criterion to evaluate task completion. In this subsection, we present the communication
channel model that we adopted, along with the communication model that is influenced
by the movement of the mobile BS, as shown in Figure 1b. The communication area within
the middle red circle varies with the location of the movable BS, as illustrated in Figure 2.
Note that Figure 2a–l represent diagrams depicting how the communication environment
changes with the movement of the mobile BS at step t. The mobile BS is initially positioned
in the center in Figure 2a and gradually transitions towards the lower right corner, as
depicted in Figure 2l. This relocation of the mobile BS is prompted by its observation of the
movement pattern of the UGVs. Consequently, the mobile BS is relocated from the center
towards the lower right corner to enhance communication quality in that area, thereby
expanding the red coverage zone as shown in Figure 2. Conversely, the relocation of the
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mobile BS results in a reduction in the coverage area with superior communication quality
in the upper left quadrant. Furthermore, to accentuate the evolving communication quality
and enhance the clarity of communication changes, we have delineated the variances
between each diagram and its preceding counterpart.

We have constructed a total of M BSs in the environment, where M is defined as seven
and includes one mobile BS. The signal power gain obtained by the UGVs from BS m
(m ≤ 7) is defined as pm

t . Subsequently, the signal-to-interference ratio (SIR) is utilized as
the primary criterion for evaluating the communication of the UGVs. This criterion can be
expressed as:

SIRt ≜
pIt

t
∑m ̸=It pm

t
(1)

where It ∈ {1, · · · , M} represents the BSs that are not associated with the UGVs at step
t. It is worth noting that, for the sake of simplicity, we have omitted the effects of noise,
as it is well known that the performance of BS-UGV communication is often constrained
by interference. Furthermore, with global frequency reuse, we have taken into account
the worst-case situation in which all of these unrelated BSs contribute to the interference
term in the Equation (1). In our study, the UGVs received signal power at step t mainly
depending on their relative positions to the BSs, and pt can be written as:

pt = P̄β(qt)G(qt)h̃t (2)

where P̄ represents the transmit power of the BSs, while β(qt) represents the large-scale
channel gain; the large-scale channel gain takes into account the effects of path loss and
shadow fading. It can be expressed as:

β(qt) = β0

(
d0

d(qt)

)γ

(3)

where β0 is the path loss at the reference distance d0, d(qt) is the distance between the UGV
and the BS, and γ is the path loss exponent. And G(qt) denotes the BS antenna gain; the BS
antenna gain considers the directional gain of the UGV relative to the BS antenna. It can be
represented by the antenna radiation pattern, which is typically expressed as:

G(qt) = Gmax · A(θt, ϕt) (4)

where Gmax is the maximum antenna gain, and A(θt, ϕt) is the gain function of the UGV’s
position relative to the main lobe direction of the antenna. These parameters typically rely
on the location qt of the UGV. Additionally, the random variable h̃t is used to incorporate
the effects of fading. It is important to note that each UGV has an independent SIR at each
step t, which is utilized to evaluate the communication performance of the UGVs at that
specific time. It also should be noted that during the initialization of the scenario, the initial
positions of all base stations, including the movable base station, are fixed, i.e., they are
all at a fixed position, and then the three UGVs and the movable base station are trained
to take different actions through the strategy, at which time, based on the selected action,
the next position of the movable base station is determined by the selected action as well
as the original position together. The value of qt is fixed at this point because qt is only
related to the position variable (x, y). It can be seen that the initial position of the mobile
BS is pre-set, while the subsequent qt is the decision variable and is determined by the
action of the mobile BS, which aims to provide a better communication environment to the
remaining UGVs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. The results of changing communication in the environment as the mobile BS moves. The
red areas indicate better communication, whereas the blue areas indicate poorer communication,
Brown circles represent the mobile BS, blue circles represent UGVs, black circles represent obstacles,
and red circles represent target points. This movement aims to enhance communication quality for
the UGVs.
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2.4. The State and Action of the UGVs

The state of the UGVs is denoted as s = (s1, s2, . . . , sN). For each UGV u, the state
is defined as su = (sPu, sEu), where sPu =

