Hereditary Aortopathies as Cause of Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Medicine
Abstract
:1. Introduction
2. Hereditary Aortopathies
2.1. Pathogenesis
2.2. Histopathology
- Accumulation of mucoid extracellular matrix (MEMA);
- Fragmentation and/or loss of elastic fibres;
- Thinning of elastic fibres;
- Disorganization of elastic fibres;
- Loss of smooth muscle cell nuclei;
- Medial laminar collapse;
- Disorganization of smooth muscle cells;
- Medial fibrosis.
2.3. Classification
3. Syndromic Hereditary Aortopathies
3.1. Marfan Syndrome
3.2. Loeys–Dietz Syndrome
3.3. Vascular Ehlers–Danlos Syndrome
4. Non-Syndromic Hereditary Aortopathies
4.1. Non-Syndromic Familial Thoracic Aortic Aneurysm and Dissection
4.2. Non-Syndromic Bicuspid Aortic Valve
5. Molecular Autopsy and Prevention Strategies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hunter-Adamson, L.; Tierney, S. Echogenomics: Echocardiography in Heritable Aortopathies. Curr. Cardiol. Rep. 2024, 26, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.C.; Sandhu, H.K.; Ikeno, Y.; Tanaka, A. Heritable thoracic aortic disease: A literature review on genetic aortopathies and current surgical management. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.J.; Syed, M.B.J.; Aitman, T.J.; Newby, D.E.; Walker, N.L. Inherited Thoracic Aortic Disease: New Insights and Translational Targets. Circulation 2020, 141, 1570–1587. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J., 3rd; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022, 146, e334–e482. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Mason-Suares, H.; Brockman, D.; Wang, M.; VanDenburgh, M.J.; Senol-Cosar, O.; Patterson, C.; Newton-Cheh, C.; Zekavat, S.M.; Pester, J.; et al. Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. J. Am. Coll. Cardiol. 2019, 74, 2623–2634. [Google Scholar] [CrossRef]
- Kelly, K.L.; Lin, P.T.; Basso, C.; Bois, M.; Buja, L.M.; Cohle, S.D.; d’Amati, G.; Duncanson, E.; Fallon, J.T.; Firchau, D.; et al. Sudden cardiac death in the young: A consensus statement on recommended practices for cardiac examination by pathologists from the Society for Cardiovascular Pathology. Cardiovasc. Pathol 2023, 63, 107497. [Google Scholar] [CrossRef]
- Salzillo, C.; Sansone, V.; Napolitano, F. Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Autopsy. Curr. Issues Mol. Biol. 2024, 46, 3313–3327. [Google Scholar] [CrossRef]
- Patel, M.A.; Malhotra, A.; Mpondo, F.H.M.; Gupta, V.; Jain, R.; Gupta, S.; Jain, R. Sudden cardiac death in the adolescent population: A narrative review. Egypt. J. Intern. Med. 2023, 35, 36. [Google Scholar] [CrossRef]
- DeWitt, E.; Etheridge, S.P. Sudden Cardiac Death in Adolescents: Allowing the Dead to Speak. J. Am. Coll. Cardiol. 2023, 81, 1018–1020. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Valentini, F.; Pistoresi, S.; Frascaro, F.; Piu, P.; Cavigli, L.; Valente, S.; Focardi, M.; Cameli, M.; Bonifazi, M.; et al. Causes of sudden cardiac death in young athletes and non-athletes: Systematic review and meta-analysis: Sudden cardiac death in the young. Trends Cardiovasc. Med. 2022, 32, 299–308. [Google Scholar] [CrossRef]
- Finocchiaro, G.; Westaby, J.; Sheppard, M.N.; Papadakis, M.; Sharma, S. Sudden Cardiac Death in Young Athletes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 83, 350–370. [Google Scholar] [CrossRef] [PubMed]
