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Abstract: In this paper, we present a novel sparse Bayesian learning (SBL) method for image re-
construction. We integrate the generalized approximate message passing (GAMP) algorithm and
Laplacian hierarchical priors (LHP) into a basic SBL model (called LHP-GAMP-SBL) to improve the
reconstruction efficiency. In our SBL model, the GAMP structure is used to estimate the mean and
variance without matrix inversion in the E-step, while LHP is used to update the hyperparameters in
the M-step.The combination of these two structures further deepens the hierarchical structures of the
model. The representation ability of the model is enhanced so that the reconstruction accuracy can be
improved. Moreover, the introduction of LHP accelerates the convergence of GAMP, which shortens
the reconstruction time of the model. Experimental results verify the effectiveness of our method.

Keywords: sparse Bayesian learning; generalized approximate message passing; Laplacian
hierarchical priors

1. Introduction

The Sparse Bayesian learning (SBL) model has been successfully applied to sparse
signal recovery (SSR) or image recovery in various fields [1–3]. The essence of SSR is to
restore the sparse signal x ∈ RN×1 from the M < N noisy measurement vector y ∈ RM×1.
In theory, the model is expressed as follows:

y = Dx + e, (1)

where D ∈ RM×N is the known dictionary matrix and e ∈ RM×1 is the observation noise.
Accordingly, many methods [4–7] have been proposed to solve (1) that update pa-

rameters through the Expectation-Maximization (EM) [8] algorithm and achieve good
reconstruction results. The EM algorithm has two steps. The first step is to calculate
the expectation (E-step), which calculates the posterior distribution of hidden variables
(the expectation of log-likelihood) based on current parameter estimates. The second
step is maximization (M-step), which updates parameters by maximizing the expectation
calculated in the E-step. To estimate mean and variance accurately (in the E-step) and
hyperparameters (in the M-step), most SBL models involve operations of matrix inversion.
Thus, the computational efficiencies of these methods may be inhibited.

To tackle this issue, multiple optimization strategies have been presented [9,10]. In [9],
Shutin proposed a fast variational sparse Bayesian method (FV-SBL) to accelerate con-
vergence by calculating the stationary points of variational iterative updates with nonin-
formative hyperpriors to maximize the bound. Subsequently, Duan [10] presented a fast
inverse-free SBL method (IF-SBL) based on maximizing the relaxed evidence lower bound
(ELBO). The relaxed-ELBO is first obtained to avoid the operation of matrix inversion in the
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E-step. Then, the variational EM algorithm is used to maximize the relaxed-ELBO, which
improves computational efficiency by using inverse-free matrix operations.

In recent studies [11–14], GAMP was used in SBL models to speed up the reconstruc-
tion. Based on the transformation of the estimation problem, Gaussian approximation, and
central limit theorem, GAMP can effectively estimate parameters without matrix inversion
in the E-step. In [11], GAMP was used to perform the inference through information
transformation between nodes of the iterative probability graph model. It applies quadratic
approximation and Taylor expansion to the cyclic confidence propagation with low com-
putational complexity. Based on this, Zou [12] proposed combining GAMP with the SBL
model (GAMP-SBL) and embedding this into the EM framework in place of the E-step,
which significantly reduces the computational complexity and shortens the running time.
Because the GAMP framework can adapt to any prior distribution for the unknown vectors,
Al-Shoukairi [13] applied Gaussian scale mixture (GSM) priors to SBL sparse coefficients
(GGAMP-SBL) to enhance the robustness of the model and adopted multiple damping
factors to achieve fast convergence of GAMP, thereby improving the reconstruction ef-
ficiency. In [14], Dong formulated GAMP and variational Bayesian (VB) EM structure
into an SBL model (VGAMP-SBL). By replacing the traditional EM model with a VB-EM
model and using the GAMP structure to estimate the mean in the E-step, the interaction
between data fluctuations and parameter fluctuations was weakened, thereby improving
reconstruction performance.