(
xu, yu, vxu, vyu, SIRu

)
is a combination of

position (xu, yu), speed (vxu, vyu), and SIRu. Additionally, sEu =
(

xug, yug, x0, y0, vox, voy
)

represents the data that the UGVs observe other UGVs or obstacles. The term su depicts
the positions of the agent in a coordinate system. However, in many actual situations,
it may not be possible to acquire absolute locations. Therefore, the agent and barriers
can be modeled in a polar coordinate system for movement. In our original formulation,
sEu =

(
xug, yug, x0, y0, vox, voy

)
is intended to represent the observed data for each UGV

u. To clarify, (xug, yug) represents the distance from the g entity (including the UGVs and
all obstacles) to UGV u. And (x0, y0) represents the global coordinate position of UGV u.
Through a series of transformation calculations, we can also obtain the global positions
of other entities observed by UGV u. The combination of these components allows each
UGV to navigate toward its goal while considering the presence and motion of obstacles or
other UGVs.

The action of UGVs is denoted as a = (a1, a2, . . . , aN), which is defined as a collection
of individual actions for each UGV in a multi-agent system. In this particular paper, the
motion of UGVs is simplified by assuming an initial velocity of 0 and a constant acceleration,
which is represented by a formulation: vt = v0 + at, which is defined as a 2-dim vector.

2.5. Reward Function

The primary aim is finding the optimal collaborative strategy for a specific state in
order to navigate collaboratively during step t and the next step t + 1 with improved
communication. At step t, the specific state is denoted as st. The reward of taking action at
can be represented by r(st, at). Consequently, the total reward of adopting policy π can be
expressed as:

R(π) = L
[
∑ γtr(st, π(st)) | s0 = s

]
(5)

Our objective is to determine the optimal strategy, denoted as π∗, that maximizes the
overall reward while adhering to all given constraints. The primary focus of the article is
to obtain the policy that yields the highest possible reward, denoted as R(π), among all
possible policies π.

It should be noted that the navigation principles for the mobile BS are similar to those
of the UGVs. Both the UGVs and mobile BS can use similar principles for path planning
and obstacle avoidance based on their target positions and current environmental data.
The tasks of UGVs are threefold: First, UGVs reach their destination through collaborative
navigation. Second, UGVs should try to avoid collisions. Third, UGVs should travel in a
communication environment with high quality. The mobile BS has only two tasks: One is to
work with the UGVs to adjust the communication coverage by adjusting the position, thus
ensuring that the UGVs move within a high-quality communication range. One is to avoid
collisions as much as possible, similar to the objective of the UGVs. It is also important
to note that the initial position of the mobile BS is at the very center of the scene in all
the scenarios we set up and that it co-moves with the UGVs without preempting them.
So in this training model, the reward function of the UGVs mainly consists of three parts
based on a theoretical foundation. Firstly, it is related to the distance between the UGVs
and the target point. Secondly, it is related to the number of collisions, including collisions
between UGVs, collisions between UGVs and the mobile BS, and collisions between UGVs
and obstacles. Finally, it is related to the SIR obtained by the UGVs at step t, which can be
formulated as r(st, at).

r(st, at) = SIRt − D(UGVs, target)− coll (6)

where SIRt represents the comprehensive communication quality obtained by all UGVs
at each step t, and the definition of SIRt has been introduced in detail in Equation (1).
D(UGVs, target) represents the sum of the lengths between all UGVs and their respective
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destinations at each step t; it should be noted that no UGV has a fixed destination to reach,
which means that all UGVs will autonomously allocate the destination to be reached based
on their strategies and observations. The term coll represents the number of collisions that
occurred among all UGVs at each step t.

The calculation formula of SIRt in Equation (6) has been introduced in Section 2.3.
Communication directly impacts the reward function of the UGVs, where higher com-
munication results in a larger reward. Consequently, the UGVs are incentivized to priori-
tize locations with better communication, encouraging them to move extensively toward
those areas.

D(UGVs, target) is computed by:

D(UGVs, target)=
√
(xu − xtarget)2 + (yu − ytarget)2 (7)

where (xu, yu) contains coordinate information for all the target points, which indicates that
the loss also diminishes as the distance between the UGVs and the destination gets smaller.
Consequently, a smaller loss corresponds to a higher reward. In essence, the UGVs are more
likely to receive a greater reward when they are in closer proximity to the target point.

