Galaxy Group Ellipticity Confirms a Younger Cosmos
Abstract
:1. Introduction
2. Galaxy Group Samples in Observation and Simulation
3. Ellipticity of Galaxy Groups
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDM | Lambda cold dark matter |
FOF | Friends-of-friends |
MCMC | Markov Chain Monte Carlo |
WDM | Warm dark matter |
JWST | James Webb Space Telescope |
SDSS | loan Digital Sky Survey |
References
- Doroshkevich, A.G.; Kotok, E.V.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.; Novikov, I.D. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe. Mon. Not. R. Astron. Soc. 1980, 192, 321. [Google Scholar] [CrossRef]
- Klypin, A.A.; Shandarin, S.F. Three-dimensional numerical model of the formation of large-scale structure in the Universe. Mon. Not. R. Astron. Soc. 1983, 204, 891. [Google Scholar] [CrossRef]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371. [Google Scholar] [CrossRef]
- Gramann, M. An Improved Reconstruction Method for Cosmological Density Fields. Astrophys. J. 1993, 405, 449. [Google Scholar] [CrossRef]
- Sheth, R.K.; van de Weygaert, R. A hierarchy of voids: Much ado about nothing. Mon. Not. R. Astron. Soc. 2004, 350, 517. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Cen, R. Hydrodynamic Simulations of the Growth of Cosmological Structure: Summary and Comparisons among Scenarios. Astrophys. J. 1996, 464, 27. [Google Scholar] [CrossRef]
- Tempel, E. Cosmology: Meet the Laniakea supercluster. Nature 2014, 513, 41. [Google Scholar] [CrossRef] [PubMed]
- Tempel, E.; Tamm, A. Galaxy pairs align with Galactic filaments. A&A 2015, 576L, 5. [Google Scholar]
- Rong, Y.; Shen, J.; Hua, Z. Galaxy triplets alignment in large-scale filaments. Mon. Not. R. Astron. Soc. 2024, 531L, 9. [Google Scholar] [CrossRef]
- Cautun, M.; van de Weygaert, R.; Jones, B.J.T.; Frenk, C.S. Evolution of the cosmic web. Mon. Not. R. Astron. Soc. 2014, 441, 2923. [Google Scholar] [CrossRef]
- Tully, R.B.; Courtois, H.; Hoffman, Y.; Pomarède, D. The Laniakea supercluster of galaxies. Nature 2014, 513, 71. [Google Scholar] [CrossRef]
- Karachentsev, I.D.; Karachentseva, V.E.; Nasonova, O.G. Motions of Galaxies in the Bootes Strip. Astrophysics 2014, 57, 457. [Google Scholar] [CrossRef]
- Gu, Q.; Guo, Q.; Cautun, M.; Shao, S.; Pei, W.; Wang, W.; Gao, L.; Wang, J. A younger Universe implied by satellite pair correlations from SDSS observations of massive galaxy groups. Nat. Astron. 2024, 8, 538. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Bahcall, N.A.; Bode, P. Cluster Alignments and Ellipticities in ΛCDM Cosmology. Astrophys. J. 2005, 618, 1. [Google Scholar] [CrossRef]
- Allgood, B.; Flores, R.A.; Primack, J.R.; Kravtsov, A.V.; Wechsler, R.H.; Faltenbacher, A.; Bullock, J.S. The shape of dark matter haloes: Dependence on mass, redshift, radius and formation. Mon. Not. R. Astron. Soc. 2006, 367, 1781. [Google Scholar] [CrossRef]
- Rong, Y.; Yi, S.-X.; Zhang, S.-N.; Tu, H. Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies. Mon. Not. R. Astron. Soc. 2015, 451, 2536. [Google Scholar] [CrossRef]
- Rong, Y.; Zhang, S.-N.; Liao, J.-Y. Primordial alignment of elliptical galaxies in intermediate redshift clusters. Mon. Not. R. Astron. Soc. 2015, 453, 1577. [Google Scholar] [CrossRef]
