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Abstract: Noise in 3D photogrammetric point clouds—both close-range and UAV-
generated—poses a significant challenge to the accuracy and usability of digital mod-
els. This study presents a novel deep learning-based approach to improve the quality
of point clouds by addressing this issue. We propose a two-step methodology: first, a
variational autoencoder reduces features, followed by clustering models to assess and
mitigate noise in the point clouds. This study evaluates four clustering methods—k-means,
agglomerative clustering, Spectral clustering, and Gaussian mixture model—based on
photogrammetric parameters, reprojection error, projection accuracy, angles of intersection,
distance, and the number of cameras used in tie point calculations. The approach is vali-
dated using point cloud data from the Temple of Neptune in Paestum, Italy. The results
show that the proposed method significantly improves 3D reconstruction quality, with
k-means outperforming other clustering techniques based on three evaluation metrics. This
method offers superior versatility and performance compared to traditional and machine
learning techniques, demonstrating its potential to enhance UAV-based surveying and
inspection practices.

Keywords: artificial intelligence; structure from motion; accuracy enhancement; machine
learning; 3D digital survey

1. Introduction
Advancements in low-altitude remote sensing and image analysis techniques have

revolutionized the digitizing of real-world objects, initially represented by point clouds [1].
Over the past decade, there has been a notable increase in the number of studies examin-
ing the utilization of unmanned aerial vehicle (UAV) image technology for surveying and
inspection, which has been extensively documented in the literature [2–5]. UAV photogram-
metry exhibits immense potential for built environment inspections and surveys thanks
to multisource data acquisition, efficient data collection, rapid observation, relatively low
costs, and multidimensional data representation. However, a major challenge lies in the
noise introduced during data capture and 3D reconstruction [6]. The transformation of
a noisy point cloud into its unknown noise-free state is an inherently ill-posed problem.
This noise significantly affects the accuracy and usability of UAV images, hindering their
effectiveness in real-world applications. Over the past decade, the use of photogramme-
try for digital 3D recording has expanded significantly. Advances in computer vision
and modern computing technologies have addressed photogrammetry’s long-standing
limitations by accelerating processing times and enabling automation. The adoption of
automatic structure from motion (SfM) technology has gradually shifted the focus from
using laser scanner technology for 3D measurement in scientific applications to a growing
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reliance on photogrammetry. Despite numerous research efforts, point cloud denoising
remains challenging [7–9]. With the integration of computer vision techniques, point
cloud processing has become faster and more efficient, addressing many limitations of
traditional photogrammetry.

Through the application of computer vision techniques, point cloud technology for
3D recording has made significant advancements and has become a key tool in surveying
and structural monitoring. Various applications are highlighted in the literature, such as
structural monitoring of historical buildings, generating 3D models for volume calculations,
and creating metric maps for use in mining estimation [10–14]. Denoising point clouds
is a crucial step in many applications like object recognition and autonomous naviga-
tion. While significant progress has been made in utilizing artificial intelligence for these
tasks, challenges remain. Several studies have explored point cloud denoising, employ-
ing advanced computer vision techniques and deep learning architectures. For instance,
Bai et al. [15] introduced SM-HFEGCN, a graph convolutional network designed to en-
hance point cloud understanding by incorporating scale measurement and high-frequency
enhancement. While their approach effectively captures local geometric relationships and
addresses limitations in representing the overall spatial scale of local graphs, it is primarily
focused on point cloud classification and segmentation tasks. The method emphasizes
the integration of spatial scale features and high-frequency information to capture node
variations, which improves the representation of differences and similarities between
nodes. However, despite its contributions, SM-HFEGCN does not directly address the
challenge of noise reduction in point cloud data, particularly in the context of enhancing
3D reconstruction. Wu et al. [16] proposed the Plant-Denoising-Net, a deep learning-based
approach designed to address the specific challenges of plant point clouds, such as uneven
density, incompleteness, and diverse noise types. Plant-Denoising-Net utilizes a density
gradient learning approach and incorporates three key modules: the Point Density Feature
extraction module, the Umbrella Operator Feature computation module, and the density
gradient estimation module. While Plant-Denoising-Net achieves state-of-the-art perfor-
mance in denoising plant point clouds, with improvements of 7.6–19.3% under Gaussian
noise and notable computational efficiency, its application is tailored to plant-phenotyping
scenarios. Consequently, its generalizability to other domains, such as build environment
point clouds or UAV-based 3D reconstructions, remains unproven and unlikely. This
highlights the need for approaches capable of addressing noise in more diverse and geo-
metrically complex datasets. Sohail et al. [17] reviewed the application of deep transfer
learning and domain adaptation in addressing these issues, particularly for tasks such as
denoising, object detection, semantic labeling, and classification. While these approaches
have effectively mitigated noise and enhanced point cloud data quality, they often rely
on pre-trained models and fine-tuning strategies that do not generalize to complex or
large-scale datasets. Moreover, their performance can degrade in scenarios with partial
overlap or outliers, as seen in sensor-acquired point clouds. Although combining their
method with traditional machine learning methods has shown promise in addressing
these limitations, existing frameworks still struggle with computational inefficiency and
inconsistent results in complex applications. These challenges underscore the need for
more robust and scalable solutions to improve point cloud quality, particularly in geometri-
cally complex and noisy datasets like those encountered in cultural heritage preservation.
Zhang et al. [18] conducted a comprehensive survey of point cloud completion meth-
ods, categorizing them into four primary approaches: point-based, convolution-based,
GAN-based, and geometry-based methods. While these techniques have significantly
improved with advancements in deep learning, challenges remain in enhancing their ro-
bustness, computational efficiency, and ability to capture intricate geometric details. This
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study highlighted the current methods’ limitations, such as noise sensitivity and high
computational complexity, that hinder their effectiveness in practical applications. Despite
these advancements, existing approaches often fall short in addressing complex scenarios,
necessitating further exploration of novel architectures and techniques to better meet real-
world demands. These limitations emphasize the importance of developing more accurate
and efficient point cloud completion methods, particularly in domains requiring precise
geometric reconstructions. Zhu et al. [19] conducted the first comprehensive survey of
point cloud data augmentation methods, categorizing them into a taxonomy framework
comprising basic and specialized approaches. These methods are essential for addressing
challenges such as overfitting and limited diversity in training datasets, which are common
in point cloud processing tasks. Despite their wide application, the study identified several
limitations, including the lack of standardization in augmentation techniques and their
varying effectiveness across different tasks. The research highlights the importance of
selecting appropriate augmentation methods tailored to specific applications and suggests
future directions to improve their robustness and scalability. These findings underscore the
necessity of advancing augmentation techniques to support the growing demands of deep
learning in point cloud analysis.