The term coll can be confirmed as:

coll =
{

0, if D(UGVs, tuple) > K
−1, if D(UGVs, tuple) ≤ K

(8)

where D(UGVs, tuple) represents distances between the UGVs and various entities such as
other UGVs, the mobile BS, and obstacles in the given scenario. Additionally, a constant “K”
is utilized to assess the possibility of a collision. If the distance between any two entities is
less than the value of K, a collision is registered. Consequently, by employing this approach,
multi-agents collaborate to minimize the occurrence of collisions.

3. RL Multi-Agent Communication Coverage Navigation with GA

In this section, we describe a concise summary of the MDP formulation for com-
munication coverage navigation with cooperation between the mobile BS and the UGVs.
Next, we introduce the DDPG algorithm [31], which is designed for continuous control
space. Building upon these foundations, we develop an innovative RL algorithm called
GA-MADPPG to address the challenges in communication coverage and navigation. The
GA-MADPPG algorithm comprises two main components. Firstly, we adopt the MADPPG
algorithm, which extends DDPG following the CTDE paradigm. This allows us to leverage
the benefits of MADPPG in handling multi-agent systems and continuous control problems.
Secondly, we integrate GA into the MADPPG algorithm, enabling real-time hyperparame-
ter updates based on the loss function during the training process. The proposed policy
highlights the GA-MADPPG algorithm’s ability to dynamically adjust hyperparameters
based on the loss function. By combining these two components, GA-MADPPG aims to
achieve efficient communication coverage and navigation in complex environments.

3.1. MDP Model

The multi-agent Markov game, a significant expansion of the MDP in a multi-agent
scenario, is the subject of [32]. In this game, the theoretical state of N agents is represented
by s. At each epoch t, the agents keep track of the current state st and select an action
at. Following this, the state enters the following state st + 1, and all agents are given a
reward, r(st, at).

For the evaluation of action–value functions and state–action mapping value functions,
calculating the value function for stochastic policies entails:

Vπ(st) |= E
[

∞

∑
l=0

γlr(st+l , at+l) | st

]
(9)
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where the discount factor is γ ∈ [0, 1). And the action–value function is computed
as follows:

Qπ(st, at) = E
[

∞

∑
l=0

γlr(st+l , at+l) | st, at

]
(10)

Learning an ideal π∗ strategy that optimizes the overall anticipated return is the goal
of all agents.

π∗ = arg max
π

E
[

∞

∑
t=0

γtr(st, at)

]
(11)

3.2. Fundamentals of the DDPG Approach

DDPG is a deep deterministic policy gradient algorithm developed to tackle continu-
ous action control problems. It is based on policy gradients and directly adjusts the policy
parameters θ to optimize the objective function.

J(θ) = Es∼pπ |,a∼πθ
(12)

which is the core idea behind DDPG, as it involves taking the policy gradient ∇θ J(θ) at
each step. The policy gradient can be expressed as follows:

∇θ J(θ) = Es∼pπ ,a∼πθ
[∇θ log πθ(a | s)Qπ(s, a)] (13)

where Qπ(s, a) = E
[
R | st = s, at = a

]
is an action–value function, and pπ is the state

distribution.
Deterministic policies can also be incorporated into the policy gradient framework

and are denoted as µθ : S 7→ A [1]. Specifically, under certain circumstances, we can write
the gradient of the objective J(θ) = Es ∼ pµ[R(s, a)] as follows:

∇θ J(θ) = Es∼D
[
∇θµθ(a | s)∇aQµ(s, a)|a=µθ(s)

]
(14)

The theorem requires the action space a to be continuous, as it depends on ∇aQµ(s, a).
Deep neural networks are used in the DDPG method, which is a variation of the

deterministic policy gradient algorithm, to estimate policy µ and critic Qµ. It is an off-policy
approach, meaning it learns from experiences during training. In addition to the online
network, DDPG also uses a target network to stabilize training. The target network is
periodically revised to mitigate the effects of policy oscillations during learning.

3.3. Multi-Agent Deep Deterministic Policy Gradient

The DDPG policy demonstrates the agent’s inherent robustness and generalization
capabilities, leading to maximized performance [31]. This benefit makes DDPG particularly
well-suited for learning in challenging circumstances where unknowns and external inter-
ference are present. In light of this, we adopted a training paradigm for communication
coverage navigation based on the MADDPG. The agent in the environment is autonomous
and unable to interact with other agents, yet it is perceptible. At each step t, the agent is
unable to observe the current mobility schemes of other agents. The benefit of CTDE is that
it eliminates the need to address the trade-offs between agents, and the optimization goal
is to increase the total return of all agents [33].

