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Abstract: Intelligent traffic control decision-making has long been a crucial issue for improving the
efficiency and safety of the intelligent transportation system. The deficiencies of the Type-1 fuzzy
traffic control system in dealing with uncertainty have led to a reduced ability to address traffic
congestion. Therefore, this paper proposes a Type-2 fuzzy controller for a single intersection. Based
on real-time traffic flow information, the green timing of each phase is dynamically determined to
achieve the minimum average vehicle delay. Additionally, in traffic light control, various factors
(such as vehicle delay and queue length) need to be balanced to define the appropriate reward.
Improper reward design may fail to guide the Deep Q-Network algorithm to learn the optimal
strategy. To address these issues, this paper proposes a deep reinforcement learning traffic control
strategy combined with Type-2 fuzzy control. The output action of the Type-2 fuzzy control system
replaces the action of selecting the maximum output Q-value of the target network in the DQN
algorithm, reducing the error caused by the use of the max operation of the target network. This
approach improves the online learning rate of the agent and increases the reward value of the signal
control action. The simulation results using the Simulation of Urban MObility platform show that
the traffic signal optimization control proposed in this paper has achieved significant improvement
in traffic flow optimization and congestion alleviation, which can effectively improve the traffic
efficiency in front of the signal light and improve the overall operation level of traffic flow.

Keywords: intelligent transportation; deep Q-network; Type-2 fuzzy control; traffic signal optimization
control

1. Introduction

With the continuous growth of the global economy and population, cars have become
indispensable modes of transportation in people’s daily lives. Although many people can
afford to buy cars, this also presents significant challenges to urban transportation systems.
Studies have found that traffic crashes caused by congestion are on the rise annually, and
traffic jams also lead to increased fuel consumption and vehicle exhaust emissions, resulting
in serious environmental pollution [1,2]. This not only restricts urban development but
also causes substantial economic losses for countries due to traffic congestion every year.
Therefore, urban traffic congestion has become a severe problem faced by countries world-
wide [3]. To alleviate urban traffic pressure, various countries have introduced intelligent
transportation systems (ITSs) for traffic management in major cities. These systems utilize
advanced technologies to regulate roads, vehicles, and pedestrians, effectively optimizing
the utilization of traffic resources to mitigate congestion, reduce traffic crashes, and lower
environmental pollution [4,5].

Intelligent transportation systems have long been a research focus in society, and
academic researchers both domestically and internationally have been studying ITS op-
timization in recent decades [6–8]. With the advancement of artificial intelligence theory,
reinforcement learning has emerged as a crucial approach for optimizing urban traffic
signal control and driving theoretical research in this field.
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For single-intersection scenarios, some studies have adopted a dynamic programming
approach and a distributed signal control system that integrates automated vehicle path
planning information to optimize signal timing [9]. Without oversimplification, because
the traffic system is highly complex, it is difficult to model the mechanism with desirable
mathematical characteristics. Therefore, non-deterministic optimization methods such as
intelligent optimization algorithms and neural networks can often yield better results. For
example, a genetic algorithm combined with a decomposing fuzzy system has been used
to develop a genetic algorithm-based fuzzy variable division signal timing optimization
method for a single-intersection scenario, which has achieved promising results [10]. Some
studies have simulated the optimal timing schemes for different traffic flow scenarios to
generate an initial sample dataset, in which the average queue length of all methods is
used to evaluate the optimal scheme. Finally, the Webster model was used to verify the
rationality of the initial sample set, and a machine learning sample database for signal
timing optimization was constructed [11].

In addition, deep reinforcement learning (DRL) combined with deep neural networks
has also been widely used in adaptive traffic signal control research and has achieved
varying degrees of optimization effects. Table 1 summarizes several studies on traffic light
control systems based on (deep) reinforcement learning. Among them, the “RL” column
indicates the specific reinforcement learning algorithm used by the researchers, while the
“Function Approximation” column describes the function estimation method that was
investigated to express the mapping relationship between the real-time road condition state
and the signal light control decision.

Table 1. Research on adaptive traffic signal control.