It is important to note that the accuracy required for data collection and processing
in photogrammetry depends significantly on the intended purpose. For instance, when
generating 3D models for applications such as augmented reality or basic web visualization
in non-scientific contexts, achieving high levels of accuracy may not be essential. However,
for applications where precise data are critical, such as condition assessment or structural
analysis, optimizing the dataset through advanced processing techniques, including 3D
mesh decimation, becomes a necessary step to ensure reliability. In the field of cultural
heritage (CH), photogrammetry has a wide range of applications [20–22]. Its speed of
acquisition and the portability of the equipment make it highly versatile technology, suitable
for various uses. For the condition assessment of CH, it is essential to accurately compare
the current state of a structure with its previous condition. Since revisiting and surveying
CH as it existed in the past is impossible, reducing noise to generate the most accurate 3D
model from available periodic survey data becomes essential. In cases where damage is
identified, an accurate model of the structure’s past state, with minimal noise, is crucial
for understanding the extent of the damage, its severity, and the rate of progression. This
highlights the importance of improving the accuracy of available point cloud data for
CH [23–25].

The accuracy of the model is influenced by specific photogrammetric constraints.
One of the most significant factors impacting output accuracy in several studies is the
angle formed between homologous rays captured by different cameras [26–28]. In gen-
eral, a larger angle (within a certain range) results in higher achievable accuracy. Kraus’s
research demonstrates a direct proportional relationship between the Base/Height ratio
and accuracy [29]. While numerous studies have investigated models to improve point
cloud accuracy [30,31], they often overlook the specific challenges of condition assessment.
These studies primarily focus on optimizing the ideal datasets for accurately and efficiently
reconstructing 3D models, without accounting for the practical limitations of condition
assessment. In such scenarios, having the most accurate datasets takes precedence, even
if creating a precise 3D model with the available data is not feasible. This paper aims to
fill this gap by introducing a novel approach based on deep learning clustering models to
optimize various SFM parameters, enhancing the accuracy of 3D reconstruction specifically
for applications in CH 3D reconstruction and monitoring. Unlike traditional methods
that focus on a single accuracy-related parameter, this approach simultaneously considers
several calculated parameters within the latent space of a variational autoencoder model.



Electronics 2025, 14, 399 4 of 18

This enables minimizing the influence of outlier data or noise while uncovering the most
significant patterns and structures in the data. Noise reduction is the process of eliminating
random variations or irrelevant data points that do not contribute to the accurate repre-
sentation of the object or scene in the data. In this approach, several AI models, which
are typically used for outlier detection, are specifically employed to identify data points
that deviate significantly from the general pattern or distribution of the dataset, thereby
reducing noise.

To do so, first, different accuracy-related parameters are analyzed separately to demon-
strate that relying on a single parameter is insufficient. Then, the proposed methodology,
which applies four different clustering models into the latent layer of a variational autoen-
coder (VAE), is implemented to enhance the accuracy of point cloud data and study the
most powerful clustering algorithm for accuracy enhancement. A case study is used to
showcase the robustness of the new method.