G = ⟨ŝ, a, p, r, o, u⟩ (15)

where u represents the index of each agent, and ŝ stores each agent’s global statuses and
local observations. The term a is a representation of all agents’ activity, and each agent’s
reward is part of the tensor r. The observation function is indicated by o, and p represents
the likelihood of a transition from the current state to the following state.
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More specifically, the game has N agents and strategies parameterized by
θ = {θ1, . . . , θN}. The term π = {π1, . . . , πN} represents the collection of all agent
policies. For agent i, the gradient of the expected return, denoted as J(θi) = E[Ri], may
thus be expressed as follows:

∇θi J(θi) =Es∼pµ ,ai∼πi [∇θi log πi(ai | oi)

Qπ
i (x, a1, . . . , aN)]

(16)

In our setting, the total actions a1, . . . , aN are fed into Qπ
i (x, a1, . . . , aN), which is a

centralized action–value function that produces the Q-value for agent i along with some
state data. In the simplest scenario, states might be the sum of the observations made by
each agent, (o1, . . . , oN), but if accessible, we could also incorporate additional state data.
Agents are allowed to have any incentive systems, even ones that provide rival rewards in
a hostile environment. However, in this paper, we set the reward function as the total of
rewards for all agents since our research focuses on situations where all agents cooperate
to achieve a common goal, resulting in cooperative rewards.

The mentioned concept can be expanded to apply to deterministic policies. Now
that we have N continuous policies µθi parameterized by θi, we can express the gradient
as follows:

∇θi J(µi) =Ex,a∼D [∇θi µi(ai | oi)

∇ai Q
µ
i (x, a1, . . . , aN)|ai=µi(oi)

]
(17)

where the transitions (x, x′, a1, . . . , aN , r1, . . . , rN) are stored in replay bufferD, which stores
all agent experiences.

The policies of other agents must be updated for Equation (17) to be applied. Knowing
the observations and policies of other agents is not a particularly restricting assumption, as
this information is typically available to all actors if our goal is to educate agents to exhibit
sophisticated communicative behavior in simulation.

3.4. Genetic Algorithm

GA is a computational model that is inspired by Darwin’s biological evolution theory and
is used for searching for optimal solutions by simulating natural evolution. It operates directly
on structural objects, avoiding differentiation and function continuity constraints [34–36]. With
inherent implicit parallelism and strong global optimization ability, it employs probabilistic
optimization methods for automatically obtaining and guiding the search space without
strict rules, allowing adaptive adjustments of the search direction. GA targets all individuals
in a population and efficiently explores an encoded parameter space using randomization
techniques. Its genetic operations include selection, crossover, and mutation. The core
components of a GA are parameter encoding, initial population setting, fitness function
design, genetic operation design, and control parameter setting. To demonstrate the
operation of a GA, we consider an unconstrained optimization problem. The objective is to
maximize the following function:

Maximize f (k), kl
n ≤ kn ≤ ku

n, n = 1, 2, . . . , N. (18)

The variable ki can take values within the range of kl
n and ku

n. Although we consider a
maximization problem, a GA can also be used for minimization problems. To ensure the
proper functioning of the GA, the following steps are taken.

Variables ki in Equation (18) are initially coded in specific string structures before
using GAs to address the aforementioned issue. It is essential to mention that coding the
variables is not always required at this stage. In some studies, GAs are directly applied to
the variables, but for the sake of discussing the fundamental ideas of a simple GA, we will
disregard these exceptions.



Electronics 2024, 13, 3028 11 of 21

The fitness function is evaluated for each individual in the initial population and
subsequently for each new generation after applying the genetic operators of selection,
crossover, and mutation. Since each individual’s fitness is independent of that of the others,
parallel computation is feasible.

Such transitions can take many different forms. Below are two commonly used
fitness mappings.

F (k) = 1
1 + f (k)

(19)

This transformation converts a minimization problem into an equivalent maximization
problem without changing the position of the minimum. The objective function can be
transformed using a different function to provide the fitness value F (i), as shown below:

F (i) = V − O(i)P

∑P
i=1 O(i)

(20)

where V is a large value to ensure non-negative fitness values, P is the population size, and
O(i) is the objective function value of the nth individual. For this study, V is chosen as
the maximum value of the second term in Equation (20), leading to a fitness value of zero,
which equals the maximum value of the objective function. This transformation does not
alter the solution’s position; it merely converts a minimization problem into an equivalent
maximization problem. The term “string fitness” refers to the fitness function value of
a string.