Research Network RL Function Approximation

Research [12] Grid Q-learning Bayesian
Research [13] Barcelona, Spain DDPG DNN
Research [14] Tehran, Iran Actor-Critic RBF, Tile Coding
Research [15] Changsha, China Q-learning Linear
Research [16] Luxembourg City DDPG DNN

Deep Neural Network (DNN). Radial Basis Function (RBF).

Noaeen et al. [17] have summarized the application of reinforcement learning in var-
ious fields of traffic signal optimization control in recent years, explored all application
methods, and provided development suggestions. According to existing studies [18–20],
reinforcement learning has been found to continuously acquire the environmental state
through interaction with the urban road environment, enabling the learning of optimal
traffic control strategies and the formation of an adaptive control system for intelligent
traffic [21]. Although the DDPG algorithm can achieve good performance in certain sce-
narios, it still has some limitations in terms of hyperparameter tuning or other parameter
adjustment actions. Additionally, due to errors in the estimation of the Q-function, the
value function of the Critic is often overestimated, and the accumulation of such errors can
eventually lead to the failure of the strategy in obtaining the optimal solution. Therefore, in
2018, Fujimoto et al. [22] proposed the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm, which is based on the DDPG algorithm. In 2021, Yang et al. [23] designed
a unique reward function that continuously selects the most appropriate strategy as the
control mechanism, thereby tracking the actions of traffic signals. This system effectively
reduced vehicle delay time.

Fuzzy control is an intelligent approach distinct from traditional control methods.
It does not require establishing a specific mathematical model but instead relies on sum-
marizing the experience and control strategies related to the research object or extracting
control rules from a large dataset, to achieve intelligent control of the research object. The
fuzzy controller is a key means of implementing fuzzy control, and the fuzzy control of a
specific intersection can be realized by constructing the fuzzy controller [24]. As technology
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has advanced, researchers have found that traditional Type-1 fuzzy sets have limitations
in addressing system uncertainty [25]. The use of Type-2 fuzzy control can offer some
novel partitions of the input domain and demonstrate excellent performance in various
applications, such as signal control, particularly in modeling and control [26]. For example,
Bi et al. [27] proposed a Type-2 fuzzy coordinated control method to address coordina-
tion and dynamic uncertainty issues in trunk traffic. The gravity search algorithm was
employed to iteratively optimize the membership function parameters and rules of two
controllers, with the aim of better configuring the high-dimensional complex parameters of
the coordinated two-layer Type-2 fuzzy logic controller.

The traffic system is a nonlinear, time-varying, and hysteretic large-scale system, mak-
ing it difficult to obtain satisfactory results using traditional control methods. Furthermore,
the increasing complexity of the urban road environment leads to a rapid expansion of the
state-action space during the acquisition of reinforcement learning knowledge. To address
these challenges, some researchers [28–31] have attempted to combine fuzzy control with
reinforcement learning to make adjustments. Zhao et al. [32] designed a traffic signal
controller based on reinforcement learning and a fuzzy neural network (FNN). They made
full use of reinforcement learning to enable the online learning of traffic signal control
algorithms and incorporated a standard two-input and one-output fuzzy neural network
structure. To improve the stability and robustness of the control system, Tunc I et al. [33]
used a deep Q-Learning algorithm to control the phase sequence, and a Fuzzy Logic Con-
troller to regulate the duration of the green light. This organic combination of the deep
Q-learning algorithm and fuzzy logic control (FLC) enabled the optimization of signal
timing. However, the nonlinear and stochastic nature of traffic systems makes modeling
a challenging task. In order to overcome the unreasonable shortcomings of manually de-
termining the variable membership functions and fuzzy control rules of fuzzy controllers,
Lin et al. [34] proposed that a multi-objective differential evolution algorithm (DEA) could
be used to optimize the membership functions and fuzzy control rules. DEA employs the
principle of natural evolution to achieve global fast search in the solution space, making
it widely used to solve large-scale combinatorial optimization problems. The simulation
results show that the intelligent control technology based on the combination of multi-
objective DEA and fuzzy control can effectively reduce the average delay time of passing
vehicles at intersections and adapt to the complex and dynamic traffic environment.

To summarize, the application of fuzzy control and reinforcement learning technol-
ogy shows great potential in a wide range of traffic control applications. Considering
the shortcomings of network error, lack of interpretability, and limited self-learning and
generalization ability in Type-2 fuzzy control combined with reinforcement learning, this
paper presents relevant improvements to leverage the advantages of both approaches and
create a more robust control system.