The methodology presented in this study, combining VAE with clustering algorithms
for improving the accuracy of point cloud data, has broad applicability across various
fields. Accurate point clouds improve the accuracy of existing digital models of historical
structures or infrastructures such as bridges, aiding in structural integrity assessments,
conservation planning, and restoration efforts. More precise models guide restoration work,
ensuring that interventions align with historical accuracy and preserve the integrity of built
environments [32–34]. Enhanced point clouds are a pivotal tool in geotechnical engineering
and environmental monitoring, facilitating the analysis of slope stability, landslides, and
other geological phenomena. Their application extends to tracking environmental changes,
such as forest canopy dynamics and shoreline erosion. The increased precision in terrain
and environmental modeling enhances safety protocols, supports the development of
preventive measures, and aids in the sustainable management of natural resources and
climate change mitigation efforts [35–38]. In disaster management and recovery, enhanced
point clouds enable high-resolution damage assessments of infrastructure, including build-
ings and transportation networks, post-natural disasters. These assessments allow for the
efficient prioritization of recovery operations and resource allocation, significantly reducing
the time required for disaster response and rehabilitation planning [39]. Enhanced point
clouds are integral to object detection, environmental mapping, and navigation systems.
They provide the high-fidelity spatial data necessary to improve situational awareness, reli-
ability, and the overall safety of autonomous systems, ensuring optimal performance under
real-world conditions [40]. For 3D printing and additive manufacturing, enhanced point
clouds provide the detailed geometric data required to fabricate electronic components
such as antennas, sensors, and circuit boards. Their higher accuracy ensures that printed
components adhere to precise design specifications, resulting in improved performance
and quality in additive manufacturing processes [41]. In component design and reverse
engineering, point cloud data support the creation of detailed 3D models of electronic
components, including connectors, enclosures, and housings. The precision afforded by
enhanced point clouds accelerates the prototyping process, enables optimized design work-
flows, and facilitates the reverse engineering of existing products. By replicating intricate
geometries with high fidelity, they allow for the comprehensive analysis and reproduction
of original designs [42].

This article is organized as follows: In Section 2, a brief explanation of the various accu-
racy parameters studied is provided, along with the presentation of the new methodology
for optimizing point cloud data. Section 3 introduces a case study, where different parame-
ters are analyzed separately to demonstrate their limitations in analyzing the model, and
the robustness and the accuracy of the new method are presented. In Section 4, the robust-
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ness and accuracy of the new method are discussed across different clustering algorithms.
Finally, the conclusions are drawn in Section 5.

2. Materials and Methods
The new method for optimizing the point cloud utilizes several accuracy parameters

applied during both the acquisition phase and the image processing phase. The data related
to these accuracy parameters are then analyzed using deep learning models, which cluster
the optimized datasets. The dataset is obtained through photogrammetric processing in the
photogrammetric processing software Agisoft Metashape [43], specifically an SfM software
that allows for the processing of digital image sets and obtaining numerous outputs such
as point clouds, 3D models, orthophotos, contour lines, DEM, and much more. Some of the
parameters used are geometric parameters related to the acquisition phase (intersection
angle and number of images), while the remaining are numerical parameters extracted
from the SfM processing and, therefore, are potentially dependent on the software used
(reprojection errors and accuracy projection).

2.1. Accuracy Parameters
2.1.1. Reprojection Error

The first parameter calculated is the reprojection error, a geometric error that represents
the image distance between a projected point and its corresponding measured point. This
error is used to evaluate how accurately a 3D point estimate replicates the true projection
of the point. To compute the 3D coordinates of the tie point, the camera’s internal and
external orientation parameters, along with the image coordinates of the point, are utilized.
The reprojection error estimation can be seen in Figure 1.
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Figure 1. Illustration of the reprojection error.

2.1.2. The Angle Between Homologous Points

In this work, the Base/Height ratio is analyzed by estimating the angle between two
lines of view that generate the 3D point called the angle of intersection or angle between
homologous points, given the k-th tie point seen from two images i and i + 1 (see Figure 2).
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2.1.3. Number of Images

Another estimated parameter is the number of images, which is the number of pho-
togrammetric shots of the scene that have contributed to the reconstruction of the tie point
in object space. This parameter is as follows:

Ni = ∑
j

njTPi (1)

where njTPi is the number of cameras for the reconstruction of the i-th tie point.

2.1.4. Projection Accuracy

Another estimated parameter is projection accuracy, which allows us to recognize
less reliable tie points. The projection accuracy parameter in Agisoft Metashape measures
how precisely a tie point is positioned relative to its neighboring points within the point
cloud. This precision is influenced by the scale at which the points were identified during
processing. Metashape leverages scale information to adjust the weighting of reprojection
errors for tie points, assigning higher or lower importance depending on the detail level at
which the point is detected. The Sigma (σ) parameter determines the scale of key points,
which represents the degree of Gaussian blur applied at a specific level of the scale pyramid.
This parameter incorporates the local context of each point, affecting the treatment of
reprojection errors and improving the robustness of the 3D reconstruction.