Genetic operators like selection, crossover, and mutation are applied to the population,
producing a new generation based on the fitter individuals from the current generation.
The selection operation picks individuals with advantages in the current population. The
crossover or recombination operation creates descendants by exchanging a portion of
chromosomes between two selected individuals, resulting in two new chromosomes repre-
senting offspring. The mutation operation randomly changes one or more chromosome
values (genes) of each newly created individual. Mutations typically occur with a very
low probability.

3.5. GA-MADDPG for Addressing Communication Coverage and Navigation in Its Own
Abstract Formulation

In the abstract formulation in Section 3.1, the policy of the objective function can be
expressed as π(st) = at(st). In each episode j, the objective is to optimize the objective
function by selecting the best coordination and optimal action (a) for each state (s). Different
agents are assigned to navigate themselves to reach the target point, and each agent adopts
an independent strategy. To address limitations and explore various scenarios, we use
off-policy methods instead of on-policy methods since off-policy is more powerful and
generalized. It ensures that the data are comprehensive and that all actions are covered. It
can even come from a variety of sources—self-generated or external [37]. Figure 3 illustrates
the highlights of the proposed GA-MADDPG.

All criticisms will be updated simultaneously to reduce the combined regression loss
function for episode j:

L(θi) =
1
S ∑

j

(
yj −Qµ

i

(
xj, aj

1, . . . , aj
N

))2
(21)

The actor is updated using the sampled policy gradient:

∇θi J ≈ 1
S ∑

j
∇θi µi(o

j
i)

∇ai Q
µ
i (x

j, aj
1, . . . , ai, . . . , aj

N)|ai=µi(o
j
i )

(22)
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And the centralized action–value function Qµ
i is updated as:

L(θi) =Ex,a,r,x′ [(Q
µ
i (x, a1, . . . , aN)− y)2],

y = ri + γQµ′

i (x′, a′1, . . . , a′N)|a′j=µ′j(oj)

(23)

where
µ′ =

{
µθ′1

, . . . , µθ′N

}
(24)

is the collection of goal policies with postponed parameters θi.
The training process of the GA-MADPPG algorithm is summarized in Algorithm 1.

We use off-policy DDPG training to maximize the reward.

Algorithm 1 GA-MADDPG algorithm

Require: Input state s, discount factor γ, and action a
Initialization : Initialize MPE environment with four agents (including 3 UGVs and 1
mobile BS); Initialize hyperparameter population.
Ecount = 0
for Episode = 1 to max episode do

Reset environments, collect initial observations oi of agents
for step = 1 to max step do

Choose At for each agent i
Agents take At and receive next observations o′i
Calculate the total reward in Equation (6)
Store all agents’ transitions in D, and store the L of transitions in D.
Ecount = Ecount + 1
if Ecount ≥update episode then

for g = 1 to critic updates steps do
Sample batch B from D
Set yj = rj

i + γQµ′

i
(
x′j, a′1, . . . , a′N

)∣∣∣
a′k=µ′k

(
oj

k

)
Minimize the loss in Equation (21) to update critic
Update actor using the sampled policy gradient according to Equation (22)
Evaluate fitness of hyperparameter population according to Equation (19)
Crossover hyperparameter population
Mutation operation
Set new hyperparameter population according to D.

end for
Update target parameters:
θ′i ← τθi + (1− τ)θ′i
Ecount = 0

end if
end for

end for
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Figure 3. Detailed diagram of the GA-MADDPG algorithm.

4. Simulation Results

In this section, we present illustrative examples to depict the experimental setup of
this paper. Based on these examples, we propose several metrics to assess the effectiveness
of the algorithm and perform a quantitative analysis to clarify the advantages of our
represented modeling approach and policy. Subsequently, we present numerical simulation
results to showcase the effectiveness and efficiency of the algorithms. Additionally, we
provide insightful comments on the results.