- Rong, Y.; Zhang, S.-N.; Liao, J.-Y. Galaxy alignment as a probe of large-scale filaments. Mon. Not. R. Astron. Soc. 2016, 455, 2267. [Google Scholar] [CrossRef]
- Rong, Y.; Zhang, S.-N.; Liao, J.-Y. The Next Generation Fornax Survey (NGFS). VI. The Alignment of Dwarf Galaxies in the Fornax Cluster. Astrophys. J. 2019, 883, 56. [Google Scholar] [CrossRef]
- Rong, Y.; Zhang, S.-N.; Liao, J.-Y. Exploring the origin of ultra-diffuse galaxies in clusters from their primordial alignment. Mon. Not. R. Astron. Soc. 2020, 498L, 72. [Google Scholar] [CrossRef]
- Hammer, F.; Yang, Y.; Fouquet, S.; Pawlowski, M.S.; Kroupa, P.; Puech, M.; Flores, H.; Wang, J. The vast thin plane of M31 corotating dwarfs: An additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group. Mon. Not. R. Astron. Soc. 2013, 431, 3543. [Google Scholar] [CrossRef]
- Smith, R.; Duc, P.A.; Bournaud, F.; Yi, S.K. A Formation Scenario for the Disk of Satellites: Accretion of Satellites during Mergers. Astrophys. J. 2016, 818, 11. [Google Scholar] [CrossRef]
- Banik, I.; Thies, I.; Truelove, R.C.; lish, G.; Famaey, B.; Pawlowski, M.S.; Ibata, R.; Kroupa, P. 3D hydrodynamic simulations for the formation of the Local Group satellite planes. Mon. Not. R. Astron. Soc. 2022, 513, 129. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Frenk, C.S.; Cole, S.; Helly, J.C.; Jenkins, A.; Navarro, J.F.; Power, C. The distribution of satellite galaxies: The great pancake. Mon. Not. R. Astron. Soc. 2005, 363, 146. [Google Scholar] [CrossRef]
- Libeskind, N.I.; Knebe, A.; Hoffman, Y.; Gottlöber, S. The universal nature of subhalo accretion. Mon. Not. R. Astron. Soc. 2014, 443, 1274. [Google Scholar] [CrossRef]
- Buck, T.; Maccio, A.V.; Dutton, A.A. Evidence for Early Filamentary Accretion from the Andromeda Galaxy’s Thin Plane of Satellites. Astrophys. J. 2015, 809, 49. [Google Scholar] [CrossRef]
- Shao, S.; Cautun, M.; Frenk, C.S.; Gr, R.J.; Gómez, F.A.; Marinacci, F.; Simpson, C.M. The multiplicity and anisotropy of galactic satellite accretion. Mon. Not. R. Astron. Soc. 2018, 476, 1796. [Google Scholar] [CrossRef]
- Trofimov, A.V.; Chernin, A.D. Wide triplets of galaxies and the problem of hidden mass. AZh 1995, 72, 308. [Google Scholar]
- Weißmann, A.; Böhringer, H.; Chon, G. Probing the evolution of the substructure frequency in galaxy clusters up to z∼1. A&A 2013, 555, 147. [Google Scholar]
- Mann, A.W.; Ebeling, H. X-ray-optical classification of cluster mergers and the evolution of the cluster merger fraction. Mon. Not. R. Astron. Soc. 2012, 420, 2120. [Google Scholar] [CrossRef]
- Maughan, B.J.; Forman, C.J.; Van Speybroeck, L. Images, Structural Properties, and Metal Abundances of Galaxy Clusters Observed with Chandra ACIS-I at 0.1 < z < 1.3. Astrophys. J. Suppl. Ser. 2008, 174, 117. [Google Scholar]
- Hashimoto, Y.; Böhringer, H.; Henry, J.P.; Hasinger, G.; Szokoly, G. Robust quantitative measures of cluster X-ray morphology, and comparisons between cluster characteristics. A&A 2007, 467, 485. [Google Scholar]
- Bauer, F.E.; Fabin, A.C.S.; Er, J.S.; Allen, S.W.; Johnstone, R.M. The prevalence of cooling cores in clusters of galaxies at z∼0.15–0.4. Mon. Not. R. Astron. Soc. 2005, 359, 1481. [Google Scholar] [CrossRef]
- Sereno, M.; Zitrin, A. Triaxial strong-lensing analysis of the z > 0.5 MACS clusters: The mass-concentration relation. Mon. Not. R. Astron. Soc. 2012, 419, 3280. [Google Scholar] [CrossRef]