In essence, the projection accuracy parameter enhances the quality of the 3D model by
balancing errors according to the resolution and scale at which the tie points are identified.
This provides essential insights into the spatial consistency of the point cloud.

While the exact mathematical formula for projection accuracy in Metashape is propri-
etary, it aligns with the principles of photogrammetry and computer vision. The relationship
can be summarized as follows:

Errorproj = W. ∥Pmean − Pproj∥ (2)

where Errorproj represents the weighted reprojection error, Pmeas denotes the position of
the detected point in the image (measured point), and Pproj is the projected point’s position
calculated from the 3D model. The symbol ∥·∥ indicates the Euclidean distance between the
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measured and projected points. The parameter w is the weight assigned to the reprojection
error, determined by the scale (σ) from the SIFT level where the tie point is detected.

In Metashape, the weight is proportional to the scale of the key point, which cor-
responds to the scale pyramid level where the point was identified. Points detected at
higher pyramid levels (more detailed scales) contribute more significantly to the model’s
computation. This approach ensures that points identified with greater local precision have
a more substantial impact on projection and model optimization than those identified at
coarser scales. By incorporating these principles, Metashape refines the 3D reconstruction
process, emphasizing the spatial consistency and accuracy of the resulting model.

2.1.5. Camera Distance—Tie Point

The last value taken into account in the analysis is the camera distance, tie point, which
refers to the distance between the center of the i-th camera’s focal point, and the j-th tie
point, which is located within the i-th image.

Except for the reprojection error and projection accuracy, other accuracy parameters
depend heavily on the image acquisition phase, causing their values to vary significantly
between projects.

2.2. Methodology

This article introduces a novel noise reduction method to optimize the 3D reconstruc-
tion models of CH and enhance the accuracy of damage detection models based on point
cloud data. Rather than relying on a single accuracy-related parameter, the method simul-
taneously evaluates all calculated parameters. It develops datasets of the most accurate 3D
points, considering the availability of nodes in the point cloud.

First, the new model uses VAE to reduce its dimension from five different parameters
to two synthetic parameters.

VAE is a type of neural network used for dimensionality reduction, feature extraction,
and generative modeling. Like a traditional autoencoder, it consists of two parts: an
encoder that maps the input data to a probabilistic latent space by learning the parameters
of a probability distribution (typically a Gaussian) and a decoder that reconstructs the
original input from a sampled latent representation. The VAE aims to learn an efficient
representation of the data and ensure that the latent space follows a predefined probabilistic
structure, enabling meaningful sampling and interpolation. The encoder and the decoder
are defined as multilayer perceptrons (MLPs). A layer of MLP encoder EF is

EF = σ(Wx + B) (3)

where σ is an element-wise activation function, W is a weight matrix, and B is a bias
vector. The analyzed features for each data point (X) in the input dataset of the MLP model
consist of five elements, representing the accuracy parameters detailed in the previous
section. Each row corresponds to the geometry of a 3D point within the point cloud. In the
latent space of the proposed model, the feature dimensions are reduced from the original
five input columns to two features. Reducing the feature dimensions and leveraging the
probabilistic nature of a VAE offers several advantages and enhances the applicability of
the method, as outlined below:

- By compressing the data into a probabilistic latent space, the VAE not only reduces
computational requirements but also facilitates sampling from the latent space, making
it suitable for big data applications such as point cloud processing, which is the
primary focus of this study. This improvement increases the model’s scalability
and versatility.
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- The VAE transforms complex, diverse features from various factors into a smaller,
cohesive set of probabilistic latent representations, improving interpretability and
usability and enabling meaningful interpolations between data points.

- The latent space representation generated by the VAE simplifies the data, removes
noise, and provides a structured probabilistic foundation, enhancing the performance
of downstream tasks such as clustering and anomaly detection.

- The VAE’s latent space enables the detection of meaningful patterns, including nonlin-
ear and probabilistic relationships, that may not be apparent in the original dimensions.
This feature allows for more insightful analysis and the generation of new synthetic
data samples.

- Unlike traditional autoencoders, the VAE provides generative capabilities, enabling the
creation of realistic new data samples from the latent space. This feature is particularly
useful for augmenting datasets or exploring variations in the data. While dataset
augmentation is not applied in this study, it represents a potential future direction for
the authors’ research.

- The VAE can be trained to handle missing data by learning the distribution of the data
and reconstructing missing values. While this is not the focus of the current research,
it represents a promising avenue for future work.

These factors collectively make the VAE an effective tool for enhancing the optimiza-
tion of point cloud data for damage detection.