4.1. Settings of the Experiments

In this subsection, we present the precise experimental coefficient settings. The simu-
lated area is a dense urban region of 2 × 2 km² with seven cellular BS sites. In Figure 4, a
top view of the channel model in this paper is shown, where seven ground base stations
are represented by blue five-pointed stars, and the blue five-pointed star in the middle
represents the movable base station. Each base station has three unit groups. Since there
are seven base stations in total, the number of units is 21. The transmission power of
the unit cell is set to Pm = 20 dBm, the communication interruption threshold is set to
γth = 0 dB, and the noise power is defined as σ2 = −65 dBm. This paper adopts the base
station antenna model required by the 3GPP specification. For simplicity, we assume that
the UGVs’ operational height is set at 0 m, disregarding the influence of terrain ups and
downs. The specific values of the parameters involved in the simulated environment are
as follows: the number of UGVs is set to four (including one movable BS), the number of
obstacles is set to five in the main areas, and there are three target points. The positions of
these elements are randomized each time they appear. As we employ a dynamic update
mechanism for hyperparameters, we list the common parameters of the baseline algorithm
and the GA-MADDPG algorithm in Table 1, and we also list the initial hyperparameter
population of the GA-MADDPG algorithm in Table 2.

In this study, it is important to note that the communication environment is solely
determined by the positioning of each UGV. The quality of communication among multiple
UGVs does not influence their collaborative navigation. This is because the collaborative
navigation process relies exclusively on a multi-agent algorithm to coordinate the UGVs in
environmental exploration.
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Table 1. GA-MADDPG parameter settings.

Definition Value Definition Value

Max episodes 60,000 Minibatch size 512
Replay buffer
capacity 1,000,000 Discount factor 0.99

Steps per update 100 Learning rate 0.0001
Max steps per
episode 25 Update population rate 100

Time step length 1 Hidden dimension 64

Table 2. Initial hyperparameter population of GA-MADDPG algorithm.

Discount Factor Learning Rate Replay Buffer Capacity Minibatch Size

0.9 0.01 10,000 512
0.95 0.001 100,000 1024
0.99 0.0005 1,000,000 2048

Figure 4. Plan view of base station model distribution.

4.2. Indicators of Evaluation for UGV Navigation

To objectively measure the navigational safety, effectiveness, robustness, and commu-
nication connection of UGVs, we have developed specific assessment indicators, which are
detailed below. We also recorded the changing state of the evaluation metrics, as shown in
Figure 5.

• Communication return.The communication return is the average communication
quality per episode for the UGVs and is calculated based on Equation (1). The commu-
nication returns converge quickly from the initial−800 to−300 as shown by Figure 5a,
which indicates that the communication quality has been improved and has stabilized
in an interval.

• Collision times: The collision times are the sum of collisions between UGVs and
obstacles and between drones and drones in an average round. The collision indi-
cator converges from 540 to below 480, as shown by Figure 5b, indicating that the
number of collisions has also been reduced somewhat, and since this study allows
UGVs to have a certain number of collisions, the collision indicator is not the main
optimization objective.

• Outside times: The outside times are the number of times the UGVs go out of bounds
and run out of the environment we set. From Figure 5c, the rapid reduction in the
number of times going out of bounds indicates that our research has significantly
limited ineffective boundary violations, demonstrating that our study effectively
operates within the designated area.
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Figure 5. Three evaluation indicators for UGV navigation. (a) Communication return. (b) Collision
number. (c) Outside times.

4.3. Comparative GA-MADDPG Experimentation

To compare with the suggested algorithm and determine whether the algorithm
works better, we provide seven RL approaches that are thought of as baselines. The
methods are MADDPG [24]: a classic multi-agent deep deterministic policy gradient,
R-MADDPG [38]: a deep recurrent multi-agent actor–critic, MAPPO [39]: multi-agent
proximal policy optimization, RMAPPO [39]: a deep recurrent multi-agent proximal policy
optimization, MQMIX [40]: mellow–max monotonic value function factorization for deep
multi-agent, MASAC [41]: a classic multi-agent soft actor–critic, MAD3PG [42]: a multi-
agent deep distributional deterministic policy gradient, MATD3 [43]: the twin delayed
deep deterministic policy gradient, and RMATD3 [44]: the twin delayed deep deterministic
policy gradient with a deep recurrent. Notably, we replicate these baselines using the same
simulation environment to guarantee the experiment is fair.