- Isbister, J.; Semsarian, C. Sudden cardiac death: An update. Intern. Med. J. 2019, 49, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Thiene, G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc. Res. 2001, 50, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Risgaard, B. Sudden cardiac death: A nationwide cohort study among the young. Dan. Med. J. 2016, 63, B5321. [Google Scholar] [PubMed]
- Wang, S.; Chen, Y.; Du, J.; Wang, Z.; Lin, Z.; Hong, G.; Qu, D.; Shen, Y.; Li, L. Post-mortem genetic analysis of sudden unexplained death in a young cohort: A whole-exome sequencing study. Int. J. Leg. Med. 2023, 137, 1661–1670. [Google Scholar] [CrossRef]
- Salmasi, M.Y.; Alwis, S.; Cyclewala, S.; Jarral, O.A.; Mohamed, H.; Mozalbat, D.; Nienaber, C.A.; Athanasiou, T.; Morris-Rosendahl, D. Members of the London Aortic Mechanobiology Working Group. The genetic basis of thoracic aortic disease: The future of aneurysm classification? Hell. J. Cardiol. HJC Hell. Kardiol. Ep. 2023, 69, 41–50. [Google Scholar] [CrossRef]
- Ostberg, N.P.; Zafar, M.A.; Ziganshin, B.A.; Elefteriades, J.A. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules 2020, 10, 182. [Google Scholar] [CrossRef]
- Goyal, A.; Keramati, A.R.; Czarny, M.J.; Resar, J.R.; Mani, A. The Genetics of Aortopathies in Clinical Cardiology. Clinical Medicine Insights. Cardiology 2017, 11, 1179546817709787. [Google Scholar]
- Biernacka, E.K.; Osadnik, T.; Bilińska, Z.T.; Krawczyński, M.; Latos-Bieleńska, A.; Łaczmańska, I.; Miszczak-Knecht, M.; Płoski, R.; Ponińska, J.K.; Prejbisz, A.; et al. Genetic testing for inherited cardiovascular diseases. A position statement of the Polish Cardiac Society endorsed by Polish Society of Human Genetics and Cardiovascular Patient Communities. Kardiol. Pol. 2024, 82, 569–593. [Google Scholar] [CrossRef]
- Halushka, M.K.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Bruneval, P.; Buja, L.M.; Butany, J.; d’Amati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases—Nomenclature and diagnostic criteria. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2016, 25, 247–257. [Google Scholar] [CrossRef]
- Salik, I.; Rawla, P. Marfan Syndrome. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2023. [Google Scholar]
- Spencer, M. Marfan syndrome. Nursing 2024, 54, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Marelli, S.; Micaglio, E.; Taurino, J.; Salvi, P.; Rurali, E.; Perrucci, G.L.; Dolci, C.; Udugampolage, N.S.; Caruso, R.; Gentilini, D.; et al. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics 2023, 13, 2284. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhang, D.; Zhuang, Y.; Xia, Q.; Wen, T.; Jia, H. The Molecular Genetics of Marfan Syndrome. Int. J. Med. Sci. 2021, 18, 2752–2766. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Wanjari, A. Cardiac Complications in Marfan Syndrome: A Review. Cureus 2022, 14, e29800. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef]
- Vanem, T.T.; Geiran, O.R.; Krohg-Sørensen, K.; Røe, C.; Paus, B.; Rand-Hendriksen, S. Survival causes of death, and cardiovascular events in patients with Marfan syndrome. Mol. Genet. Genom. Med. 2018, 6, 1114–1123. [Google Scholar] [CrossRef]
- Coelho, S.G.; Almeida, A.G. Marfan syndrome revisited: From genetics to the clinic. Síndrome de Marfan revisitada—Da genética à clínica. Rev. Port. De Cardiol. 2020, 39, 215–226. [Google Scholar] [CrossRef]
