Stochastic Tunneling in de Sitter Spacetime
Abstract
:1. Introduction
2. Stochastic Approach
2.1. Setup
2.2. Langevin Equation
2.3. Bunch–Davies Vacuum
2.4. Reduced Langevin Equation
3. Path Integral Formalism for the Stochastic Approach
3.1. MSRJD Functional Integral Representation
3.1.1. Zero-Plus-One-Dimensional Theories
3.1.2. Three-Plus-One-Dimensional Theories
3.2. Transition Probability from the Schwinger–Keldysh Formalism
- First, we derive a path integral representation of . We then split the integration variables into UV fields and IR fields such that the integration contour of UV variables of is closed; see discussions around Equation (A4) for more details4.
- We perform the integration over UV variables and evaluate an IR effective action, the so-called Feynman–Vernon influence functional [25] perturbatively.
- We substitute the obtained expression of into (37), giving rise to the path integral expression for the transition probability p.
Validity of Equation (33)
4. Hawking–Moss Tunneling
4.1. The Case for the Reduced Langevin Equation
4.2. The Case for the Full Langevin Equation
4.2.1. Remark
- The equation for (57a) is determined once is specified;
4.3. On the -Independence of the Hawking–Moss Tunneling
5. Coleman–de Luccia Tunneling
5.1. Coleman–de Luccia Bubble Solution
5.2. Discussions
5.2.1. Appropriate Choice of
Lower Bound on
Upper Bound on
Summary
5.2.2. Hawking–Moss vs. Coleman–de Luccia
5.2.3. Comparison with the Euclidean Method
5.2.4. Bubble Nucleation Hypersurface and the Subsequent Evolution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Stochastic Approach from the First Principle
Appendix A.1. Path Integral Representation
Appendix A.2. Nonperturbative Generating Functional for IR Sector
Appendix A.2.1. Integrate out Short-Wavelength Modes
Appendix A.2.2. Long-Wavelength Sector
Appendix A.3. Stochastic Interpretation of the Tunneling
Appendix B. Coleman–de Luccia Tunneling in Euclidean Method
1 | |
2 | Generally, we can choose other discretization like Stratonovich‘s discretization. This ambiguity does not affect the result since the amplitudes of the noise do not depend on fields within the range of our approximation. |
3 | Precisely, is defined in terms of the the Schrödinger picture field in momentum space as . We have suppressed the trivial time dependence stemming from the step function. |
4 | There is a subtlety that modes satisfying are initially regarded as the “UV” degrees of freedom (DoFs) while they become “IR” DoFs due to the accelerating expansion of the spacetime. However, by adopting this splitting procedure, we can use the Schwinger–Keldysh (or closed-time-path) formalism to evaluate the integration over UV variables first as usual. |
5 | This is consistent with the observation made in [6] that an HM solution corresponds to the transition over a region of a Hubble horizon volume. |
6 | Note that this behavior may motivate one to replace the term in (55) by the step function
This is the approximation adopted in [8]. |
7 | Note that we can also estimate the action I by performing the coarse-graining in time suitably and substituting the smeared expression of into the action:
|
8 | This is the reason why we illustrate flow lines in the -plane in Figure 5. |
9 | This is compatible with the condition when the weak coupling is considered. |
10 | We can also compare with the second and the third term on the RHS of (73). Such considerations do not change our estimate of in (88). |
11 | In the main text, we use the notation to write variables in momentum space. However, we adopt the notation in this appendix since we have many subscripts such as c and . |
12 | Here, is the infinitesimal time step which is introduced to obtain the path integral representation of the unitary time evolution as usual. |
13 | Precisely speaking, we need to perform the UV–IR splitting in the path integral with an infinitesimal discrete time step for deriving correctly. After taking the continuum limit, we obtain (A8); see also [23]. Furthermore, the form of depends on the model. In our case, we have