However, multiple random variables in these GAMP-based SBL models may result in
a fat-tailed distribution, which cannot be well fitted by the prior distribution of Gaussian
mixture functions. Therefore, local optimization may occur during the iteration process,
which means that more time is required to approximate hyperparameters in the M-step. In
contrast, Laplace distribution has good robustness against a fat-tailed distribution [15]. It
can easily extract samples far from the mean (abnormal samples). Thus, a Laplacian prior is
more suitable for the reconstruction of natural images. In [16], Babacan integrated Laplace
hierarchical priori (LHP) into the basic SBL frame to speed up reconstruction. LHP can
improve the sparsity of unknown signals and obtain a lower reconstruction error.

Inspired by this, we integrate GAMP and LHP into the basic SBL model (LHP-GAMP-
SBL) to improve the efficiency of image reconstruction, reduce computational complexity,
shorten running time, and accelerate convergence. The main contributions are summarized
as follows:

(1) We propose an efficient sparse Bayesian learning model for image reconstruction based
on Laplace hierarchical priors and GAMP. The GAMP structure is used to estimate
the mean and variance in the E-step without matrix inversion. It outperforms several
mainstream SBL image reconstruction models in terms of running time.

(2) Sufficient damping factors are used to constrain the output to prevent the divergence
of the GAMP during iterations.

(3) In order to solve the problem that the prior distribution of the Gaussian mixture
function in GAMP cannot fit a fat-tailed distribution well, we use the Laplace hierar-
chical prior (LHP) instead of the Gaussian prior to update the hyperparameters in the
M-step, which improves the robustness of the model and speeds up the convergence
of GAMP.

(4) The combination of GAMP and LHP further deepens the hierarchical structure of the
model and improves the sparsity of the model. The higher the sparsity of the model,
the fewer non-zero elements it has, and the stronger the representation ability of the
model (using as few non-zero elements as possible to represent the main characteristic
information of the original signal). The reconstruction accuracy is improved without
affecting the computational efficiency. A large number of experiments have shown that
our LHP-GAMP-SBL model outperforms other mainstream SBL image reconstruction
models in overall reconstruction performance.
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2. Methods
2.1. Laplace Hierarchical SBL Model

The Laplace distribution has a peak at zero, so it is easier to produce sparse solutions,
so that signal coefficients close to zero are preferred [15,16]. In contrast, the Gaussian
distribution is smooth and has no peak at zero, so it is less capable of modeling sparsity.
According to sparse representation (SR) theory, the purpose of SR is to represent the
main characteristic information of the original signal with as few non-zero elements as
possible, which can make it easier to further process the signal. When the sparsity of
the model is higher, there are fewer non-zero elements. Therefore, the representation
ability of the model will be enhanced, thereby improving reconstruction accuracy. In
addition, the Laplace distribution is more robust to abnormal values because its tail is
heavier than that of the Gaussian distribution [15]. This means that in the presence of noise
or abnormal values, the reconstruction performance of the SBL model using the Laplace
prior is better. Therefore, this paper will adopt the Laplace hierarchical prior model to
improve reconstruction accuracy.

In (1), all unknown parameters are treated as random quantities with a specified
probability distribution. The unknown signal x is assigned a prior distribution p(x|λ),
and the observation y is a random process with conditional distribution p(y|x, θ), where
θ = 1/σ2 is the inverse noise variance. These distributions depend on the model parameters,
λ and θ, which can also be assigned additional prior distributions. The SBL model defines
the joint distribution of all parameters and observations as follows:

p(x, λ, θ, y) = p(y|x, θ)p(x|λ)p(λ)p(θ). (2)

Let noise e follow an independent Gaussian distribution with zero mean and θ−1

variance. Thus, one has:
p(y|x, θ) = N (y|Dx, θ−1). (3)

Let a Gamma prior be placed on θ, we have:

p(θ|aθ , bθ) = Γ(θ|aθ , bθ) =
(bθ)aθ

Γ(aθ)
θaθ−1exp(−bθθ). (4)

where θ > 0 represents the hyperparameter, a is the scale parameter, and b is the shape
parameter. The expectation of θ is given by the following equation.