- Monda, E.; Caiazza, M.; Limongelli, G. The role of genetic testing in Marfan syndrome. Curr. Opin. Cardiol. 2024, 39, 162–169. [Google Scholar] [CrossRef]
- Asta, L.; D’Angelo, G.A.; Marinelli, D.; Benedetto, U. Genetic Basis, New Diagnostic Approaches, and Updated Therapeutic Strategies of the Syndromic Aortic Diseases: Marfan, Loeys-Dietz, and Vascular Ehlers-Danlos Syndrome. Int. J. Environ. Res. Public Health 2023, 20, 6615. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Yagi, H.; Hara, H.; Fujiwara, T.; Fujita, D.; Nawata, K.; Inuzuka, R.; Taniguchi, Y.; Harada, M.; Toko, H.; et al. Pathophysiology and Management of Cardiovascular Manifestations in Marfan and Loeys-Dietz Syndromes. Int. Heart J. 2016, 57, 271–277. [Google Scholar] [CrossRef]
- Zeigler, S.M.; Sloan, B.; Jones, J.A. Pathophysiology and Pathogenesis of Marfan Syndrome. Adv. Exp. Med. Biol. 2021, 1348, 185–206. [Google Scholar] [PubMed]
- Velchev, J.D.; Van Laer, L.; Luyckx, I.; Dietz, H.; Loeys, B. Loeys-Dietz Syndrome. Adv. Exp. Med. Biol. 2021, 1348, 251–264. [Google Scholar] [PubMed]
- Gouda, P.; Kay, R.; Habib, M.; Aziz, A.; Aziza, E.; Welsh, R. Clinical features and complications of Loeys-Dietz syndrome: A systematic review. Int. J. Cardiol. 2022, 362, 158–167. [Google Scholar] [CrossRef]
- Dey, S.; Cheikhali, R.; Frishman, W.H.; Aronow, W.S. Genetic Problems, Diagnosis, and Cardiovascular Manifestations of Loeys-Dietz Syndrome. Cardiol. Rev. 2024, 32, 513–518. [Google Scholar] [CrossRef]
- Fusco, A.; Mauriello, A.; Lioncino, M.; Palmiero, G.; Fratta, F.; Granato, C.; Cirillo, A.; Caiazza, M.; Monda, E.; Credendino, A.; et al. The Heart Muscle and Valve Involvement in Marfan Syndrome, Loeys-Dietz Syndromes, and Collagenopathies. Heart Fail. Clin. 2022, 18, 165–175. [Google Scholar] [CrossRef]
- Chmielewski, P.; Ponińska, J.K.; Michalak, E.; Michałowska, I.; Kowalik, I.; Truszkowska, G.; Kugaudo, M.; Minota, I.; Stawiński, P.; Płoski, R.; et al. Cardiovascular involvement and prognosis in Loeys-Dietz syndrome. Kardiol. Pol. 2023, 81, 1096–1102. [Google Scholar] [CrossRef]
- Malyuk, D.F.; Campeau, N.; Benson, J.C. Loeys-Dietz syndrome: Case report and review of the literature. Radiol. Case Rep. 2021, 17, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Micha, D.; Guo, D.C.; Hilhorst-Hofstee, Y.; van Kooten, F.; Atmaja, D.; Overwater, E.; Cayami, F.K.; Regalado, E.S.; van Uffelen, R.; Venselaar, H.; et al. SMAD2 Mutations Are Associated with Arterial Aneurysms and Dissections. Hum. Mutat. 2015, 36, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.M.; Hernandez, M.; Johnson, D.S.; Green, C.; Kammin, T.; Baker, D.; Keigwin, S.; Makino, S.; Taylor, N.; Watson, O.; et al. Diagnosis and management of vascular Ehlers-Danlos syndrome: Experience of the UK national diagnostic service, Sheffield. Eur. J. Hum. Genet. EJHG 2023, 31, 749–760. [Google Scholar] [CrossRef]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am. J. Med. Genetics. Part C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef]
- Alqahtani, M.; Claudinot, A.; Gaudry, M.; Bartoli, A.; Barral, P.A.; Vidal, V.; Boyer, L.; Busa, T.; Cadour, F.; Jacquier, A.; et al. Endovascular Management of Vascular Complications in Ehlers-Danlos Syndrome Type IV. J. Clin. Med. 2022, 11, 6344. [Google Scholar] [CrossRef] [PubMed]