|
14 | For instance, leading-order corrections to the stochastic dynamics at the super-horizon scales are calculated in [22]. |
15 | The analytic continuation of this coordinate is examined in [5]. |
References
- Coleman, S.R. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys. Rev. D 1977, 15, 2929–2936. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Coleman, S.R.; De Luccia, F. Gravitational Effects on and of Vacuum Decay. Phys. Rev. D 1980, 21, 3305. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.G. Supercooled Phase Transitions in the Very Early Universe. Phys. Lett. B 1982, 110, 35–38. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Sibiryakov, S.M. False vacuum decay in de Sitter space-time. Theor. Math. Phys. 1999, 120, 1194–1212. [Google Scholar] [CrossRef]
- Brown, A.R.; Weinberg, E.J. Thermal derivation of the Coleman-De Luccia tunneling prescription. Phys. Rev. D 2007, 76, 064003. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Stochastic de Sitter (Inflationary) Stage in the Early Universe. Lect. Notes Phys. 1986, 246, 107–126. [Google Scholar] [CrossRef]
- Starobinsky, A.A.; Yokoyama, J. Equilibrium state of a selfinteracting scalar field in the De Sitter background. Phys. Rev. D 1994, 50, 6357–6368. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.S.; Linde, A.D.; Mukhanov, V.F. The Global Structure of the Inflationary Universe. Int. J. Mod. Phys. A 1987, 2, 561–591. [Google Scholar] [CrossRef]
- Linde, A.D. Hard art of the universe creation (stochastic approach to tunneling and baby universe formation). Nucl. Phys. B 1992, 372, 421–442. [Google Scholar] [CrossRef]
- Tolley, A.J.; Wyman, M. Stochastic tunneling in DBI inflation. J. Cosmol. Astropart. Phys. 2009, 10, 006. [Google Scholar] [CrossRef]
- Noorbala, M.; Vennin, V.; Assadullahi, H.; Firouzjahi, H.; Wands, D. Tunneling in Stochastic Inflation. J. Cosmol. Astropart. Phys. 2018, 09, 032. [Google Scholar] [CrossRef]
- Hashiba, S.; Yamada, Y.; Yokoyama, J. Particle production induced by vacuum decay in real time dynamics. Phys. Rev. D 2021, 103, 045006. [Google Scholar] [CrossRef]
- Camargo-Molina, J.E.; Rajantie, A. Phase transitions in de Sitter: The stochastic formalism. arXiv 2022, arXiv:2204.02875. [Google Scholar] [CrossRef]
- Camargo-Molina, J.E.; González, M.C.; Rajantie, A. Phase Transitions in de Sitter: Quantum Corrections. arXiv 2022, arXiv:2204.03480. [Google Scholar] [CrossRef]
- Martin, P.C.; Siggia, E.D.; Rose, H.A. Statistical Dynamics of Classical Systems. Phys. Rev. A 1973, 8, 423–437. [Google Scholar] [CrossRef]
- De Dominicis, C.; Brezin, E.; Zinn-Justin, J. Field Theoretic Techniques and Critical Dynamics. 1. Ginzburg-Landau Stochastic Models Without Energy Conservation. Phys. Rev. B 1975, 12, 4945. [Google Scholar] [CrossRef]
- Janssen, H.K. On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B Condens. Matter 1976, 23, 377–380. [Google Scholar] [CrossRef]
- De Dominicis, C.; Peliti, L. Field Theory Renormalization and Critical Dynamics Above t(c): Helium, Antiferromagnets and Liquid Gas Systems. Phys. Rev. B 1978, 18, 353–376. [Google Scholar] [CrossRef]
- Elgart, V.; Kamenev, A. Rare event statistics in reaction-diffusion systems. Phys. Rev. E 2004, 70, 041106. [Google Scholar] [CrossRef]
- Altland, A.; Simons, B.D. Condensed Matter Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Tokuda, J.; Tanaka, T. Statistical nature of infrared dynamics on de Sitter background. J. Cosmol. Astropart. Phys. 2018, 02, 014. [Google Scholar] [CrossRef]
- Tokuda, J.; Tanaka, T. Can all the infrared secular growth really be understood as increase of classical statistical variance? J. Cosmol. Astropart. Phys. 2018, 11, 022. [Google Scholar] [CrossRef]