The key contributions of this study are as follows:

1. We developed a model for the traffic signal control process, and established a Type-2
fuzzy control system based on the inherent fuzziness of real-time traffic state informa-
tion, such as queue length and vehicle waiting time.

2. Fuzzy inference is performed on the input traffic state data. The output action of the
fuzzy control system is replaced by selecting the maximum Q value from the output
of the target network in the DQN algorithm, which reduces the error caused by the
maximum operation of the target network. This improves the online learning rate of
the agent and increases the reward value of the traffic light control action.

3. The SUMO-1.18.0 simulation software was used to model and simulate the experiment,
and the effectiveness of the Type-2-FDQN algorithm was verified by comparing it
with four other methods.

The rest of this paper is summarized as follows. Section 2 introduces the relevant
modeling process. In Section 3, the algorithm principle and implementation flow of Type2-
FDQN are presented. Section 4 describes the parameters of the simulation experiment and
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analyzes the experimental results. Finally, Section 5 summarizes the key findings of this
paper and proposes future research directions.

2. Related Work
2.1. Single Intersection Signal Light Control Model

Single intersection signal control is the foundation of road coordination control. Ex-
ploring the optimal method of signal timing optimization for a single intersection is key to
determining the best timing period for traffic lights. This paper utilizes SUMO to model
the road network at intersections. The intelligent transportation system decision center em-
ploys a deep double Q network combined with fuzzy logic to train the Agent, and the fuzzy
logic is integrated to determine the operation mode. The environment is an intersection
road, the state space S represents the position and speed of all vehicles, and the action state
space A includes four phases and timing quantities of traffic lights at two intersections.
Within a fixed period T, for each intersection signal light, the Agent can adaptively select
an optimal action from the action space as a decision based on the environmental state,
thereby improving the overall driving speed of all vehicles and reducing their travel time.
The traffic light control model at intersections established by SUMO software [35] is shown
in Figure 1.

Figure 1. Single intersection signal light control model.

2.2. Definition of State Space

In this paper, the traffic state of a single intersection is defined by two parameters: the
current vehicle position and speed. Using the lanes leading to the west entrance of the
intersection, shown in Figure 1, the intersection is evenly divided into square grids of equal
size. The side length of each grid is set to accommodate only one vehicle, ensuring that no
two vehicles occupy the same grid simultaneously. Within each grid, the vehicle status is
represented by a binary group: the position coordinate is a binary value, where 1 indicates
the presence of a vehicle and 0 indicates no vehicle. The speed coordinate is a floating-point
value representing the current vehicle speed in meters per second. By obtaining the vehicle
information in all grids on each lane, the position matrix and speed matrix corresponding
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to each entrance direction of the intersection can be established. The process of converting
the traffic state into the input matrix is shown in Figure 2.

Figure 2. There are three multiple panels in the process of converting the traffic state into the
input matrix.

2.3. Definition of Action Space

There are four phases in this paper, which are as follows: east–west straight and right
turn (EW), east–west left turn (EWL), north–south straight and right turn (NS), and north-
south left turn (NSL). The agent is responsible for selecting the appropriate actions based on
the current traffic situation to ensure the smooth flow of vehicles at the intersection. In this
system, the agent scans the traffic state and chooses one of two actions: 0—do not change
the traffic signal phase, or 1—turn on the green light for the next traffic signal phase in the
sequence. At the end of each control step, the agent performs the action to either maintain
the current phase or execute the next phase in the sequence. Through the execution of this
series of actions, the agent indirectly realizes the dynamic update of the intersection traffic
signal timing scheme. The four phases selected in this paper are shown in Figure 3.

Figure 3. Four-phase signal diagram.