⟨θ⟩ = aθ

bθ
. (5)

where ⟨·⟩ denotes the expectation. Similarly, based on the sparsity of x in (1), x is assumed
to follow the distribution of Laplace priori, that is:

p(x|λ) = λ

2
exp(−λ

2
∥x∥1). (6)

However, the likelihood function in (3) and the prior probability in (6) are not con-
jugate. When they are conjugate, the posterior distribution and the prior probability are
the same distribution. A conjugate prior can simplify the calculation of the posterior
distribution. Therefore, we adopt the hierarchical prior model [16]. The first layer of the
model is:

p(x|ω) =
N

∏
i=1
N (xi|0, ωi). (7)

where ω = (ω1, ω2, · · · , ωN). The second layer of the hierarchical model (ωi) is:

p(ωi|λ) = Γ(ωi|1, λ/2) =
λ

2
exp(−λωi

2
), ωi, λ ≥ 0. (8)
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Based on (7) and (8), the distribution of Laplacian priors can be expressed by:

p(x|λ) =
∫

p(x|ω)p(ω|λ) dω = ∏
i

∫
p(xi|ωi)p(ωi|λ) dωi

=
λN/2

2N exp(−
√

λ ∑
i
|xi|).

(9)

Finally, the parameter λ is calculated by the Gamma hyperprior method.

p(λ|γ) = Γ(λ|γ
2

,
γ

2
). (10)

2.2. Laplace Hierarchical Bayesian Inference

According to Bayesian inference based on the maximum likelihood method, the poste-
rior distribution can be written as:

p(x, ω, λ, θ|y) = p(y|x, θ)p(x|ω)p(ω|λ)p(λ)p(θ)
p(y)

. (11)

where p(y) represents the marginal likelihood function, which can be expressed as:

p(y) =
∫

p(y|x, θ)p(x|ω)p(ω|λ)p(λ)p(θ)dx

= (
1

2π
)N/2|C|−1/2exp(−1

2
yTC−1y)p(ω|λ)p(λ)p(θ).

(12)

where C = (θ−1I +DΛ−1DT) and Λ = diag(1/ωi), I represent the M×M identity matrix.
According to the properties of the Gaussian function, it can be obtained that the

posterior distribution also approximately obeys the Gaussian distribution. Its posterior
mean (µx), variance (Σx) of x, and hyperparameters (ω, λ, θ) can be iteratively updated by
the EM algorithm, as summarized below:

µx = θΣxDTy, Σx = (θDTD + Λ)−1. (13)

ωi =

√
1 + 4λ⟨x2

i ⟩ − 1

2λ
, λ =

2(N − 1) + γ

∑i ωi + γ
,

θ =
N/2 + aθ

⟨∥y−Dx∥2⟩/2 + bθ
.

(14)

In addition, we can also estimate γ by maximizing the value of the logarithm of (12)
with respect to γ. The solution formula is shown in (15):

lnp(y) = −1
2

ln|C| − 1
2

yTC−1y + Nln
λ

2
− λ

2 ∑
i

ωi +
γ

2
ln

γ

2

− lnΓ(
γ

2
) + (

γ

2
− 1)lnλ− γ

2
λ + (aθ − 1)logθ − bθθ,

⇒ ln
γ

2
+ 1− ψ(

γ

2
) + lnλ− λ = 0.

(15)

where ψ(·) is the digamma function, which is the derivative of gamma function Γ(·) with
respect to the logarithm of the independent variable. In (15), ψ( γ

2 ) is the derivative of
lnΓ( γ

2 ) with respect to γ
2 .

It can be seen that (15) is a nonlinear equation, which is complicated by the existence
of the digamma function ψ(·). The digamma function has no simple analytical form, so (15)
cannot be solved directly by simple algebraic manipulation. In order to solve this equation,
numerical methods are usually required.
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Unlike the method in [16], we use two layers of hierarchical priors. There are two
reasons for this. First, the use of the LHP structure in the SBL model can accelerate
the convergence of GAMP. Second, there is no direct solution in (15), and the last layer
contributes little to reducing the recovery error, while more layers require more computing
resources. It can be seen that the update of the posterior mean and covariance in (13)
involves hyperparameters such as θ, ω, and λ, which need to be updated through (14).
Therefore, through continuous iterative updates of (13) and (14), it will eventually converge
to an estimate of x.