The cumulative return of the GA-MADDPG and other algorithms, which is displayed
in Figure 6, indicates the experimental comparison findings and highlights the potency of
GA-MADDPG algorithms. GA-MADDPG outperforms the other algorithms by achieving
a considerably higher reward return of about −1200 with 60,000 episodes, reaching its
convergence point. Furthermore, as shown in Figure 6, both MADDPG and R-MADDPG
achieve lower rewards of around −1600 compared to GA-MADDPG, providing strong
evidence for the effectiveness of our contribution: the use of GA adaptive hyperparameters
allows for better jumps out of the local optima and higher rewards. As shown in Figure 6,
in the specific environment we configured, neither the original MADDPG algorithm nor
its variant incorporating deep recurrent networks outperforms GA-MADDPG in areas of
convergence speed and final convergence outcomes: GA-MADDPG converges in about
2000 episodes, while R-MADDPG converges in about 5000 episodes, and the original algo-
rithm MADDPG converges even worse. Of greater significance, our experimental findings
reveal that MASAC, MAPPO, MAD3PG, MQMIX, and RMAPPO encounter challenges in
achieving a desirable convergence state within the multi-agent cooperative environment
we constructed. MASAC required approximately 25,000 episodes to converge, ultimately
stabilizing at a reward value of approximately −1800. MAPPO and RMAPPO exhibited
less stable convergence, with rewards fluctuating between −2000 and −2500. Meanwhile,
MAD3PG’s reward converged to approximately −2100. Regarding MQMIX, its reward
demonstrated initial oscillation over the first 25,000 episodes, followed by a steady de-
cline thereafter. This further emphasizes the superiority of GA-MADDPG in terms of
performance and effectiveness.

Furthermore, certain algorithms tend to converge to local optima, which further re-
inforces the effectiveness of our decision to adopt the MADDPG algorithm and enhance
it. As depicted in Figure 6, in the initial 25,000 episodes, GA-MADDPG may succumb to
local optimality. However, the incorporation of the GA mechanism enables GA-MADDPG
to attain elevated rewards beyond this threshold. Notably, MAPPO and MQMIX demon-
strate subpar performance, possibly due to the lack of adaptive hyperparameter updates,
hindering their effective cooperation within the multi-agent environment and leading
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to convergence challenges. Therefore, this observation naturally demonstrates the high
effectiveness of incorporating GA into multi-agent RL algorithms. By introducing GA,
multi-agent algorithms can more effectively avoid falling into local optima, resulting in
improved convergence speed and outcomes. And the variation of the loss calculated by
Equation (21) is represented by Figure 7, from which we can see the constant convergence
of the loss to near 1800, which can prove the convergence of the algorithm. During the
validation process, Figure 8 displays several simulated paths of UGVs. Under optimal com-
munication conditions, the BS UGV might remain stationary to prevent potential losses due
to collisions. However, in situations with less than excellent communication, the BS UGV
proactively moves to compensate for communication limitations. Additionally, statistics for
the three evaluation indicators (Figure 5) show the improvement in communication return,
the reduction in collision number, and the decrease in outside number as the algorithm
converges. The return on communications exhibited an improvement from an initial value
of −800 to −300 towards the conclusion of the experiment. Concurrently, the frequency of
collisions decreased from 540 to 470, and the occurrences of external events diminished
from 100 to nearly zero. This suggests that as the algorithm converges, the three evaluation
metrics also reach optimality.

Figure 6. Average cost of the GA-MADDPG and other advanced algorithms.

Figure 7. Evolution of loss function.
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(a) (b) (c)

Figure 8. Some UGV path maps based on GA-MADDPG.

4.4. Generalization Experiment of GA-MADDPG
4.4.1. Simulation with Different Numbers of UGVs

To further prove the universality of the proposed GA-MADDPG algorithm in the set
environment, this study also designed two other generalization experiments for the scene.
The experiment set different numbers of UGVs, target points, and obstacles in the scene
to determine whether the algorithm GA-MADDPG can continue to perform superiorly.
It should be noted that since some baseline algorithms in Section 4.3 have performed
poorly or even have difficultly converging, the generalization experiment uses four baseline
algorithms that are relatively stable in Section 4.3, including MASAC, MAD3PG, MADDPG,
and its variant, RMADDPG. Generalization environment 1: The number of UGVs increases
to four, the number of mobile base stations is one, the number of target points increases
to four, and the number of obstacles increases to seven. The significance of setting up the
environment in this way is to increase the severity of the environment by increasing the
number of UGVs and the number of obstacles.