- Demirdas, S.; van den Bersselaar, L.M.; Lechner, R.; Bos, J.; Alsters, S.I.M.; Baars, M.J.H.; Baas, A.F.; Baysal, Ö.; van der Crabben, S.N.; Dulfer, E.; et al. Vascular Ehlers-Danlos Syndrome: A Comprehensive Natural History Study in a Dutch National Cohort of 142 Patients. Circulation. Genom. Precis. Med. 2024, 17, e003978. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.S.; Marçal, R.; Moldovan, O.; Carvalho, L.; Ducla-Soares, J.L. Cardiovascular manifestations of type IV Ehlers-Danlos syndrome—A case report. Port. J. Cardiol. Off. J. Port. Soc. Cardiol. 2022, 41, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Byers, P.H.; Belmont, J.; Black, J.; De Backer, J.; Frank, M.; Jeunemaitre, X.; Johnson, D.; Pepin, M.; Robert, L.; Sanders, L.; et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2017, 175, 40–47. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef]
- Pepin, M.G.; Schwarze, U.; Rice, K.M.; Liu, M.; Leistritz, D.; Byers, P.H. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet. Med. Off. J. Am. Coll. Med. Genet. 2014, 16, 881–888. [Google Scholar] [CrossRef]
- Jørgensen, A.; Fagerheim, T.; Rand-Hendriksen, S.; Lunde, P.I.; Vorren, T.O.; Pepin, M.G.; Leistritz, D.F.; Byers, P.H. Vascular Ehlers-Danlos Syndrome in siblings with biallelic COL3A1 sequence variants and marked clinical variability in the extended family. Eur. J. Hum. Genet. EJHG 2015, 23, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, A.J.; Ziganshin, B.A.; Elefteriades, J.A. Human aortic aneurysm genomic dictionary: Is it possible? Indian J. Thorac. Cardiovasc. Surg. 2019, 35 (Suppl. S2), 57–66. [Google Scholar] [CrossRef]
- Pomianowski, P.; Elefteriades, J.A. The genetics and genomics of thoracic aortic disease. Ann. Cardiothorac. Surg. 2013, 2, 271–279. [Google Scholar]
- Takeda, N.; Komuro, I. Genetic basis of hereditary thoracic aortic aneurysms and dissections. J. Cardiol. 2019, 74, 136–143. [Google Scholar] [CrossRef]
- Caruana, M.; Baars, M.J.; Bashiardes, E.; Benke, K.; Björck, E.; Codreanu, A.; de Moya Rubio, E.; Dumfarth, J.; Evangelista, A.; Groenink, M.; et al. HTAD patient pathway: Strategy for diagnostic work-up of patients and families with (suspected) heritable thoracic aortic diseases (HTAD). A statement from the HTAD working group of VASCERN. Eur. J. Med. Genet. 2023, 66, 104673. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, A. Familial Nonsyndromic Thoracic Aortic Aneurysms: Unraveling the Mystery and Defining Long-Term Outcome. J. Am. Coll. Cardiol. 2016, 67, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Renard, M.; Francis, C.; Ghosh, R.; Scott, A.F.; Witmer, P.D.; Adès, L.C.; Andelfinger, G.U.; Arnaud, P.; Boileau, C.; Callewaert, B.L.; et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J. Am. Coll. Cardiol. 2018, 72, 605–615. [Google Scholar] [CrossRef]
- Weerakkody, R.; Ross, D.; Parry, D.A.; Ziganshin, B.; Vandrovcova, J.; Gampawar, P.; Abdullah, A.; Biggs, J.; Dumfarth, J.; Ibrahim, Y.; et al. Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018, 20, 1414–1422. [Google Scholar] [CrossRef]
- Robertson, E.N.; van der Linde, D.; Sherrah, A.G.; Vallely, M.P.; Wilson, M.; Bannon, P.G.; Jeremy, R.W. Familial non-syndromal thoracic aortic aneurysms and dissections—Incidence and family screening outcomes. Int. J. Cardiol. 2016, 220, 43–51. [Google Scholar] [CrossRef]