- Morikawa, M. Dissipation and Fluctuation of Quantum Fields in Expanding Universes. Phys. Rev. D 1990, 42, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.P.; Vernon, F.L., Jr. The Theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 1963, 24, 118–173. [Google Scholar] [CrossRef]
- Weinberg, E.J. Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Weinberg, E.J. Hawking-Moss bounces and vacuum decay rates. Phys. Rev. Lett. 2007, 98, 251303. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.G.; Steinhardt, P.J. Bubble Nucleation and the Coleman-Weinberg Model. Nucl. Phys. B 1984, 237, 176–188. [Google Scholar] [CrossRef]
- Jensen, L.G.; Steinhardt, P.J. Bubble Nucleation for Flat Potential Barriers. Nucl. Phys. B 1989, 317, 693–705. [Google Scholar] [CrossRef]
- Hackworth, J.C.; Weinberg, E.J. Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime. Phys. Rev. D 2005, 71, 044014. [Google Scholar] [CrossRef]
- Batra, P.; Kleban, M. Transitions Between de Sitter Minima. Phys. Rev. D 2007, 76, 103510. [Google Scholar] [CrossRef]
- Braden, J.; Johnson, M.C.; Peiris, H.V.; Pontzen, A.; Weinfurtner, S. New Semiclassical Picture of Vacuum Decay. Phys. Rev. Lett. 2022, 123, 031601. [Google Scholar] [CrossRef]
- Blanco-Pillado, J.J.; Deng, H.; Vilenkin, A. Flyover vacuum decay. J. Cosmol. Astropart. Phys. 2019, 12, 001. [Google Scholar] [CrossRef]
- Hertzberg, M.P.; Rompineve, F.; Shah, N. Quantitative Analysis of the Stochastic Approach to Quantum Tunneling. Phys. Rev. D 2020, 102, 076003. [Google Scholar] [CrossRef]
- Tranberg, A.; Ungersbäck, G. Bubble nucleation and quantum initial conditions in classical statistical simulations. J. High Energy Phys. 2022, 09, 206. [Google Scholar] [CrossRef]
- Hertzberg, M.P.; Yamada, M. Vacuum Decay in Real Time and Imaginary Time Formalisms. Phys. Rev. D 2019, 100, 016011. [Google Scholar] [CrossRef]
- Kristiano, J.; Lambaga, R.D.; Ramadhan, H.S. Coleman-de Luccia Tunneling Wave Function. Phys. Lett. B 2019, 796, 225–229. [Google Scholar] [CrossRef]
- Cespedes, S.; de Alwis, S.P.; Muia, F.; Quevedo, F. Lorentzian vacuum transitions: Open or closed universes? Phys. Rev. D 2021, 104, 026013. [Google Scholar] [CrossRef]
- Maniccia, G.; De Angelis, M.; Montani, G. WKB Approaches to Restore Time in Quantum Cosmology: Predictions and Shortcomings. Universe 2022, 8, 556. [Google Scholar] [CrossRef]
- Espinosa, J.R. Fresh look at the calculation of tunneling actions including gravitational effects. Phys. Rev. D 2019, 100, 104007. [Google Scholar] [CrossRef]
- Gregory, R.; Moss, I.G.; Oshita, N. Black Holes, Oscillating Instantons, and the Hawking-Moss transition. J. High Energy Phys. 2020, 07, 024. [Google Scholar] [CrossRef]
- Gregory, R.; Moss, I.G.; Oshita, N.; Patrick, S. Hawking-Moss transition with a black hole seed. J. High Energy Phys. 2020, 09, 135. [Google Scholar] [CrossRef]
- Freese, K.; Spolyar, D. Chain inflation: ‘Bubble bubble toil and trouble’. J. Cosmol. Astropart. Phys. 2005, 07, 007. [Google Scholar] [CrossRef]
- Berera, A. Warm inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
0.3 | 80 | 4.87210 × | 6.22563 | 1.05197 | 355.089 | 0.247004 | 1437.58 |
0.4 | 80 | 5.20273 × | 5.99645 | 0.65257 | 64.1185 | 0.0909796 | 704.758 |
0.5 | 80 | 3.89106 × | 5.63444 | 0.475247 | 33.9526 | 0.0599470 | 566.376 |
0.3 | 140 | 3.50945 × | 8.13990 | 0.673305 | 52.2515 | 0.0486678 | 1073.64 |
0.4 | 140 | 8.96003 × | 7.82419 | 0.459659 | 19.2912 | 0.0239903 | 804.123 |
0.5 | 140 | 4.98284 × | 7.32515 | 0.34397 | 12.9840 | 0.0172063 | 754.606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyachi, T.; Soda, J.; Tokuda, J. Stochastic Tunneling in de Sitter Spacetime. Universe 2024, 10, 292. https://doi.org/10.3390/universe10070292
Miyachi T, Soda J, Tokuda J. Stochastic Tunneling in de Sitter Spacetime. Universe. 2024; 10(7):292. https://doi.org/10.3390/universe10070292
Chicago/Turabian StyleMiyachi, Taiga, Jiro Soda, and Junsei Tokuda. 2024. "Stochastic Tunneling in de Sitter Spacetime" Universe 10, no. 7: 292. https://doi.org/10.3390/universe10070292