In this research, after applying the VAE, four main clustering machine-learning al-
gorithms are employed in its latent space to compare and observe their robustness. The
first algorithm is k-means clustering, which partitions data based on similarity. It operates
by assigning each data point to the nearest cluster centroid and iteratively updating the
centroids until convergence. To minimize the within-cluster variance, the objective is
to find

argmins

k

∑
i=0

∑
x∈Si

∥ x − µi ∥2 = argmins

k

∑
i=0

|Si|Var Si (4)

where S represents the set of clusters, k is the number of clusters, µi is the mean point
of the i-th cluster, and x denotes the data points. The k-means algorithm is suitable for
applications where the number of clusters is optimized, making it ideal for point cloud
optimization when performing full 3D reconstruction of an entire structure. In the context
of the VAE’s latent space, k-means can be effective for global damage detection, where
the data are relatively well separated and the cluster centroids represent general patterns.
However, k-means clustering assumes that clusters are spherical and of similar size, which
may limit its effectiveness in more complex, non-linear data distributions often present in
real-world datasets.

The Gaussian mixture model (GMM) allows for the creation of an optimized point
cloud not only useful for full 3D reconstruction but also for detecting specific local damages.
Moreover, it enables the assessment of global damage using a smaller, highly accurate
subset of tie points. GMM is a probabilistic model that assumes the data are generated from
a mixture of several Gaussian distributions. This method is particularly useful for data
that may have overlapping clusters or complex distributions, as it allows for soft clustering
where data points can belong to multiple clusters with varying probabilities. In the latent
space of the VAE, GMM can be beneficial for detecting subtle variations in the data, but
it may not perform as well as k-means or agglomerative clustering when the data are
imbalanced or when the model is not well tuned. Despite this, GMM can still offer valuable
insights for applications where the relationships between data points are more proba-
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bilistic and less deterministic. GMM with the formulation of the posterior distribution is
given by

p(Θ|x) =
k

∑
i=1

ϕiN(µi, Σi) (5)

where ϕ and Σ are weights and covariance matrices, N is the number of observations, and
k is the number of clusters.

Spectral clustering is another method employed in this research to analyze the latent
space. This algorithm is a graph-based clustering technique that uses the eigenvalues of
a similarity matrix to reduce the dimensionality of the data before applying a clustering
algorithm like k-means. This method is particularly effective for identifying non-linear
relationships in the data, making it well-suited for complex datasets where clusters are
not necessarily spherical. In the VAE’s latent space, Spectral clustering can capture more
intricate patterns and relationships, especially when the data exhibit non-convex shapes
or varying densities. It is particularly useful when the underlying structure of the data
is complex, and traditional methods like k-means may fail to capture the nuances of the
distribution. However, Spectral clustering can be computationally expensive, especially
for large datasets, and requires careful selection of the similarity measure and the number
of clusters. Its ability to leverage graph theory makes it particularly useful in point cloud
processing when the relationships between points are non-linear or when identifying
regions of interest within a complex structure. In addition, as it is able to perform soft
clustering, it is a good choice for local damage detection.

Agglomerative hierarchical clustering is the fourth method considered in this research.
This bottom-up approach starts by treating each data point as its cluster and iteratively
merges the closest clusters based on a chosen linkage criterion until a desired number of
clusters is achieved or all points are merged into a single cluster. Agglomerative hierarchical
clustering is particularly suited for datasets where the relationships between data points
vary at different scales like point cloud data. In the VAE’s latent space, agglomerative
clustering can provide valuable insights into damage detection, especially when the clusters
exhibit hierarchical or nested structures. However, its computational complexity increases
with the size of the dataset, which can be a limitation for large-scale applications.

The clustered data are then compared using evaluation metrics to analyze their ro-
bustness. Since there are no ground truth or labeled data available due to the nature of this
study, external validation metrics cannot be applied. Therefore, three internal evaluation
metrics are considered in this research.

The Silhouette Score is a measure of how similar each data point is to its cluster
compared to other clusters. It combines both cohesion and separation. A higher Silhouette
Score indicates better-defined clusters.

The Calinski–Harabasz Index measures the ratio of the sum of between-cluster dis-
persion to within-cluster dispersion. A higher value indicates better-defined clusters, with
more separation between them.

The Davies–Bouldin Index evaluates the average similarity between each cluster and
its most similar counterpart. A lower Davies–Bouldin score indicates better clustering, as it
reflects smaller intra-cluster distances and larger inter-cluster distances.

For implementing the algorithm, the Python programming language (version 3.11.1)
and the Scikit-learn library were used. A summary of the proposed methodology can be
seen in Figure 3.
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3. Results
The case study for this work is the Temple of Neptune, a Greek temple located in

Paestum, Campania, Italy. Constructed in the fifth century B.C.E., the temple features
six front columns and fourteen side columns. As one of the three best-preserved tem-
plates in the Greek world, it was surveyed using aerial photogrammetry by UAV in 2017
(see Figure 4).

Electronics 2025, 14, 399 10 of 19 
 

 

 

Figure 3. Conceptual illustration of the proposed methodology, highlighting the main steps in-
volved in optimizing point cloud data using deep learning clustering models. 