- Verstraeten, A.; Luyckx, I.; Loeys, B. Aetiology and management of hereditary aortopathy. Nat. Rev. Cardiol. 2017, 14, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, D.C.; Cao, J.; Gong, L.; Kamm, K.E.; Regalado, E.; Li, L.; Shete, S.; He, W.Q.; Zhu, M.S.; et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am. J. Hum. Genet. 2010, 87, 701–707. [Google Scholar] [CrossRef]
- Guo, D.C.; Regalado, E.; Casteel, D.E.; Santos-Cortez, R.L.; Gong, L.; Kim, J.J.; Dyack, S.; Horne, S.G.; Chang, G.; Jondeau, G.; et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am. J. Hum. Genet. 2013, 93, 398–404. [Google Scholar] [CrossRef]
- Guo, D.C.; Regalado, E.S.; Gong, L.; Duan, X.; Santos-Cortez, R.L.; Arnaud, P.; Ren, Z.; Cai, B.; Hostetler, E.M.; Moran, R.; et al. LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections. Circ. Res. 2016, 118, 928–934. [Google Scholar] [CrossRef]
- Mubarik, A.; Sharma, S.; Law, M.A. Bicuspid Aortic Valve. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2023. [Google Scholar]
- Kalra, A.; Das, R.; Alkhalil, M.; Dykun, I.; Candreva, A.; Jarral, O.; Rehman, S.M.; Majmundar, M.; Patel, K.N.; Rodes-Cabau, J.; et al. Bicuspid Aortic Valve Disease: Classifications, Treatments, and Emerging Transcatheter Paradigms. Struct. Heart J. Heart Team 2023, 8, 100227. [Google Scholar] [CrossRef]
- Verma, R.; Cohen, G.; Colbert, J.; Fedak, P.W.M. Bicuspid aortic valve associated aortopathy: 2022 guideline update. Curr. Opin. Cardiol. 2023, 38, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G.; Rizzo, S.; Basso, C. Bicuspid aortic valve: The most frequent and not so benign congenital heart disease. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2024, 70, 107604. [Google Scholar] [CrossRef] [PubMed]
- Sillesen, A.S.; Vøgg, O.; Pihl, C.; Raja, A.A.; Sundberg, K.; Vedel, C.; Zingenberg, H.; Jørgensen, F.S.; Vejlstrup, N.; Iversen, K.; et al. Prevalence of Bicuspid Aortic Valve and Associated Aortopathy in Newborns in Copenhagen, Denmark. JAMA 2021, 325, 561–567. [Google Scholar] [CrossRef]
- Bravo-Jaimes, K.; Prakash, S.K. Genetics in bicuspid aortic valve disease: Where are we? Prog. Cardiovasc. Dis. 2020, 63, 398–406. [Google Scholar] [CrossRef]
- Kostina, A.; Shishkova, A.; Ignatieva, E.; Irtyuga, O.; Bogdanova, M.; Levchuk, K.; Golovkin, A.; Zhiduleva, E.; Uspenskiy, V.; Moiseeva, O.; et al. Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. J. Mol. Cell. Cardiol. 2018, 114, 211–219. [Google Scholar] [CrossRef]
- Preuss, C.; Capredon, M.; Wünnemann, F.; Chetaille, P.; Prince, A.; Godard, B.; Leclerc, S.; Sobreira, N.; Ling, H.; Awadalla, P.; et al. Family Based Whole Exome Sequencing Reveals the Multifaceted Role of Notch Signaling in Congenital Heart Disease. PLoS Genet. 2016, 12, e1006335. [Google Scholar] [CrossRef] [PubMed]
- Mozzini, C.; Girelli, D.; Cominacini, L.; Soresi, M. An Exploratory Look at Bicuspid Aortic Valve (Bav) Aortopathy: Focus on Molecular and Cellular Mechanisms. Curr. Probl. Cardiol. 2021, 46, 100425. [Google Scholar] [CrossRef]
- Tortora, G.; Wischmeijer, A.; Berretta, P.; Alfonsi, J.; Di Marco, L.; Barbieri, A.; Marconi, C.; Isidori, F.; Rossi, C.; Leone, O.; et al. Search for genetic factors in bicuspid aortic valve disease: ACTA2 mutations do not play a major role. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 813–817. [Google Scholar] [CrossRef]
