Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher
Abstract
:1. Introduction
2. Related Work
3. System Model and Feature Extraction
3.1. Priority Feature
3.2. Receive Packet Time Interval Feature
4. NB-TCP Algorithm
Algorithm 1 NB-TCP Algorithm at TCP Receiver. |
|
Algorithm 2 NB-TCP Algorithm at TCP Sender. |
|
5. Numerical Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Poddar, M.; Chaki, R.; Pal, D. A channel trust based approach for congestion control in IoT. In Proceedings of the International Conference on Application of Information & Communication Technologies, Rostov on Don, Russia, 14–16 October 2015. [Google Scholar]
- Xiong, K.; Chen, C.; Qu, G. Group Cooperation with Optimal Resource Allocation in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun. 2017, 16, 3840–3853. [Google Scholar] [CrossRef]
- Halim, N.H.B.; Yaakob, N.B.; Isa, A.B.A.M. Congestion control mechanism for Internet-of-Things (IOT) paradigm. In Proceedings of the International Conference on Electronic Design, Phuket, Thailand, 11–12 August 2017. [Google Scholar]
- Xiong, K.; Wang, B.; Liu, K.J.R. Rate-Energy Region of SWIPT for MIMO Broadcasting under Nonlinear Energy Harvesting Model. IEEE Trans. Wirel. Commun. 2017, 16, 5147–5161. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; He, S.; Sun, Y.; Thulasiraman, P.; Shen, X. Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE J. Sel. Areas Commun. 2010, 28, 2787–2805. [Google Scholar] [CrossRef]
- Al-Shammari, B.K.J.; Al-Aboody, N.A.; Al-Raweshidy, H.S. IoT Traffic Management and Integration in the QoS Supported Network. IEEE Internet Things J. 2018, 5, 352–370. [Google Scholar] [CrossRef]
- Di, X.; Xiong, K.; Fan, P. Simultaneous Wireless Information and Power Transfer in Cooperative Relay Networks with Rateless Codes. IEEE Trans. Veh. Technol. 2015, 66, 2981–2996. [Google Scholar] [CrossRef]
- Lu, Y.; Ling, Z.; Zhu, S. SDTCP: Towards Datacenter TCP Congestion Control with SDN for IoT Applications. Sensors 2017, 12, 109. [Google Scholar] [CrossRef]
- Rolando, H. Dynamic CoAP mode control in Real Time Wireless IoT Networks. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Toprasert, T.; Lilakiataskun, W. TCP congestion control with MDP algorithm for IoT over heterogeneous network. In Proceedings of the 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, QLD, Australia, 25–27 September 2017. [Google Scholar]
- Xiong, K.; Fan, P.Y.; Zhang, C.; Letaief, K.B. Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE J. Sel. Areas Commun. 2015, 33, 1595–1611. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Williamson, C. Modeling Compound TCP Over WiFi for IoT. IEEE/ACM Trans. Netw. 2018, 26, 864–878. [Google Scholar] [CrossRef]
- Afanasyey, A.; Tilley, N.; Reiher, P. Host-to-Host Congestion Control for TCP. IEEE Commun. Surv. Tutor. 2010, 12, 304–342. [Google Scholar] [CrossRef]
- Sreekumari, P.; Chung, S.H.; Lee, M. T-DLRP: Detection of Fast Retransmission Losses Using TCP Timestamp for Improving the End-to-End Performance of TCP over Wireless Networks. Int. J. Distrib. Sens. Netw. 2013, 3, 1–16. [Google Scholar] [CrossRef]
- Biaz, S.; Vaidya, N.H. De-randomizing congestion losses to improve TCP performance over wired-wireless networks. IEEE/ACM Trans. Netw. 2005, 13, 596–608. [Google Scholar] [CrossRef]
- Parvez, N.; Mahanti, A.; Williamson, C. An analytic throughput model for TCP NewReno. IEEE/ACM Trans. Netw. 2010, 18, 448–461. [Google Scholar] [CrossRef]
- Al-Hasanat, M.; Seman, K.; Saadan, K. Enhanced TCPW’s fast retransmission and fast recovery mechanism over high bit errors networks. In Proceedings of the 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Kuching, Malaysia, 21–23 April 2015; pp. 337–340. [Google Scholar]