3. Results 
The case study for this work is the Temple of Neptune, a Greek temple located in 

Paestum, Campania, Italy. Constructed in the fifth century B.C.E., the temple features six 
front columns and fourteen side columns. As one of the three best-preserved templates in 
the Greek world, it was surveyed using aerial photogrammetry by UAV in 2017 (see Fig-
ure 4). 

 

Figure 4. Application example: Temple of Neptune in Paestum (Italy). 

The complex spatial articulation of the geometries makes the Temple of Neptune an 
ideal subject for evaluating the robustness of the new methodology. The UAV utilized for 
the survey was a hexacopter equipped with a three-axis gimbal and a Alpha 6500 camera 
(Sony Corporation, Tokyo, Japan), capturing a total of 908 photogrammetric images. A 
GNSS network with 11 Ground Control Points was incorporated to estimate the internal 
orientation parameters in Agisoft Metashape through a self-calibrating bundle adjust-
ment. For the analysis, a standard section was selected, highlighted in red in Figure 5. 

Figure 4. Application example: Temple of Neptune in Paestum (Italy).

The complex spatial articulation of the geometries makes the Temple of Neptune an
ideal subject for evaluating the robustness of the new methodology. The UAV utilized for
the survey was a hexacopter equipped with a three-axis gimbal and a Alpha 6500 camera
(Sony Corporation, Tokyo, Japan), capturing a total of 908 photogrammetric images. A
GNSS network with 11 Ground Control Points was incorporated to estimate the internal
orientation parameters in Agisoft Metashape through a self-calibrating bundle adjustment.
For the analysis, a standard section was selected, highlighted in red in Figure 5.
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Gujsli et al. [44] analyzed accuracy parameters independently to demonstrate that
relying on a single parameter is ineffective for noise reduction in point cloud data. In
their study, they considered the 90th percentiles for reprojection errors (see Figure 6a),
angles greater than 10◦ for the average intersection angle (see Figure 6b), and the use of
more than 10 cameras for reconstructing each 3D point (see Figure 6c). They identified
an optimal threshold for noise reduction at a projection accuracy of 10 (see Figure 6d).
While increasing this threshold further reduces noise, it comes at the cost of losing valuable
data and compromising the overall data integrity. This leads to reduced cloud density,
negatively impacting the reconstructed object’s descriptive quality. A visualization of the
point cloud corresponding to single-parameter analysis is shown in Figure 6.

To implement the new model, the data are first reduced to two dimensions using a
VAE model. In the latent space of the encoder, clustering algorithms are applied. The
hyperparameters of the VAE model used in this study are detailed in Table 1. The VAE
architecture incorporates a probabilistic framework to map input data to a latent space, en-
abling both dimensionality reduction and generative capabilities. The encoder and decoder
networks are designed with intermediate layers that utilize the ReLU (Rectified Linear
Unit) activation function. ReLU introduces non-linearity by outputting the input directly
if it is positive and zero otherwise. This choice of activation function is computationally
efficient and helps mitigate the vanishing gradient problem, ensuring effective training
of the deep learning model. Batch normalization and dropout regularization are applied
to improve generalization and prevent overfitting. The encoder compresses the input
data into a two-dimensional latent space, optimized for visualization and clustering tasks.
The loss function combines reconstruction loss (mean squared error) with the Kullback–
Leibler divergence, which ensures that the learned latent space approximates a standard
normal distribution. This probabilistic framework allows the VAE to generate meaningful
representations and handle noise effectively.

Table 1. VAE model characteristics.

Characteristics Variables

Batch Size 256
Encoder Layer 2
Decoder Layer 2
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Table 1. Cont.

Characteristics Variables

Latent Space 2
Epochs 100

Activation Function ReLU
Learning Rate 0.001
Regularization L2 (0.01)
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It is important to note that all clustering algorithms are configured with identical
parameters. Specifically, the number of clusters is set to 10, with 10 initializations and a
tolerance of 1 × 10−4, which determines the stopping criterion for the algorithm. A lower
tolerance value indicates a stricter convergence requirement. The covariance type is set to
“full,” meaning that each cluster is modeled with its full covariance matrix, offering greater
flexibility in capturing the data’s shape and fitting it to the assigned clusters. Additionally,
the initial weight settings are defined to provide reasonable initial estimates for cluster
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assignments and distribution parameters, which contribute to the overall performance
and stability of the clustering process. The hyperparameters for each clustering model are
selected through a combination of random search and experimental analysis. Moreover,
experimental analysis is conducted by systematically testing various hyperparameter con-
figurations and selecting the ones that yield the best results based on clustering evaluation
metrics. This approach ensures that the chosen hyperparameters are optimal for each
model and dataset. The analysis of clustering algorithms reveals that the average values
of the parameters differ significantly between the four methods and the distribution of
clusters produced by each algorithm varies when applied to the two features generated by
the VAE model. The data points are clustered using four different clustering models, and
the resulting clusters are depicted in Figure 7, with each cluster represented by one of ten
distinct color tones.
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Figure 7. Distribution of clusters generated by: (a) GMM clustering algorithms, (b) k-means clustering
algorithms, (c) agglomerative clustering algorithms, and (d) Spectral clustering algorithms.