- Roifman, M.; Chung, B.H.Y.; Reid, D.M.; Teitelbaum, R.; Martin, N.; Nield, L.E.; Thompson, M.; Shannon, P.; Chitayat, D. Heterozygous NOTCH1 deletion associated with variable congenital heart defects. Clin. Genet. 2021, 99, 836–841. [Google Scholar] [CrossRef]
- Laforest, B.; Nemer, M. GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev. Biol. 2011, 358, 368–378. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Yerushalmy-Feler, A.; Rojas, I.; Phen, C.; Rudnick, D.A.; Flahive, C.B.; Erdman, S.H.; Magen-Rimon, R.; Copova, I.; Attard, T.; et al. Juvenile polyposis syndrome in children: The impact of SMAD4 and BMPR1A mutations on clinical phenotype and polyp burden. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, L.; Xiao, Z.; Lv, J.; Huang, H.; Wu, B.; Zhao, T.; Li, C.; Wang, W.; Wang, H. Deamidation enables pathogenic SMAD6 variants to activate the BMP signaling pathway. Sci. China Life Sci. 2024, 67, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, O.; Sarquella-Brugada, G. Molecular autopsy in sudden cardiac death. Glob. Cardiol. Sci. Pract. 2023, 2023, e202308. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar]
- Scheiper-Welling, S.; Tabunscik, M.; Gross, T.E.; Jenewein, T.; Beckmann, B.M.; Niess, C.; Gradhand, E.; Wunder, C.; Schneider, P.M.; Rothschild, M.A.; et al. Variant interpretation in molecular autopsy: A useful dilemma. Int. J. Leg. Med. 2022, 136, 475–482. [Google Scholar] [CrossRef]
- de Boer, H.H.; Dedouit, F.; Chappex, N.; van der Wal, A.C.; Michaud, K. Sudden aortic death-proposal for a comprehensive diagnostic approach in forensic and in clinical pathology practice. Int. J. Leg. Med. 2017, 131, 1565–1572. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Harrison, S.M. ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018, 20, 1687–1688. [Google Scholar]
Hereditary Aortopathy | Pathogenic Variants | Cardiac Alterations | Cardiac Complications |
---|---|---|---|
Syndromic hereditary aortopathies | |||
Marfan Syndrome | FBN1 (90%) TGFBR1 TGFBR2 | Mitral and tricuspid valve prolapse with valvular insufficiency and aortic dilation up to aneurysm | Dissection and rupture of the aorta and sudden cardiac death |
Loeys–Dietz Syndrome | TGFBR1 TGFBR2 SMAD2 SMAD3 TGFB2 TGFB3 | Dilatation of the aortic root at the sinuses of Valsalva | Dissection and rupture of the aorta and sudden cardiac death |
Vascular Ehlers–Danlos syndrome | COL3A1 | Mitral valve with valvular insufficiency, dilation and aortic aneurysm, and rupture of small- and medium-calibre vessels | Dissection and rupture of the aorta and sudden cardiac death |
Non-Syndromic hereditary aortopathies | |||
Non-syndromic familial thoracic aortic aneurysm and dissection | ACTA2 MYH11 MYLK PRKG1 LOX | Thoracic aortic aneurysm | Dissection and rupture of the aorta and sudden cardiac death |
Non-syndromic bicuspid aortic valve | NOTCH1 GATA4–6 SMAD4 SMAD6 ROBO4 ACTA2 FBN1 | Ascending aortic dilation, coarctation of the aorta, and aortic aneurysm | Dissection and rupture of the aorta and sudden cardiac death |
Syndrome | Epidemiology | Hereditary Transmission | Pathogenic Variants | Cardiovascular Manifestations |
Histological Features |
---|---|---|---|---|---|