2.3. LHP-GAMP-SBL Model

The GAMP algorithm is based on the channel coding and message propagation
principles of information theory. Through the transformation of the estimation problem,
Gaussian approximation and the use of central limit theorem, it can effectively approximate
the parameters µx and Σx solved in E-step of the SBL model shown in (13). In addition, it
avoids the matrix inversion, greatly improving reconstruction efficiency.

In our LHP-GAMP-SBL model, GAMP is used to replace (13) in the E-step, while LHP
is used to update (14) in the M-step. The structure of the LHP-GAMP-SBL model is shown
in Figure 1.

λ 

ω1

ωN

.

.

.

.

x1

xN

.

.

.

.

k1

kM

.

.

.
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.

θ 

M E
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Figure 1. The structure of the LHP-GAMP-SBL model.

In Figure 1, k ∈ RM×1 represents the linear transformation of n-dimensional variable
x ∈ RN×1, i.e.,

k = Dx. (16)

For the given prior distribution p(x|ω) and marginal likelihood function p(y|k),
GAMP constructs iterative expressions by quadratic approximation and Taylor series
expansions. The detailed derivation of GAMP can be found in [11]. Specifically, during the
process of message propagation in Figure 1, the input function Gk(x̄, vk̄) and the output
function Gx(x̄, vx̄) can be defined as:

[Gk(k̄, vk̄)]m =

∫
km p(ym|km)N (km; k̄m

vk̄m
, 1

vk̄m
)dkm∫

p(ym|km)N (km; k̄m
vk̄m

, 1
vk̄m

)dkm
, (17)

[Gx(x̄, vx̄)]n =

∫
xn p(xn|ωn)N (xn; x̄n, vx̄n)dxn∫

p(xn|ωn)N (xn; x̄n, vx̄n)dxn
. (18)

where m ∈ M represents the m-th atom of the input function, n ∈ N represents the n-th
atom of the output function, the intermediate variables x̄ and k̄ represent the approximation
estimation of the sparse signal x and the noise-free model k, respectively, and vx̄ and vx̄
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correspond to variances of x and k, respectively. Based on (3) and (7), the update rules of
the input function and output function can be obtained by simplifying (17) and (18):

Gk(k̄, vk̄) =
k̄/vk̄ − y

1/θ + 1/vk̄
, G′k(k̄, vk̄) =

θ

θ + vk̄
, (19)

Gx(x̄, vx̄) =
ω

ω + vx̄
x̄, G′x(x̄, vx̄) =

ω

ω + vx̄
. (20)

Usually, the damped factors, ηk̄, ηx̄ ∈ (0, 1], are introduced to ensure the convergence
in GAMP. The two damped factors correspond to two square roots in (21), respectively.

F(ηk̄, ηx̄) =
αΩmax

ΣΩ
η2 + βη + const, (21)

where Ωmax represents the maximum singular value of dictionary D, and ΣΩ represents
the sum of singular values of D. Both α and β are constant coefficients. The damped factor
ηk̄ is used to constrain s̄ to enhance convergence and make it easier to obtain the estimate
of x through continuous iterations. The damping factor ηx̄ is used to control the sparse
signal x.

Algorithm 1 shows the detailed process of the LHP-GAMP-SBL algorithm.

Algorithm 1: LHP-GAMP-SBL Algorithm

Input: D ∈ RM×N , y.
1 Initialize:Iterem, Itergamp, εem, εgamp, θ, λ0, ω0 ← 1, µx

0 ← 0, ŝ0 ← 0, Σx
0 ← 1;

2 for t = 1, 2, · · · , Iterem do
3 µx̂

0 ← µx
t−1, Σx̂

0 ← Σx
t−1, s̄0 ← ŝt−1;

4 // E-Step approximation;
5 for i = 1, 2, · · · , Itergamp do
6 vk̄

i ← (|D|2Σx̂
i−1)−1;

7 k̄i ← s̄i−1 + vk̄
iDµx̂

i−1;

8 vs̄
i ← vk̄

iG′k(k̄
i, vk̄

i);

9 s̄i ← (1− ηk̄)s̄
i−1 + ηk̄Gk(k̄

i, vk̄
i);