The comparison of cluster information is presented in Tables 2–5. It shows that all
clustering algorithms produce consistent results. The number of tie points identified in the
clusters enhances the point cloud density while maintaining its quality, enabling a more
detailed description of the object.

The results of clustering using GMM, k-means, agglomerative clustering, and Spectral
clustering are evaluated across three key metrics, Silhouette Score, Calinski–Harabasz
Index, and Davies–Bouldin Index, and can be seen in Table 6. The evaluation metrics
provide a quantitative basis for comparing clustering algorithms.
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Table 2. Cluster analysis by GMM.

Cluster_Gmm Error_Proj_Mean Ac_Mean Cant_Fotos_Mean Dist_Mean Med_Ang_Mean Number of Points

0 0.26 0.30 2.01 26.03 3.91 110,908
1 0.86 19.43 22.61 34.40 20.01 22,156
2 0.61 3.05 4.18 25.29 31.17 18,748
3 0.60 4.31 9.05 90.63 4.08 10,397
4 0.62 3.89 7.11 29.06 15.82 30,525
5 0.28 0.35 2.00 73.73 1.40 29,848
6 4.73 164.17 5.34 36.10 13.98 6654
7 0.55 2.06 4.90 29.24 9.23 69,201
8 0.51 1.34 3.35 89.67 2.88 27,163
9 0.43 0.88 2.92 30.12 5.68 93,225

Table 3. Cluster analysis by k-means.

Cluster_Kmeans Error_Proj_Mean Ac_Mean Cant_Fotos_Mean Dist_Mean Med_Ang_Mean Number of Points

0 0.44 1.45 3.57 79.95 2.51 22,466
1 0.37 0.90 3.058 28.88 3.81 182,239
2 0.73 6.12 5.61 25.87 31.87 21,908
3 0.60 3.75 6.47 27.20 18.11 32,756
4 16.12 1532.80 8.31 39.50 8.41 301
5 0.80 28.43 32.84 33.92 23.11 10,823
6 0.47 1.761 3.80 125.08 1.97 18,596
7 0.40 1.09 3.41 54.50 2.69 40,742
8 0.50 1.97 4.13 24.31 10.540 84,393
9 5.02 127.09 4.98 36.40 8.23 4601

Table 4. Cluster analysis by agglomerative hierarchical clustering algorithms.

Cluster_Agglo Error_Proj_Mean Ac_Mean Cant_Fotos_Mean Dist_Mean Med_Ang_Mean Number of Points

0 0.65 4.60 5.43 25.77 29.56 29,013
1 0.42 1.31 3.51 68.41 2.63 38,395
2 0.45 1.61 3.62 118.74 1.95 22,720
3 0.50 2.01 4.10 24.34 9.80 103,938
4 0.37 0.83 2.99 31.59 3.42 183,826
5 0.72 12.73 20.50 33.75 18.45 8725
6 14.99 1275.57 7.57 40.31 8.21 410
7 0.59 3.49 6.36 27.41 16.98 22,882
8 4.72 111.94 5.01 35.51 9.41 4754
9 0.92 53.00 50.42 34.81 28.73 4162

Table 5. Cluster analysis by Spectral clustering algorithms.

Cluster_Spectral Error_Proj_Mean Ac_Mean Cant_Fotos_Mean Dist_Mean Med_Ang_Mean Number of Points

0 0.42 1.44 3.81 64.90 2.73 58,771
1 0.52 2.23 4.56 24.96 11.74 79,712
2 1.09 25.77 11.01 28.98 23.43 60,423
3 0.35 0.67 2.66 36.76 2.150 49,870
4 0.40 1.00 3.28 23.87 6.28 70,836
5 0.39 1.21 2.87 27.69 3.36 79,697
6 0.29 0.36 2.13 4.97 3.88 199
7 0.33 0.50 3.20 30.20 3.87 10
8 0.40 0.88 2.62 104.58 1.76 10,982
9 0.50 2.16 4.14 147.08 1.97 8325



Electronics 2025, 14, 399 15 of 18

Table 6. Clustering model comparison by evaluation metrics.

Model Silhouette Calinski–Harabasz Davies–Bouldin

GMM 0.017 157,947.57 4.16
KMeans 0.49 592,007.78 0.64

Agglomerative 0.48 540,785.91 0.68
Spectral 0.13 146,841.68 1.67

Silhouette Score: k-means and agglomerative clustering achieved the best scores,
suggesting that they are more effective at identifying well-separated clusters.

Calinski–Harabasz Index: k-means achieved the highest score, indicating excellent
inter-cluster separation.

Davies–Bouldin Index: the low Davies–Bouldin scores of k-means and agglomerative
clustering confirm their ability to produce compact and distinct clusters.

