A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient
Abstract
:1. Introduction
2. Dibl Effect Compensation
3. Proposed Voltage Reference Generator
3.1. Effects of Parasitic Diodes Leakage Current in 2T n-Type and p-Type Voltage Reference Generators
3.2. Proposed Circuit
4. TC Optimization
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Palumbo, G. Voltage references: From diodes to precision high-order bandgap circuits [Book Review]. IEEE Circuits Devices Mag. 2002, 18, 45. [Google Scholar] [CrossRef]
- Akbari, M.; Hussein, S.M.; Hashim, Y.; Tang, K.-T. An enhanced input differential pair for low-voltage bulk-driven amplifiers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1601–1611. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Torkzadeh, P.; Dousti, M. A 6-bit 1.5-GS/s SAR ADC with smart speculative two-tap embedded DFE in 130-nm CMOS for wireline receiver applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 871–882. [Google Scholar] [CrossRef]
- Chowdary, G.; Aashish, T.; Chatterjee, S. A 99% Current Efficient Three-Transistor Regulator With Built-In 80 ppm/° C Reference, for 0–10 mA Loads. IEEE Solid-State Circuits Lett. 2018, 1, 26–29. [Google Scholar] [CrossRef]
- De Oliveira, A.C.; Cordova, D.; Klimach, H.; Bampi, S. A 0.12–0.4 V, versatile 3-transistor CMOS voltage reference for ultra-low power systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3790–3799. [Google Scholar] [CrossRef]
- Olivera, F.; da Silva, L.S.; Petraglia, A. A 120 mV Supply, Triode-Regulated Femto-Watt CMOS Voltage Reference Design. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 587–591. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, X.; Wang, H. Voltage reference with linear-temperature-dependent power consumption. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1043–1049. [Google Scholar] [CrossRef]
- Seok, M.; Kim, G.; Blaauw, D.; Sylvester, D. A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J. Solid-State Circuits 2012, 47, 2534–2545. [Google Scholar] [CrossRef]
- de Oliveira, A.C.; Cordova, D.; Klimach, H.; Bampi, S. Picowatt, 0.45–0.6 V self-biased subthreshold CMOS voltage reference. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 3036–3046. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Crovetti, P. pMOS-only pW-power voltage reference with sub-10 ppm/°C trimmed temperature coefficient and sub-100 ppm/V line sensitivity. Int. J. Circuit Theory Appl. 2023, 51, 2638–2653. [Google Scholar] [CrossRef]
- Dastgerdi, M.A.; Habibi, M.; Dolatshahi, M. A novel two stage cross coupled architecture for low voltage low power voltage reference generator. Analog Integr. Circuits Signal Process. 2019, 99, 393–402. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Q.; Luo, H.; Wang, X.; Zhang, R.; Zhang, H. A 48 pW, 0.34 V, 0.019%/V line sensitivity self-biased subthreshold voltage reference with DIBL effect compensation. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 67, 611–621. [Google Scholar] [CrossRef]
- Ji, Y.; Lee, J.; Kim, B.; Park, H.-J.; Sim, J.-Y. A 192-pW Voltage Reference Generating Bandgap–Vth With Process and Temperature Dependence Compensation. IEEE J. Solid-State Circuits 2019, 54, 3281–3291. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, K.; Blaauw, D.; Sylvester, D. A 114-pW PMOS-only, trim-free voltage reference with 0.26% within-wafer inaccuracy for nW systems. In Proceedings of the 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar]
- Bhattacharjee, I.; Chowdary, G. A 0.3 nW, 0.093%/V Line Sensitivity, Temperature Compensated Bulk-Programmable Voltage Reference for Wireless Sensor Nodes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1281–1293. [Google Scholar] [CrossRef]
- Qiao, H.; Zhan, C.; Chen, Y. A− 40 °C to 140 °C Picowatt CMOS Voltage Reference With 0.25-V Power Supply. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3118–3122. [Google Scholar] [CrossRef]
- Chen, H.-M.; Lee, C.-C.; Jheng, S.-H.; Chen, W.-C.; Lee, B.-Y. A sub-1 ppm/° C precision bandgap reference with adjusted-temperature-curvature compensation. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1308–1317. [Google Scholar] [CrossRef]
- Magnelli, L.; Crupi, F.; Corsonello, P.; Iannaccone, G. A sub-1 V nanopower temperature-compensated sub-threshold CMOS voltage reference with 0.065%/V line sensitivity. Int. J. Circuit Theory Appl. 2015, 43, 421–426. [Google Scholar] [CrossRef]
- Magnelli, L.; Crupi, F.; Corsonello, P.; Pace, C.; Iannaccone, G. A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE J. Solid-State Circuits 2010, 46, 465–474. [Google Scholar] [CrossRef]
- Azimi, M.; Habibi, M.; Karimi-Alavijeh, H.R. A 0.4 V, 19 pW subthreshold voltage reference generator using separate line sensitivity and temperature coefficient correction stages. AEU-Int. J. Electron. Commun. 2021, 140, 153949. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits, 2nd ed. McGraw-Hill: New York, NY, USA, 2017.