From Figure 9, we can see that despite the increased complexity of the environment, the
GA-MADDPG algorithm always has a higher convergence value in harsh environments and
can converge to a high value well. The GA-MADDPG algorithm can maintain convergence
to a reward value of −3000, while the other baseline algorithms do not perform well or
even find it difficult to converge in complex environments, and the highest reward value
is only around −3300. This fully demonstrates that the GA-MADDPG algorithm still has
better performance than other algorithms after the environmental complexity increases.

Figure 9. Average cost comparison of generalization environment 1.
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Generalized environment 2: The number of UGVs is reduced to two, the number of
mobile base stations is one, the number of target points is reduced to two, and the number
of obstacles is reduced to three. The significance of setting up the environment in this way
is to improve the simplicity of the environment by simplifying the number of UGVs and
obstacles so that the UGV can complete the goal with a greater reward.

As can be seen from Figure 10, the rewards of most algorithms show a good upward
trend. This is because the generalized environment uses a simpler three UGVs (including a
UGV base station), three obstacles, and two target points. The algorithm performs better in
a simple environment and convergence is easier than for the generalized environment. As
the number of vehicles decreases, the number of collisions and out-of-bounds also decrease
accordingly. It should be noted that since the communication environment parameters
remain unchanged, the reward value of the overall algorithm is positive, which is normal.
From Figure 10, it can be seen that in this generalized environment, the reward of the
GA-MADDPG algorithm always remains ahead, both in terms of convergence speed and
final convergence value, which are much higher than for the other algorithms, and the final
reward value can converge to about 200. As a basic algorithm, MADDPG also has a higher
convergence value of about 150. This fully demonstrates that the GA-MADDPG algorithm
can also perform well in a simple environment.

Figure 10. Average cost comparison of generalization environment 2.

It can be seen from Figures 9 and 10 that in the experimental environments with two
different parameter settings, despite changes in the number of UGVs, the number of target
points, and the number of obstacles, the GA-MADDPG algorithm can still perform better
than the other algorithms, which fully demonstrates the robustness of the GA-MADDPG
algorithm and its universality to environmental scenarios.

4.4.2. Experiments on the Effectiveness of the Mobile BS

The previous subsections prove the stability and convergence of our proposed algo-
rithm. Also, the last section proves that our proposed algorithm is superior in the same
scenario. To better demonstrate the effectiveness of the mobile base station proposed in this
paper, we add an extra experiment: only changing the mobile BS to a fixed BS but using the
same algorithm.

We use the communication return as an evaluation metric, and the communication
return with a mobile base station is better than that of the fixed base station from the
beginning of training, as shown by Figure 11. The communication return of a single UGV
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can eventually converge to around 300, while that of the fixed base station hovers around
200 feet, which fully proves the effectiveness of our proposed mobile base station.

Figure 11. Comparison of communication returns between mobile BS and fixed BS.

5. Conclusions

In this article, a cooperative system for multi-UGV cooperative navigation within
a communication coverage area is proposed. The system is formulated as an MDP to
determine an optimal navigation policy for the UGVs, with the aim of maximizing the
total reward. In contrast to prior studies focusing on fixed coverage-aware navigation, this
paper introduces a novel approach by incorporating a mobile BS into the multi-intelligent-
body algorithm. This innovation aims to enhance communication coverage and expand
the solution space available for intelligent agents. To mitigate the risk of local optima,
this study introduces a GA hyperparameter adaptive updating mechanism to address the
multi-UGV navigation problem. We coin the term GA-MADDPG to refer to this novel
RL algorithm. The simulation results demonstrate that GA-MADDPG exhibits favorable
performance, convergence rates, and effectiveness compared to other RL algorithms.

In our future research, we would like to address the following points: (1) To enhance
model realism, one can combine a traditional PID control with multi-agent RL and further
optimize the navigation policy by taking control of the machine operation. (2) One can try
to use a new architecture to learn policies, such as by using LSTM (long short-term memory)
and the transformer architecture. LSTM can solve the problem of gradient vanishing and
gradient explosion during the training of long sequences; the advantage of the transformer
architecture is that its attention layer can learn a sequence of actions very well.
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