2.4. Definition of Reward Value Space

After the agent takes an action, the environment makes corresponding changes and
generates certain reactions, which are digitized into feedback rewards for the agent. The
agent receives the reward value from the environment, indicating whether the action had
a positive or negative impact on the current environmental state. This allows the agent
to learn and take actions that can maximize the reward. The primary goal of the agent is
to improve the efficiency of intersections and reduce vehicle delay times. The length of
the queue or the waiting time of vehicles can effectively convey this result, so this paper
defines the reward as the change in the cumulative waiting time between two adjacent
cycles. Let it represent the observed vehicles in a cycle, the waiting time of vehicle it in
a cycle is wit , and Nt represents the total number of vehicles in a cycle, where 1 < it < Nt,
then the reward value in the t cycle is as follows:

Rw = Wt − Wt+1 (1)
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Wt =
Nt

∑
it=1

wit ,t (2)

In summary, the reward is equal to the increment of the accumulated waiting time of
the vehicle before and after the action is taken. If the reward is larger, it means that the wait
time has increased by less than before.

3. Traffic Control Decision Based on Type2-FDQN Algorithm
3.1. Design Principle of Type 2 Fuzzy Controller

The function of the fuzzer is to map the exact input value to a fuzzy number, while
a Type-2 fuzzer maps the system’s input and output variables to a Type-2 fuzzy set. In
other words, building on Type-1 fuzzification, the membership degree is further blurred to
create a three-dimensional membership function. It is important to note that if any input or
output variable is a Type-2 fuzzy set, the entire fuzzy system is considered a Type-2 system.
To simplify calculations, single-point fuzzification is usually performed.

In the Type-2 case, the structure of the rules is the same as in the Type-1 case, still
consisting of a series of “IF-THEN” statements. However, some or all of the Type-2 rules
are of Type-2. Consider a Type-2 fuzzy system with P inputsx1 ∈ X1, · · · , xp ∈ Xp and an
input y ∈ Y, assuming it has M rules, in the case of Type-2 for both Mamdani and TSK rule
forms, the first rule can be expressed as follows:

Rl : I f x1 is F̃l
1, · · · , xp is F̃l

p, Then yl is G̃l , 1 = 1, · · · , M (Mamdani)
Rl : I f x1 is F̃l

1, · · · , xp is F̃l
p, Thenyl = f l(x1, · · · , xp), 1 = 1, · · · , M (TSK)

When determining the membership function, the influence of the membership func-
tion curve shape on the control performance of the system should be considered. The
Gaussian membership function curve has a relatively smooth and stable shape and control
characteristics, making it a reasonable form to describe fuzzy subsets. Therefore, this paper
selects the interval type-2 Gaussian membership function for the uncertainty deviation, as
shown in Equation (3).

µÃ(x) = exp
(
− (x − m)2

2σ2

)
, σ ∈ [σ1, σ2] (3)

where m is the center of the membership function, respectively, σ1 and σ2 are the two
deviations of the membership function.

In a Type-1 fuzzy system, the inference engine is used to combine rules and map input
fuzzy sets to output fuzzy sets. The multiple antecedents of a rule are connected by a T-
norm operation, the membership of the input set and the membership of the output set are
combined, and the combination of multiple rules can be obtained by a T-conorm operation
or weighted summation during the defuzzification process. The reasoning process of
Type-2 fuzzy systems is highly similar. The inference engine is used to combine rules
and generate a mapping from an input Type-2 fuzzy set to an output Type-2 fuzzy set. In
this paper, Mamdani fuzzy inference is applied to the established fuzzy inference rule to
obtain a fuzzy quantity, and the inference result of the first triggering rule is presented in
Equation (4).

µB̃l (y) = µG̃l (y) ⊓
{
⊔x∈X

{[
µX̃1

(x1) ⊓ µF̃l
1
(x1)

]
⊓ · · · ⊓

[
µX̃p

(xp) ⊓ µF̃l
p
(xp)

]}}
(4)

where µB̃l (y) is the fuzzy inference value of the first triggering rule, and µF̃l
i
(xi) is the

Type-2 fuzzy membership value of the ith input.
If the above input is blurred by a single point, the above formula can be simplified

as follows:
µB̃l (y) = µG̃l (y) ⊓

{
⊔x∈X

{
µF̃l

1
(x1) ⊓ · · · ⊓ µF̃l

p
(xp)

}}
(5)
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Assuming that N of the M rules are triggered, the final inference result is as follows:

µB̃(y) = ⊔N
l=1µB̃l (y) (6)