Marfan syndrome (MFS) | Most frequent monogenic malformation syndrome, incidence 1:3000–1:5000, without differences between sex or ethnic groups; the average life expectancy of patients is about 40 years | Autosomally dominant, de novo mutations in 25% of cases, high penetrance | FBN1 (90%), encoding fibrillin-1, TGFBR1, TGFBR2 | Mitral prolapse, mitral insufficiency, ascending aortic dilation, aortic aneurysm, aortic dissection, aortic insufficiency, sudden cardiac death | Areas of cystic degeneration of the aortic media caused by translamellar MEMA, with loss of smooth muscle cells and fragmentation of elastic fibres |
Loeys-Dietz syndrome (LDS) | Rare disease, incidence and prevalence are unknown, it can occur in both sexes and in different ethnic groups | Autosomally dominant, with frequent de novo mutations | TGFBR1, TGFBR2, SMAD2, SMAD3, TGFB2, TGFB3 | Mitral prolapse, aortic root aneurysm, aortic dissection, arterial tortuosity, cardiomyopathy, atrial defects, sudden cardiac death | Areas of cystic degeneration of the tunica media of the aorta caused by MEMA predominantly of the intralamellar type, with loss of smooth muscle cells, fragmentation and disorganization of elastic fibres |
Vascular Ehlers-Danlos syndrome (VEDS) | Extremely rare, prevalence 1/50,000 to 200,000, no gender predominance, sudden death may occur before the age of 20 and is more common in males | Autosomally dominant, high penetrance | COL3A1, encoding type III collagen, COL1A1 rare and causes similar phenotypes | Mitral regurgitation, aortic aneurysm, aortic dissection and rupture, spontaneous arterial rupture, sudden cardiac death | Areas of cystic degeneration of the tunica media of the aorta caused by translamellar-type MEMA |
Syndrome | Epidemiology | Hereditary Transmission | Pathogenic Variants | Cardiovascular Manifestations | Histological Features |
---|---|---|---|---|---|
Non-syndromic thoracic aortic aneurysm and dissection (NS-TAAD) | Rare, incidence unknown | Autosomally dominant, variable penetrance | ACTA2, MYH11, MYLK, PRKG1, LOX | Aortic dilation, aortic dissection, aortic rupture, sudden cardiac death | Medial degeneration and fragmentation and loss of elastic fibres |
Bicuspid aortic valve (BAV) | Most frequent congenital cardiac anomalies, prevalence between 0.5% and 0.77% | Autosomally dominant, incomplete penetrance, variable expressivity | NOTCH1, GATA4–6, SMAD4, SMAD6, ROBO4, ACTA2, FBN1 | Valvular incompetence, valvular stenosis, infective endocarditis, ascending aortic dilation, coarctation of the aorta, aortic aneurysm, aortic dissection, aortic rupture, sudden cardiac death | Fibrosis and calcification of the cusps, the endothelium lining the valve may be thickened and irregular, with an abnormal distribution of the valve interstitial cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salzillo, C.; Marzullo, A. Hereditary Aortopathies as Cause of Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Medicine. Diseases 2024, 12, 264. https://doi.org/10.3390/diseases12110264
Salzillo C, Marzullo A. Hereditary Aortopathies as Cause of Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Medicine. Diseases. 2024; 12(11):264. https://doi.org/10.3390/diseases12110264
Chicago/Turabian StyleSalzillo, Cecilia, and Andrea Marzullo. 2024. "Hereditary Aortopathies as Cause of Sudden Cardiac Death in the Young: State-of-the-Art Review in Molecular Medicine" Diseases 12, no. 11: 264. https://doi.org/10.3390/diseases12110264