10 vx̄
i ← [(|D|2)Tvs̄

i]−1;
11 x̄i ← µx̂

i−1 − vx̄
iDT s̄i;

12 Σx̂
i ← vx̄

iG′x(x̄i, vx̄
i);

13 µx̂
i ← (1− ηx̄)µx̂

i−1 + ηx̄Gx(x̄i, vx̄
i);

14 if ∥µx̂
i − µx̂

i−1∥2/∥µx̂
i∥2 < εgamp then

15 break;
16 end
17 end
18 µx

t ← µx̂
i, Σx

t ← Σx̂
i, ŝt ← s̄i;

19 // M-Step approximation;
20 for j = 1, 2, · · · , N do
21 ω(j)

t ← (
√

1 + 4λt−1µx
t
(j) − 1)/(2λt−1);

22 end
23 λt ← 2(N − 1)/(∑N

j=1 ω(j)
t−1);

24 if ∥µx
t − µx

t−1∥2/∥µx
t∥2 < εem then

25 break;
26 end
27 end

Output: x = µx
t
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In Algorithm 1, |D| represents the component wise magnitude squared of D; the vari-
able x̄ represents the approximate estimate of the sparse signal x with variance vx̄; and
k̄ represents the approximate estimate of the noise-free model k = Dx with variance
vk̄. The parameters Iterem and εem represent the maximum number of iterations and the
normalized tolerance parameter of the EM algorithm, respectively. Itergamp and εgamp
represent the maximum number of iterations and the normalized tolerance parameter of
the GAMP algorithm, respectively. These parameters are obtained through continuous
optimization.

Overall, the computational complexities of IF-SBL, SBL-EM, and Laplace-SBL are,
respectively, O(MN2), O(N3), and O(N3). In contrast, GGAMP-SBL, VGAMP-SBL, and
LHP-GAMP-SBL have the same computational complexity, O(MN). In most SBL models,
mean and variance are estimated in the E-step, and hyperparameters are updated in the
M-step. Table 1 lists respective computational complexities of the E-step and M-step for
different SBL models. By using GAMP to estimate mean and variance in the E-step and
using LHP to update hyperparameters in the M-step, our LHP-GAMP-SBL model decreases
the computational complexity significantly.

Table 1. Computational complexity of E-step and M-step for different SBL models.

Methods E-STEP M-STEP

IF-SBL [10] O(MN2) O(MN)
SBL-EM [3] O(N3) O(MN)

Laplace-SBL [16] O(N3) O(N)
GGAMP-SBL [13] O(MN) O(MN)
VGAMP-SBL [14] O(MN) O(MN)
LHP-GAMP-SBL O(MN) O(N)

3. Results and Discussion

The public DIOR [17] and DOTA [18] optical remote sensing image datasets and UC
Merced Land Use(UCM) [19] remote sensing image datasets are used to verify the effec-
tiveness of our method. In order to highlight different types of ground object information
in remote sensing images and reduce the influence of factors such as atmosphere and
illumination, the intensity information of each band was extracted in the experiment, and
the amplitude map of the remote sensing image was generated to facilitate subsequent
image reconstruction.

In our experiments, D is initialized as a Gaussian random matrix, Iterem is set as 5000,
Itergamp∈[5, 20]. λ0, εgamp, and εem are set as 1 × 10−6, 1 × 10−4, and 3 × 10−5, respectively.
The value of hyperparameter θ is empirically set as 0.01∥y∥2

2. Five state-of-the-art meth-
ods, namely, SBL-EM [3], Laplace-SBL [16], IF-SBL [10], GGAMP-SBL [13], and VGAMP-
SBL [14], are utilized for comparison. The parameters in these methods are selected for
optimal results. Normalized root-mean-square error (ERROR) [13], reconstruction time
(TIME), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) are used to mea-
sure the performance of the different methods. Error is defined by Error = ∥S̄− S∥2

F/∥S∥2
F,

where S̄ and S are estimated and real model parameters, respectively.
Forty images are selected randomly from each dataset (a total of 120 images) and used

for experiments. These images are resized to 256× 256 in pixels. They are then sparsely
processed by using wavelet transform before optimization. The number of compressed
samples and wavelet coefficients are 10,672 and 16,320, respectively. The programs are writ-
ten in Matlab2017b and run in Windows 10 on a Lenovo Legion R9000X 2021 laptop with
an NVIDIA GeForce RTX 3060 Laptop GPU, AMD Ryzen 7 5800H CPU, and 16GB RAM.