- Aminzadeh, H. Subthreshold reference circuit with curvature compensation based on the channel length modulation of MOS devices. Int. J. Circuit Theory Appl. 2022, 50, 1082–1100. [Google Scholar] [CrossRef]
- Tsividis, Y. Operation and Modeling of the MOS Transistor; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Haartman, M.V.; Östling, M.; Haartman, M.v.; Östling, M. 1/F Noise in Mosfets: Origins and modeling. In Low-Frequency Noise In Advanced Mos Devices; 2007; Springer: Berlin/Heidelberg, Germany; pp. 53–102. [Google Scholar]
- Fassio, L.; Lin, L.; De Rose, R.; Lanuzza, M.; Crupi, F.; Alioto, M. Trimming-less voltage reference for highly uncertain harvesting down to 0.25 V, 5.4 pW. IEEE J. Solid-State Circuits 2021, 56, 3134–3144. [Google Scholar] [CrossRef]
Transistor | Type | Size |
---|---|---|
M1 | Thick oxide | 1 µm/1 µm |
M2 | Thin oxide | 20 µm/0.18 µm |
M3 | Thick oxide | 3.7 µm/1 µm |
M4 | Thick oxide | 0.22 µm/20 µm |
M5 | Thin oxide | (101.1 µm/0.45 µm) × 4 |
M6 | Thick oxide | 20 µm/2 µm |
M7 | Thin oxide | 29 µm/2 µm |
M8 | Thick oxide | 20 µm/2 µm |
M9 | Thin oxide | 23 µm/2 µm |
M10 | Thin oxide | 9 µm/15 µm |
Parameters | µ | σ | σ/µ |
---|---|---|---|
TC (ppm/°C) @0.5 V | 26.7 | 19.2 | 71.9% |
@2.1 V | 26.8 | 19.2 | 71.6% |
LS (ppm/V) @25 °C | 17.1 | 10.4 | 60.8% |
@100 °C | 24.9 | 7.5 | 30.1% |
VREF (mV) @0.5 V and 25 °C | 195.5 | 13.6 | 7% |
@2.1 V and 100 °C | 195.5 | 13.9 | 7.1% |
Power (pW) @0.5 V and 25 °C | 28.8 | 8.2 | 28.5% |
@2.1 V and 100 °C | 1308 | 305 | 23.3% |
Design | This Work * | [6] * | [12] | [20] * | [16] | [8] | [25] | [9] | [10] * |
---|---|---|---|---|---|---|---|---|---|
Tech (µm) | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.13 | 0.18 | 0.18 | 0.18 |
Min supply (V) | 0.5 | 0.12 | 0.6 | 0.4 | 0.25 | 0.5 | 0.25 | 0.6 | 0.8 |
LS (ppm/V) | |||||||||
µ | 17.1 | 2200 † | 190 | 143.8 | 3000 | 330 | 1600 | 1100 | 51.7 |
360 T | 51.5 T | ||||||||
σ | 10.4 | - | 60 | 17.3 | - | - | 500 | - | 10.8 |
10 T | |||||||||
Power (pW) | 28.8 | 0.25 | 48 | 19.1 | 113 | 2.2 29.5 T | 5.4 | 664 | 25.9 25.9 T |
Temp range (°C) | 0–100 | −40–120 | 0–100 | 0–80 | −40–140 | −20–80 | 0–120 | 0–120 | −20–80 |
TC (ppm/°C) | |||||||||
µ | 26.7 | 89.81 | 52 | 39.2 | 73.5 | 62 | 265 | 495 | 34.3 |
10.1 T | - | 29 T | 11.6 T | 4.4 T | |||||
σ | 19.2 | 11.7 | 19 | 28 | 11.7 | 41 | 45 | - | 26.5 |
1.5 T | - | 11 | 1.4 T | 7 T | |||||
PSR (dB) | |||||||||
@10 Hz | −72 C | −78 C | −62.7 C | −90.9 | - | −50.5 C | −70 | −45 C | −41.2 |
@10 KHz | −33.3 C | −96 C | −50.2 C | −78 | - | −58.5 C | −83.5 | −55 C | −25.6 |
VREF (mV) | 195.5 | 65.7 | 147.9 T | 119.2 | 118.1 | 176 | 91.4 | 457.1 T | 206 T |
Area (µm2) | 2358.8 | 70 | 33,200 | 2183 | 924 | 9300 | 2200 | 1700 | 10,208 |
FoM (°C·V/W) | |||||||||
Before trim | 7.61 | 5.18 | 0.22 | 0.59 | 0.01 | 2.22 | 0.06 | 0.001 | 2.18 |
After trim | - | - | 1.08 | - | - | 0.32 | - | 0.02 | 16.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azimi, M.; Habibi, M.; Crovetti, P. A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient. Electronics 2024, 13, 1390. https://doi.org/10.3390/electronics13071390
Azimi M, Habibi M, Crovetti P. A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient. Electronics. 2024; 13(7):1390. https://doi.org/10.3390/electronics13071390
Chicago/Turabian StyleAzimi, Mohammad, Mehdi Habibi, and Paolo Crovetti. 2024. "A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient" Electronics 13, no. 7: 1390. https://doi.org/10.3390/electronics13071390
APA StyleAzimi, M., Habibi, M., & Crovetti, P. (2024). A Two-Stage Sub-Threshold Voltage Reference Generator Using Body Bias Curvature Compensation for Improved Temperature Coefficient. Electronics, 13(7), 1390. https://doi.org/10.3390/electronics13071390