The main structure of the Type-2 fuzzy controller is very similar to that of the Type-1
fuzzy control, but the output part differs. The Type-1 fuzzy system has only one defuzzifi-
cation module, while the Type-2 fuzzy inference machine produces a Type-2 fuzzy output.
This Type-2 fuzzy output must first be transformed into a Type-1 fuzzy output through a
process called type reduction, before the final defuzzification step. Therefore, the output
part of the Type-2 fuzzy system requires an additional type reduction module before the
defuzzification module. Type reduction is a unique feature of Type-2 fuzzy systems, and
is also considered a challenging aspect of this approach. The output of a Type-2 fuzzy
inference system is a Type-2 fuzzy set, which needs to be transformed into a Type-1 fuzzy
set before further processing. Fuzzy reduction is an extension of the defuzzification process
used in Type-1 fuzzy systems, but its computation and complexity are significantly greater.
This paper primarily employs a defuzzification method based on set center reduction to ob-
tain the final crisp output. The set center reduction approach is used to transform the Type-2
fuzzy set into a Type-1 fuzzy set, which can then be defuzzified using standard techniques.

In the Type I set center defuzzification method, each rule consequent fuzzy set is
replaced with a single crisp value located at its center of gravity. Then, the center of gravity
of the Type I fuzzy set composed of these single crisp values is calculated to determine the
final output. The mathematical expression for this process is as follows:

ycos(x) =
∑M

i=1 clTp
i=1µFl

i
(xi)

∑M
i=1 Tp

i=1µFl
i
(xi)

(7)

where T represents the chosen T-norm, and cl is the center of gravity of the first after-set.
Defuzzification is the process of mapping a fuzzy number to a precise or crisp number.

In a Type-1 fuzzy system, the output of the inference engine is a type-1 fuzzy set, and
the precise output of the system can be directly obtained by solving the fuzzy module.
However, in a Type-2 fuzzy system, the output of the inference engine is a Type-2 fuzzy set,
which must first undergo a type-reduction operation before the defuzzification process can
be carried out to determine the final crisp output.

In this paper, a two-type fuzzy signal controller is established at a single intersection.
The input variables of the fuzzy control system are the vehicle queue lengths L1 and L2
at the current phase and the next phase, respectively, at time T. The output variable is the
green light extension time T. The discourse domain of the number of queued vehicles is
set as [0, 50], the discourse domain of the vehicle speeds is set as [0, 35], and the fuzzy
discourse domain of the output variable T is set as [0, 30]. The fuzzy sets are divided into
three subsets based on the input values: short (S), medium (M), and long (L). Based on
daily experience and the expertise of the traffic police, the fuzzy rules are shown in Table 2.

Table 2. Fuzzy inference rules.

T L1
S M L

L2

S S M L
M S M L
L S S M

T–Green extension. L1–Current phase vehicle queue length. L2–Next phase vehicle queue length.

The implementation of traffic control on a four-phase single intersection using the
designed two-type fuzzy controller can be summarized in the following steps:

Step 1: Determine the values of the input variables L1 and L2 based on the traf-
fic model.
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Step 2: Map the input variable L1(L2) to the fuzzy domain as X = k1 ∗ L1(L2), k1 = 3/10.
Step 3: Establish the input and output membership functions in the Type-2 fuzzy

controller according to Equation (3).
Step 4: According to Equations (4) and (7) in the fuzzy rule table, type-2 fuzzy reason-

ing and type reduction are carried out, respectively, and the final precise output value Y is
obtained through defuzzification.

Step 5: The fuzzy-domain output variable is converted to the actual output value
using the equation T = k2 ∗ Y + c, where the coefficient c = 15, and k2 = 25/6 during the
straight phase or k2 = 5/2 during the left turn phase.

Step 6: Apply the calculated value of T to the traffic model in order to obtain the
corresponding average vehicle delay and queue length. Then, return to step 1 and repeat
the process until the set simulation time is reached.

3.2. Principle of Type2-FDQN Algorithm

The DQN (Deep Q-Network) algorithm combines neural network and reinforcement
learning techniques. However, the use of the max operation to select and evaluate the state-
action value function can lead to overestimation issues caused by the neural network. The
max operation always tends to select the action corresponding to the amplified state-action
value function, resulting in a biased optimal strategy learned by the model. Consequently,
the agent’s action decisions may not be optimal, leading to a reduction in the reward value.