For the different SBL models, the reconstructed images of the three datasets are shown
in Figure 2. Figure 2a–c represent two examples of 40 experimental images in each of
the three image datasets DIOR, DOTA, and UCM. From left to right, they represent the
original image and the reconstructed images of IF-SBL, SBL-EM, Laplace-SBL, GGAMP-
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SBL, VGAMP-SBL, and the LHP-GAMP-SBL algorithm we proposed. The datas in brackets
represent the reconstruction error (ERROR).

Original Laplace-SBL(14.97) GGAMP-SBL(10.76) VGAMP-SBL(10.20) LHP-GAMP-SBL(9.87)IF-SBL(21.97)

Original Laplace-SBL(12.55) GGAMP-SBL(11.78) VGAMP-SBL(11.25) LHP-GAMP-SBL(10.68)IF-SBL(18.50) SBL-EM(12.36)

SBL-EM(12.58)

(a) DIOR (ERROR×10−2)

Original Laplace-SBL(15.13) GGAMP-SBL(13.86) VGAMP-SBL(13.17) LHP-GAMP-SBL(12.65)IF-SBL(21.77)

Original Laplace-SBL(15.35) GGAMP-SBL(14.02) VGAMP-SBL(13.82) LHP-GAMP-SBL(13.11)IF-SBL(19.15)

SBL-EM(14.12)

SBL-EM(14.51)

(b) DOTA (ERROR×10−2)

Original Laplace-SBL( 13.48) GGAMP-SBL(11.78) VGAMP-SBL(11.10) LHP-GAMP-SBL(10.52)IF-SBL(24.09)

Original Laplace-SBL(11.80) GGAMP-SBL(9.55) VGAMP-SBL(8.74) LHP-GAMP-SBL(8.36)IF-SBL(17.65) SBL-EM(11.44)

SBL-EM(13.79)

(c) UC Merced Land Use (UCM) (ERROR×10−2)

Figure 2. The recovery results of different methods.

We can see that the three reconstruction methods based on GAMP have better results.
The image reconstructed by the IF-SBL method is fuzzy, and it is difficult to extract valid
information from the reconstructed image. To further compare the performance differences
between different methods, we show the reconstructed ERROR and reconstructed TIME in
detail in Table 2. Note that each value in Table 2 denotes the average value of the results
for 120 images. As we see, our LHP-GAMP-SBL model achieves better reconstruction
accuracies than other methods. The average ERROR values for the three datasets are,
respectively, 0.0873, 0.1110, and 0.1036, which are lower than these of the GGAMP-SBL
and VGAMP-SBL methods. In terms of TIME, our method has a larger advantage than the
other GAMP-based models. By using Laplace prior to estimate hyperparameters in the
M-step, our model can reconstruct the images with fewer iterations. This improves the
reconstruction efficiency significantly.
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Table 2. ERROR and TIME of different SBL models for the three datasets.

Methods
Error (×10−2) TIME (s)

A B C A B C

IF-SBL [10] 16.54 17.51 20.55 458.2 449.2 431.2
SBL-EM [3] 10.66 12.28 12.89 978.2 962.4 1083.4

Laplace-SBL [16] 11.03 13.48 13.01 281.9 290.2 335.0
GGAMP-SBL [13] 9.49 11.87 11.53 1322.0 1414.6 1517.5
VGAMP-SBL [14] 9.04 11.56 10.78 578.1 764.5 600.1
LHP-GAMP-SBL 8.73 11.10 10.36 259.0 276.3 273.9

A (DIOR Dataset) B (DOTA Dataset) C (UCM Dataset).

In addition, Table 2 shows that the IF-SBL method obtains the lowest reconstruction
accuracies. The main reason is that IF-SBL fails to obtain the optimal ELBO because of the
use of a smoothing function in complex images.