- Chen, Y.T.; Lu, L.Y. TCP adaptive discriminator based on naive bayes classifier in large-scale hybrid networks. J. Commun. 2018, 39, 189–194. [Google Scholar]
- Zhang, C.; Fan, P.; Xiong, K. Optimal Power Allocation with Delay Constraint for Signal Transmission From Moving Train to Base Stations in High-speed Railway Scenarios. IEEE Trans. Veh. Technol. 2015, 64, 5775–5788. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, K.; Fan, P.; Zhong, Z. RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access. 2017, 5, 9348–9358. [Google Scholar] [CrossRef]
- Sepulcre, M.; Gozalvez, J. Coordination of Congestion and Awareness Control in Vehicular Networks. Electronics 2018, 7, 335. [Google Scholar] [CrossRef]
- Samaraweera, N.K.G. Non-congestion packet loss detection for TCP error recovery using wireless links. IEE Proc. Commun. 2002, 146, 222–230. [Google Scholar] [CrossRef]
- Biaz, S.; Vaidya, N.H. Discriminating Congestion Losses from Wireless Losses using Inter-Arrival Times at the Receiver. In Proceedings of the 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, ASSET’99 (Cat. No. PR00122), Richardson, TX, USA, 24–27 March 1999; pp. 10–17. [Google Scholar]
- Rowitch, D.N.; Milstein, L.B. On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes. IEEE Trans Commun. 2000, 48, 948–959. [Google Scholar] [CrossRef]
- Du, G.; Xiong, K.; Zhang, Y.; Qiu, Z. Outage Analysis and Optimization for Time Switching-based Two-Way Relaying with Energy Harvesting Relay Node. KSII Trans. Internet Inf. Syst. 2014, 9, 545–563. [Google Scholar]
- Xiong, K.; Fan, P.; Yi, S.; Lei, M. Network coding-aware cooperative relaying for downlink cellular relay networks. China Commun. 2013, 10, 44–56. [Google Scholar] [CrossRef]
- Buchholcz, G.; Ziegler, T.; Do, T.V. TCP-ELN: On the protocol aspects and performance of explicit loss notification for TCP over wireless networks. In Proceedings of the First International Conference on Wireless Internet (WICON’05), Budapest, Hungary, 10–15 July 2005. [Google Scholar]
- Tobe, Y.; Tamura, Y.; Molano, A. Achieving moderate fairness for UDP flows by path-status classification. In Proceedings of the 25th Annual IEEE Conference on Local Computer Networks, LCN 2000, Tampa, FL, USA, 8–10 November 2000; p. 252. [Google Scholar]
- Fonseca, N.; Crovella, M. Bayesian packet loss detection for TCP. In Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; Volume 3, pp. 1826–1837. [Google Scholar]
- Tan, P.N.; Michael, S.; Vipin, K. Introduction to Data Mining, 2nd ed.; The People’s Posts and Telecommunications Press: Beijing, China, 2011. [Google Scholar]
- Chiu, D.M.; Jain, R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 1989, 17, 1–14. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Link bandwidth | 10 Mbps |
Link delay | 1 ms |
Bottleneck link bandwidth | 2 Mbps |
Bottleneck link delay | 10 ms |
Packet size | 1000 Bytes |
Wireless error rate | 0.01–0.05 |
Router cache | 62 |
Number of samples | 1000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lu, L.; Yu, X.; Li, X. Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher. Electronics 2019, 8, 134. https://doi.org/10.3390/electronics8020134
Chen Y, Lu L, Yu X, Li X. Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher. Electronics. 2019; 8(2):134. https://doi.org/10.3390/electronics8020134
Chicago/Turabian StyleChen, Yating, Lingyun Lu, Xiaohan Yu, and Xiang Li. 2019. "Adaptive Method for Packet Loss Types in IoT: An Naive Bayes Distinguisher" Electronics 8, no. 2: 134. https://doi.org/10.3390/electronics8020134