In order to reduce the output Q value error of the target network selected by the
max operation in the DQN algorithm, the DDQN algorithm is commonly used at present.
However, the essence of the DDQN algorithm is to decouple action selection and strategy
evaluation by using a predictive network, which can lead to low estimation accuracy. To
address this, a Type-2 fuzzy control system is introduced to select the action based on the
output Q value of the target network. This gives rise to a Type-2-FDQN-based reinforcement
learning algorithm, which aims to obtain more accurate agent actions and reduce the error
of the output Q value of the target network. Figure 4 illustrates the traffic decision-making
principle diagram based on the Type-2-FDQN algorithm. Figure 5 illustrates the flow chart
of the traffic decision-making process based on the Type-2-FDQN algorithm.

When calculating the loss function, the DQN algorithm adopts max operation when
selecting the output Q value of the target network. At this time, the output Q value of the tar-
get network is the maximum value, and Qtarget(st+1, at+1, θ′) = maxa+1Qtarget(st+1, at+1, θ′)
can be obtained; while the output Q value of the target network selected by the FDQN algo-
rithm is the output action a f (a f ∈ {aon, ao f f }) of the fuzzy control system. If the output ac-
tion a f of the fuzzy control system is not equal to the action at+1 that takes the max operation
to obtain the output Q value of the target network, and the corresponding output Q value of
the target network is not equal, then Qtarget(st+1, a f , θ′) ≤ maxa+1 Qtarget(st+1, at+1, θ′). It
can be seen that selecting the output Q value of the target network in the FDQN algorithm
can reduce the error caused by using the max operation in the DQN algorithm, and alleviate
the overestimation phenomenon.

During the training process, the agent interacts with the environment to obtain a
quadruple of sampled data (st, at, Rt, st+1 ), and starts to update the network parameters.
The FDQN algorithm uses two independent state-action value functions. Instead of using
max operation, the output action of the fuzzy control system is used to determine the target
network action:

arg max
at+1

Qtarget(st+1, at+1, θ′) = a f (8)

The output action a f of the Type-2 fuzzy control system is used to calculate the
estimated Q value of the policy update return:

QT = Rt + γmaxat+1 Qtarget(st+1, at+1, θ′) = Rt + γQtarget(st+1, a f , θ′) (9)

where γ is the discount factor.
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Finally, according to the estimated Q value of the updated return according to the
strategy, the value function iteration process of the FDQN algorithm is as follows:

Qestimation(st, at, θ) + α[QT − Qestimation(st, at, θ)] → Qestimation(st, at, θ) (10)

where a is the learning rate.
Then the loss function of the FDQN algorithm is as follows:

L(θ) = E
[(

Rt + γQtarget(st+1, a f , θ′)− Qestimation(st, at, θ)
)2

]
(11)

where E is expectation.

Figure 4. Traffic decision principle diagram based on Type2-FDQN algorithm.
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Figure 5. The workflow of the traffic decision-making process based on the Type-2-FDQN algorithm.

4. Simulation Experiments and Analysis of Results
4.1. Experiment Settings

This study utilizes the SUMO software [35] to build the simulation platform, and
the Traci interface of traffic control software is used to obtain real-time traffic flow data
and modify traffic control state through Python 3.10. As shown in Figure 6, the single-
intersection simulation area features lane lengths of 300 m and a maximum allowable speed
of 70 km/h. All simulated vehicles enter the traffic junction from the starting position of
the road, with each vehicle being 3 m in length and maintaining a minimum distance of
2 m between vehicles.

Figure 6. SUMO simulation single-intersection simulation environment.
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In order to verify the effectiveness of the proposed Type2-FDQN algorithm in traf-
fic signal control, this paper conducted several comparative experiments with different
algorithms. During training, all algorithms used the same network structure and hyperpa-
rameter settings. The simulation environment parameters used in the Python platform [36]
are shown in Table 3. Figure 7 illustrates the software simulation process.

Table 3. Parameter Settings in the simulation process.

Hyperparameter Value

Experience pool size M 20,000
Number of training rounds episodes N 35

Number of training steps per round steps T 3000
Discount Factor γ 0.99
Learning Rate a 0.001

Sample set size B 512
Training frequency 50

Figure 7. Software simulation process.