- Burke, C.; Hilton, M.; Collins, C. Coevolution of brightest cluster galaxies and intracluster light using CLASH. Mon. Not. R. Astron. Soc. 2015, 449, 2353. [Google Scholar] [CrossRef]
- Postman, M.; Coe, D.; Benitez, N.; Bradley, L.; Broadhurst, T.; Donahue, M.; Ford, H.; Graur, O.; Graves, G.; Jouvel, S.; et al. The Cluster Lensing and Supernova Survey with Hubble: An Overview. Astrophys. J. Suppl. Ser. 2012, 199, 25. [Google Scholar] [CrossRef]
- Yang, X.; Mo, H.J.; van den Bosch, F.C.; Pasquali, A.; Li, C.; Barden, M. Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties. Astrophys. J. 2007, 671, 153. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Adelman-McCarthy, J.K.; Agüeros, M.A.; Allam, S.S.; Prieto, C.A.; An, D.; Anderson, K.S.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; et al. The Seventh Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 2009, 182, 543. [Google Scholar] [CrossRef]
- Blanton, M.R.; Eisenstein, D.; Hogg, D.W.; Schlegel, D.J.; Brinkmann, J. Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey. Astrophys. J. 2005, 629, 143. [Google Scholar] [CrossRef]
- Bell, E.F.; McIntosh, D.H.; Katz, N.; Weinberg, M.D. The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions. Astrophys. J. Suppl. Ser. 2003, 149, 289. [Google Scholar] [CrossRef]
- Yang, X.; Mo, H.J.; van den Bosch, F.C.; Jing, Y.P. A halo-based galaxy group finder: Calibration and application to the 2dFGRS. Mon. Not. R. Astron. Soc. 2005, 356, 1293. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Luo, W.; Mo, H.; Zhang, J.; Yang, X.; Li, H.; Li, Q. A halo-based galaxy group finder: Calibration and application to the 2dFGRS. Halo Mass-observable Proxy Scaling Relations and Their Dependencies on Galaxy and Group Properties. Astrophys. J. 2024, 960, 71. [Google Scholar] [CrossRef]
- Wang, K.; Peng, Y.; Chen, Y. Dissect two-halo galactic conformity effect for central galaxies: The dependence of star formation activities on the large-scale environment. Mon. Not. R. Astron. Soc. 2023, 523, 1268. [Google Scholar] [CrossRef]
- Shi, F.; Yang, X.; Wang, H.; Zhang, Y.; Mo, H.J.; van den Bosch, F.C.; Luo, W.; Tweed, D.; Li, S.; Liu, C.; et al. Mapping the Real Space Distributions of Galaxies in SDSS DR7. II. Measuring the Growth Rate, Clustering Amplitude of Matter, and Biases of Galaxies at Redshift 0.1. Astrophys. J. 2018, 861, 137. [Google Scholar] [CrossRef]
- Wang, E.; Wang, H.; Mo, H.; van den Bosch, F.C.; Lim, S.H.; Wang, L.; Yang, X.; Chen, S. The Dearth of Differences between Central and Satellite Galaxies. II. Comparison of Observations with L-GALAXIES and EAGLE in Star Formation Quenching. Astrophys. J. 2018, 864, 51. [Google Scholar] [CrossRef]
- Argudo-Fernández, M.; Shen, S.; Sabater, J.; Puertas, S.D.; Verley, S.; Yang, X. The effect of local and large-scale environments on nuclear activity and star formation. A&A 2016, 592A, 30. [Google Scholar]
- Henriques, B.M.B.; White, S.D.M.; Thomas, P.A.; Angulo, R.; Guo, Q.; Lemson, G.; Springel, V.; Overzier, R. Galaxy formation in the Planck cosmology—I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 2015, 451, 2663. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11. [Google Scholar] [CrossRef]