The results indicate that k-means clustering is the most robust and effective method for
analyzing the VAE latent space, followed closely by agglomerative hierarchical clustering.
Both hard clustering methods outperform GMM and Spectral clustering in terms of cluster
cohesion, separation, and overall quality. Spectral clustering can serve as a secondary
choice for local damage detection with additional optimization as it is able to perform soft
clustering, while GMM may not be appropriate without substantial modifications to its
parameters or assumptions.

4. Discussion
As k-means demonstrates a better distribution of point data within the clusters, it

is the best option when full 3D reconstruction is needed. However, k-means clustering
faces two significant challenges. First, it lacks the ability to perform soft clustering, which
limits its flexibility in scenarios where data points may belong to multiple clusters with
varying probabilities. The rigidity of k-means can result in suboptimal clustering when
the data are more complex and varied. This is to say that when only comparing of specific
section of an object in temporal digital documents is needed, the complete representation
of the structure is unnecessary. Instead, a dataset consisting of the most accurate points
is required. Second, when the number of clusters is pre-defined, it can lead to uneven
data distribution in k-means. K-means is inherently limited in its ability to accommodate
varying numbers of clusters and is most effective when the number of clusters is predefined
based on experimental results. As such, it is not well suited for generating smaller clusters
with varying levels of accuracy. It could be more useful for the full representation of the data
in 3D with a better overall structure and accuracy. These challenges make it less effective
for applications requiring balanced clusters, such as local damage analysis. In contrast,
Spectral clustering flexibility allows it to better adapt to the underlying distribution of the
data, making it a more suitable choice for applications requiring a finer level of granularity.
It proves especially useful when working with local condition assessments based on point
cloud data. This method is capable of handling different levels of 3D reconstruction
and detail in models while maintaining a decent level of accuracy. This makes Spectral
clustering more suitable for localized damage assessment. Overall, while k-means and
Spectral clustering methods have their advantages, Spectral clustering’s ability to model
more complex structures with varying cluster shapes makes it particularly advantageous
for detailed point cloud analysis; however, for full 3D reconstruction, k-means has better
accuracy. The models developed in this study mark a significant advancement in the
condition assessment of cultural heritage and have broader applicability in various fields
requiring accurate 3D representations. Existing digital documents or point clouds often
lack precision, particularly in areas with new damage. Since resurveying the original
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condition of structures is typically not feasible, these models provide a practical solution by
enhancing the accuracy of available point clouds. This improvement is crucial not only for
cultural heritage preservation, including structural assessments, restoration planning, and
conservation efforts but also for applications in other fields. By enabling the refinement
of digital representations without the need for additional surveys, the model addresses
critical challenges where historical or baseline data are incomplete or outdated.

5. Conclusions
Given the lack of prior structural information, creating an accurate 3D model from

available data is essential for point-cloud-based monitoring and condition assessment
methods. This work proposes a novel methodology for reducing noise in tie point clouds,
which is particularly valuable for the condition assessment and 3D reconstruction of
cultural heritage sites. The proposed methodology is crucial for generating precise digital
documentation, enabling effective comparison with the current conditions of the analyzed
object and facilitating the identification of any new damage.

The proposed method introduces an innovative approach by utilizing a combination of
multiple accuracy parameters rather than relying on a single metric. Initially, a variational
autoencoder model reduces the features to only two features, and in this latent space, four
clustering algorithms are applied. This analysis enables the simultaneous consideration of
multiple accuracy parameters, improving the overall effectiveness of noise reduction in
point clouds. Additionally, this study investigates the impact of these four widely used
clustering algorithms through several evolutional metrics, aiming to establish the most
robust methodology for noise reduction. To validate the robustness and applicability of the
proposed approach, the Temple of Neptune is employed as a case study, demonstrating its
potential to preserve the accuracy and integrity of 3D reconstructions for cultural heritage
sites. K-means and agglomerative hierarchical clustering methods show comparable
average accuracy values across features. Spectral clustering follows these methods but
offers additional advantages, such as the ability to perform soft clustering by capturing
complex relationships in the data and handling non-linear boundaries more effectively.

Future directions for this work include extending the model’s application across di-
verse disciplines, integrating additional data sources, and refining the algorithms to handle
more complex damage scenarios. The model demonstrates significant potential beyond
cultural heritage, with applicability in fields such as civil engineering, urban planning,
environmental monitoring, and autonomous systems, where enhanced point cloud data
can greatly improve accuracy and inform decision-making processes. By improving the
accuracy of these digital models, we aim to contribute to the long-term preservation and
protection of valuable assets across various fields, ensuring that structures, environments,
and systems can be accurately assessed, maintained, and optimized for future generations.
Furthermore, implementing a Siamese neural network is proposed for future research to
enhance damage detection across various fields. This approach will allow for the compari-
son of point cloud datasets captured at different times from the same location, enabling
the analysis of temporal changes to identify structural alterations, detect new damage,
and monitor ongoing deterioration effectively in contexts such as cultural heritage, civil
engineering, urban planning, and environmental monitoring.
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