The average cumulative reward value of the two algorithms established by Python
platform [36] is shown in Figure 8. The horizontal axis represents the training time, while
the vertical axis shows the average cumulative reward value. Initially, due to the lack
of experience samples, the agent employs exploration strategies, resulting in a relatively
low reward value. However, as training progresses, the agent continuously interacts with
the environment, accumulating a large number of experience samples. Consequently, the
algorithm’s reward value steadily increases, eventually converging in the 2000s.

Figure 8. Trend chart of average cumulative reward value.

4.2. Comparison Experiment with the Same Traffic Flow

In order to evaluate the performance of the traffic control strategy (Type-2-FDQN)
proposed in this paper, the control performance evaluation indexes used are the average
queue length, average waiting time, average driving speed, and average delay time. In the
simulation experiment stage, the four traffic control methods were simulated several times.
The fixed signal cycle length was set to 120 s, with each phase including 27 s of green time
and 3 s of yellow light time. By averaging the experimental results of the four methods,
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the comparison results are shown in Table 4. The data indicates that the Type-2-FDQN
algorithm has the best performance. Compared to the DQN algorithm, the Type-2-FDQN
algorithm reduces the average queue length by 19.4%, the average waiting time by 18.9%,
and increases the average driving speed by 20.8%. The average delay time is also reduced
by 10.1%. These results demonstrate that the Type-2-FDQN algorithm proposed in this
paper can effectively alleviate traffic congestion and realize efficient traffic signal control.
All figures of experimental results shown below were generated using Python software [36].

Table 4. Performance comparison of different control algorithms under the same traffic.

Evaluation Index Fixed-Time DQN Type-1-FDQN Type-2-FDQN

Average queue length (car) 23.7913 19.7945 18.5506 15.9352
Average waiting time (s) 66.2488 59.8790 52.4288 48.5093

Average speed (m/s) 4.4865 5.7062 6.3319 6.8944
Average delay time(s) 87.6432 76.3715 72.4598 68.6564

During the 2000th simulation step, the system entered a congested state, resulting in an
increase in the average queue length and a decrease in the average vehicle speed. Figure 9
compares the average queue length under four different traffic control strategies. It is evi-
dent that the timed traffic signal control method is ineffective in managing congested traffic
flows. In contrast, the Deep Q-Network (DQN) control strategy can effectively regulate
traffic and be appropriately adjusted when traffic is congested, preventing the queue length
from continuing to rise. The algorithm based on Type-2 Fuzzy and reinforcement learning
demonstrates better control performance during vehicle congestion. The Type-1-FDQN
algorithm shows a flattening trend earlier than the DQN algorithm, with a slight downward
fluctuation. After the Type-2-FDQN algorithm achieves a stable state, it further adjusts
to reduce the queue length, thus better alleviating traffic congestion. Figure 10 shows the
comparison of average vehicle speeds under the four control strategies. In the beginning
period, all indicators under the control of fixed signal timing and various algorithms are
poor, and the speed decreases at this time. This is because the agent mainly accumulates an
experience pool and learns in the beginning stage. At this time, the number of samples in
the experience pool is small and the network parameters are updated less, so the action
prediction is not accurate. As the agent accumulates more experience pool samples and
learns and updates network parameters many times, the vehicle speed parameter indicators
are improved to a certain extent, and it can quickly recover to a stable average vehicle speed.
Among them, the control strategy based on Type-2 fuzzy and reinforcement learning can
recover the stable speed faster and reduce the queue length in the congested environment.

Figure 9. Average queue length of the vehicle.
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Figure 10. Average speed of vehicle.

Figures 11 and 12 present a comparison of the average waiting time and total waiting
time of vehicles under the four control strategies, respectively. The fixed timing strategy
is a simple and static control method that fails to adapt flexibly to changes in traffic flow,
resulting in long waiting times. In contrast, the DQN algorithm can learn and adjust
according to real-time environmental information, enabling it to optimize traffic control
to a certain extent and reduce the average waiting time of vehicles. The Type-1-FDQN
algorithm considers the fuzziness and uncertainty of the environment to a certain degree,
leading to a slightly reduced average waiting time compared to the DQN algorithm. Finally,
the Type-2-FDQN algorithm exhibits higher complexity and adaptability and demonstrates
better average and total waiting times to some extent.