- Guo, Q.; White, S.; Boylan-Kolchin, M.; De Lucia, G.; Kauffmann, G.; Lemson, G.; Li, C.; Springel, V.; Weinmann, S. From dwarf spheroidals to cD galaxies: Simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2011, 413, 101. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.M.; Tormen, G.; Kauffmann, G. Populating a cluster of galaxies—I. Results at z = 0. Mon. Not. R. Astron. Soc. 2001, 328, 726. [Google Scholar] [CrossRef]
- Lim, S.H.; Mo, H.J.; Lu, Y.; Wang, H.; Yang, X. Galaxy groups in the low-redshift Universe. Mon. Not. R. Astron. Soc. 2017, 470, 2982. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Mo, H.J.; Li, C.; van den Bosch, F.C.; Fan, Z.; Chen, X. Probing the intrinsic shape and alignment of dark matter haloes using SDSS galaxy groups. Mon. Not. R. Astron. Soc. 2008, 385, 1511. [Google Scholar] [CrossRef]
- Wang, P.; Libeskind, N.I.; Tempel, E.; Pawlowski, M.S.; Kang, X.; Guo, Q. The Alignment of Satellite Systems with Cosmic Filaments in the SDSS DR12. Astrophys. J. 2020, 900, 129. [Google Scholar] [CrossRef]
- Shao, S.; Cautun, M.; Frenk, C.S.; Gao, L.; Crain, R.A.; Schaller, M.; Schaye, J.; Theuns, T. Alignments between galaxies, satellite systems and haloes. Mon. Not. R. Astron. Soc. 2016, 460, 3772. [Google Scholar] [CrossRef]
- Knebe, A.; Arnold, B.; Power, C.; Gibson, B.K. The dynamics of subhaloes in warm dark matter models. Mon. Not. R. Astron. Soc. 2008, 386, 1029. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. A&A 2020, 641A, 6. [Google Scholar]
- Ade, P.A. et al. [Planck Collaboration] Planck 2015 results. XIII. Cosmological parameters. A&A 2016, 594A, 13. [Google Scholar]
- Nelson, D.; Pillepich, A.; Springel, V.; Weinberger, R.; Hernquist, L.; Pakmor, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Kauffmann, G.; et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Mon. Not. R. Astron. Soc. 2018, 475, 624. [Google Scholar] [CrossRef]
- Nelson, D.; Springel, V.; Pillepich, A.; Rodriguez-Gomez, V.; Torrey, P.; Genel, S.; Vogelsberger, M.; Pakmor, R.; Marinacci, F.; Weinberger, R.; et al. The IllustrisTNG simulations: Public data release. The IllustrisTNG simulations: Public data release. Comput. Astrophys. Cosmol. 2019, 6, 2. [Google Scholar] [CrossRef]
- Llorente de Andrés, F. Some Old Globular Clusters (and Stars) Inferring That the Universe Is Older Than Commonly Accepted. Am. J. Astron. Astrophys. 2024, 11, 1. [Google Scholar] [CrossRef]
- Boyett, K.; Trenti, M.; Leethochawalit, N.; Calabró, A.; Metha, B.; Roberts-Borsani, G.; Dalmasso, N.; Yang, L.; Santini, P.; Treu, T.; et al. A massive interacting galaxy 510 million years after the Big Bang. Nat. Astron. 2024, 8, 657. [Google Scholar] [CrossRef]
- Haslbauer, M.; Kroupa, P.; Zonoozi, A.H.; Haghi, H. Has JWST Already Falsified Dark-matter-driven Galaxy Formation? Astrophys. J. 2022, 939L, 31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, Y. Galaxy Group Ellipticity Confirms a Younger Cosmos. Universe 2024, 10, 286. https://doi.org/10.3390/universe10070286
Rong Y. Galaxy Group Ellipticity Confirms a Younger Cosmos. Universe. 2024; 10(7):286. https://doi.org/10.3390/universe10070286
Chicago/Turabian StyleRong, Yu. 2024. "Galaxy Group Ellipticity Confirms a Younger Cosmos" Universe 10, no. 7: 286. https://doi.org/10.3390/universe10070286