Figure 3 shows the ERROR, TIME, PSNR, and SSIM results of 20 images (selected
randomly) for different methods. From Figure 3a, the three GAMP-based SBL models have
better reconstruction accuracies than the Laplace-SBL model. The best results are recorded
by our LHP-GAMP-SBL model. Figure 3b plots the running time of different methods.
By using GAMP to estimate mean and variance in the E-step and by employing LHP to
update hyperparameters in the M-step, our method obtains better reconstruction efficiency
than the GGAMP-SBL and VGAMP-SBL models. From Figure 3c,d, it can be seen that
our proposed algorithm results in higher PSNR as well as SSIM. Combined with Figure 4,
we can see that an algorithm with a higher PSNR value can obtain a lower ERROR and a
higher SSIM.

(a) ERROR (b) TIME

(c) PSNR (d) SSIM

Figure 3. ERROR, TIME, PSNR, and SSIM results of 20 images for different methods.
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(a) ERROR vs. iteration (b) TIME vs. iteration

Figure 4. Convergence processes of different methods.

Figure 4 shows the average convergence processes of 20 images per iteration for differ-
ent methods. Figure 4a shows that our LHP-GAMP-SBL method requires about 50 iterations
to complete convergence and with low ERROR. In contrast, VGAMP-SBL and GGAMP-
SBL require approximately 100 iterations to produce the desired results. Surprisingly,
Laplace-SBL requires over 500 iterations to achieve image reconstruction. This is because
the Laplace-SBL model employs a fast decision rule to determine whether hyperparameters
in the M-step are updated or not. Accordingly, some small sparse solutions are discarded
by a specific condition. This method achieves high reconstruction efficiency at the cost of
restoration quality. This method still costs less time to terminate iterations, compared with
the GGAMP-SBL and VGAMP-SBL methods. Figure 4b confirms this. From Table 1, we
know that the three GAMP-based SBL models have the same computational complexities.
Because VGAMP-SBL and LHP-GAMP-SBL have better sparsities in SBL models than
GGAMP-SBL, thus, the former two methods require less computation resources. This
means that the VGAMP-SBL and LHP-GAMP-SBL methods cost less running time per
iteration, as shown in Figure 4b.

According to the experimental results, it can be seen that our LHP-GAMP-SBL model
greatly reduces the computational complexity through the use of the GAMP structure,
and gives the model better convergence through appropriate damping factors. Due to the
introduction of the LHP structure, it has better sparsity compared to the existing methods
and accelerates the convergence of GAMP. Therefore, the combination of the two structures
results in a better reconstruction performance of the LHP-GAMP-SBL model.

It should be noted that our experiments are performed for optical images with wavelet
transform before training, and the experimental results proved the effectiveness of the
LHP-GAMP-SBL model. We also used SAR images for reconstruction, and the results show
that the LHP-GAMP-SBL model is still effective for some sparse scenes.

4. Conclusions

This paper proposes an efficient SBL image reconstruction model based on Laplace
hierarchical prior (LHP) and GAMP, called the LHP-GAMP-SBL model. We integrate the
two structures of GAMP and LHP into the basic SBL model to improve the reconstruction
efficiency. In our LHP-GAMP-SBL model, the GAMP structure is used to estimate mean
and variance without matrix inversion in the E-step, while the LHP structure is used to
update the hyperparameters in the M-step. In the LHP-GAMP-SBL model, the GAMP
structure is used to estimate the posterior mean and variance in the E-step without matrix
inversion, which greatly reduces the computational complexity, and introduces a damping
factor to enhance convergence. The LHP structure is used to update the hyperparameters in
the M-step, and the high sparsity of the Laplace prior is used to improve the reconstruction
accuracy. In addition, the introduction of LHP accelerates the convergence of GAMP,
thereby shortening the reconstruction time of the model. The combination of these two
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structures further deepens the hierarchical structure of the model, so that the overall
reconstruction performance of the model is enhanced. All experimental results verify the
effectiveness of our LHP-GAMP-SBL model.

Future work will focus on further improving the reconstruction accuracy by using
convex optimization strategies instead of the EM algorithm to update the hyperparameters
in the M-step or by combining the LHP-GAMP-SBL model with a neural network.
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