Figure 11. Average waiting time of the vehicle.
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Figure 12. Total waiting time of vehicle.

4.3. Comparison Experiment with Different Traffic Flow

To evaluate the performance of the traffic control strategy (Type-2-FDQN) proposed in
this paper, the four control strategies are compared under different traffic flows.

Figures 13 and 14 respectively present the average speed and average queue length of
vehicles when the traffic flow ranges from 500 to 3000 vehicles. When the traffic flow is
relatively low and not too congested, the average speed and average queue length across
the four control methods do not differ significantly. However, as the traffic flow gradually
increases and the traffic becomes more congested, the performance of the traditional fixed-
timing strategy begins to decline compared to the other three algorithms. Notably, the
DQN algorithm exhibits similar effects to the Type-1-FDQN and Type-2-FDQN algorithms.
When the traffic flow exceeds 2000 vehicles (indicating severe congestion), the traditional
fixed-timing strategy is evidently unable to flexibly adapt to the changing traffic conditions.
In contrast, the control strategy of the Type-2-FDQN algorithm cannot only maintain a
high average vehicle speed but also effectively reduce the average queue length as much
as possible. Overall, the findings suggest that the Type-2-FDQN algorithm outperforms
the other control methods in terms of both preserving high average vehicle speeds and
minimizing queue lengths, especially under congested traffic conditions.

Figure 13. Average vehicle speed under different traffic volumes.
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Figure 14. Average vehicle queue length under different traffic volumes.

5. Conclusions and Future Work
5.1. Conclusions

When addressing current traffic challenges, new intersection control strategies are
needed to manage a large number of intersections, minimize delays, and improve traffic
capacity and safety, as intersections are of vital practical significance. Focusing on a single
intersection as the research object, this paper proposes a novel traffic control strategy that
combines deep reinforcement learning with Type-2 fuzzy control. The proposed algorithm
not only leverages many advantages of reinforcement learning but also utilizes the output
action of the fuzzy control system to replace the action of selecting the maximum Q-value
from the output of the target network in the DQN algorithm. This reduces the error caused
by the max operation in the target network, improves the online learning rate of the agent,
and increases the reward value of the control action for the traffic signal. As a result, the
autonomous learning and adaptive capabilities of the intelligent traffic control algorithm
are further enhanced. This paper simulates the road network environment using the Traci
interface and SUMO to evaluate different traffic demand scenarios. The experimental
results show that compared to fixed timing decision-making, the Type-2-FDQN algorithm
can converge faster and maintain more stable performance, further improving the key
evaluation metrics for the traffic system. This study not only brings new ideas to the field
of intelligent traffic control but also provides strong support for improving the efficiency
and adaptability of traffic signal control. This research is expected to promote intelligent
transportation systems that better meet the challenges of the urban road environment and
achieve more intelligent, flexible, and efficient traffic management.

5.2. Future Work

Through the combination of Type-2 fuzzy control and reinforcement learning, this
paper has achieved some research results. However, there are still some limitations to this
study. In view of these limitations, the following directions for future work are proposed:

1. The model studied in this paper is optimized for single-crossing intersections, which
may not guarantee the operation efficiency of arterial roads or regions in general. Due
to the coupling of various factors between intersections and road sections, it is more
challenging to optimize the timing for arterial roads and regions. The next step could
be to study the optimization of multiple performance indicators for arterial roads
and regions.

2. This paper employs the SUMO traffic simulation software and Python programming
language to realize the secondary development of a deep reinforcement learning
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framework. Live simulation is conducted with the SUMO-simulated road network
environment through the Traci interface to verify the rationality of the control method.
However, real-world traffic scenarios involve complex factors such as pedestrians, non-
motor vehicles, and weather conditions, which are issues that need to be considered
when simulating a realistic traffic network.

3. With the advancement of artificial intelligence, improved optimization algorithms
have continued to emerge in the research field, such as the Ivy algorithm (LVYA). We
plan to utilize the Ivy algorithm for optimization in the next step, set up multiple
experimental groups for comparison, and constantly refine the control system to
address urban traffic problems and enhance traffic efficiency.
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