Mapping the ΛsCDM Scenario to f(T) Modified Gravity: Effects on Structure Growth Rate
Abstract
:1. Introduction
2. The CDM Scenario in Gravity
3. Data and Methodology
- Redshift Space Distortions (RSD): Numerous measurements of from various surveys are documented in the literature, each involving different assumptions and subject to distinct uncertainties. Before incorporating any of these measurements, it is essential to assess their internal consistency. Such an evaluation is undertaken using a Bayesian model comparison framework, as detailed in ref. [72]. This framework includes a comprehensive analysis of the measurements listed in Table I of [72], encompassing 22 data points spanning the redshift range . We refer to this dataset as RSD.
- Cosmic Chronometers (CC): Measurements of the expansion rate derived from the relative ages of massive, early-time, passively evolving galaxies, known as cosmic chronometers [73]. In our analyses, we conservatively use only a compilation of 15 CC measurements in the redshift range [74,75,76], accounting for all non-diagonal terms in the covariance matrix and systematic contributions. We refer to this dataset as CC.
- Baryon Acoustic Oscillations (DESI-BAO): Baryon acoustic oscillation (BAO) measurements provided by Dark Energy Spectroscopic Instrument (DESI) collaboration from observations of galaxies and quasars [77] and Lyman- tracers [78], as summarized in Table I of Ref. [58]. These measurements consist of both isotropic and anisotropic BAO data in the redshift range and are divided into seven redshift bins. The isotropic BAO measurements are represented as , where denotes the angle-averaged distance normalized to the (comoving) sound horizon at the drag epoch. The anisotropic BAO measurements include and , where is the comoving angular diameter distance, and is the Hubble horizon. Additionally, the correlation between the measurements of and is also taken into account. We refer to this dataset as DESI.
- Type Ia Supernovae (SN Ia): Type Ia supernovae act as standardizable candles, providing a crucial method for measuring the universe’s expansion history and supporting -dominated models. In this work, we use the following recent samples:
- (i)
- PantheonPlus: We incorporated SN Ia distance modulus measurements from the PantheonPlus sample [79], which consists of 1550 supernovae spanning a redshift range from 0.01 to 2.26. We refer to this dataset as PP.
- (ii)
- Union 3.0: The Union 3.0 compilation, consisting of 2087 SN Ia, was presented in [79]. Notably, 1363 of these SN Ia are common with the PantheonPlus sample. This dataset features a distinct treatment of systematic errors and uncertainties, employing Bayesian hierarchical modeling. We refer to this dataset as Union3.
- (iii)
- DESY5: As part of their Year 5 data release, the dark energy survey (DES) recently published results from a new, homogeneously selected sample of 1635 photometrically classified SN Ia with redshifts spanning [80]. This sample is complemented by 194 low-redshift SN Ia (shared with the PantheonPlus sample) in the range . We refer to this dataset as DESY5.
4. Main Results and Discussion
5. Final Remarks
- We update the observational constraints within the context of the CDM framework using the latest BAO-DESI and SNe Ia measurements, incorporating the recent DESY5 and Union3 compilations. The AdS-to-dS transition redshift is found to be compatible with previous results reported in the literature.
- We introduce a novel gravitational model within the framework of gravity that remains indistinguishable from the standard GR-based CDM model at the background cosmological level but predicts differences in the growth rate of structures. A new degree of freedom, , is introduced to quantify these perturbative effects.
- We apply RSD data for the first time in both the context of the CDM model and the newly proposed -CDM model in this work. With the inclusion of RSD data, we find that at more than confidence level (CL), suggesting that this model fits the data better than the standard CDM model.
- Due to a new positive correlation in the - plane, this scenario has the potential to resolve the current observational tension identified in large-scale structure observations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Larger finite values of are theoretically possible but would be indistinguishable with current cosmological data. Additionally, for , Equation (2) aligns with . Since both and are relevant around for rapid transitions, this transformation is effectively a scaling, . Here, we assume is fixed, as in [57]. |
References
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Ishak, M. Testing general relativity in cosmology. Living Rev. Relativ. 2018, 22, 1. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2023, arXiv:2105.12582. [Google Scholar]
- Frusciante, N.; Perenon, L. Effective field theory of dark energy: A review. Phys. Rep. 2020, 857, 1–63. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Der Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Di Valentino, E. Teleparallel gravity: From theory to cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for LCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar] [CrossRef]
- Dalal, R.; Li, X.; Nicola, A.; Zuntz, J.; Strauss, M.A.; Sugiyama, S.; Zhang, T.; Rau, M.M.; Mandelbaum, R.; Takada, M.; et al. Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear power spectra. Phys. Rev. D 2023, 108, 123519. [Google Scholar] [CrossRef]
- Asgari, M.; Lin, C.; Joachimi, B.; Giblin, B.; Heymans, C.; Hildebrandt, H.; Kannawadi, A.; Stölzner, B.; Tröster, T.; Busch, J.L.v.; et al. KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 2021, 645, A104. [Google Scholar] [CrossRef]
- Amon, A.; Gruen, D.; Troxel, M.; MacCrann, N.; Dodelson, S.; Choi, A.; Doux, C.; Secco, L.; Samuroff, S.; Krause, E.; et al. Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Phys. Rev. D 2022, 105. [Google Scholar] [CrossRef]
- Nunes, R.C.; Vagnozzi, S. Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions. Mon. Not. R. Astron. Soc. 2021, 505, 5427–5437. [Google Scholar] [CrossRef]
- Skara, F.; Perivolaropoulos, L. Tension of the EG statistic and RSD data with Planck/LCDM and implications for weakening gravity. Phys. Rev. D 2020, 101, 063521. [Google Scholar] [CrossRef]
- Briffa, R.; Escamilla-Rivera, C.; Said, J.L.; Mifsud, J.; Pullicino, N.L. Impact of H0 priors on f(T) late time cosmology. Eur. Phys. J. Plus 2022, 137, 532. [Google Scholar] [CrossRef]
- Briffa, R.; Escamilla-Rivera, C.; Said, J.L.; Mifsud, J. Constraints on f(T) cosmology with Pantheon+. Mon. Not. R. Astron. Soc. 2023, 522, 6024–6034. [Google Scholar] [CrossRef]
- Sandoval-Orozco, R.; Escamilla-Rivera, C.; Briffa, R.; Said, J.L. Testing f(T) cosmologies with HII Hubble diagram and CMB distance priors. arXiv 2024, arXiv:2405.06633. [Google Scholar] [CrossRef]
- Zhadyranova, A.; Koussour, M.; Bekkhozhayev, S.; Zhumabekova, V.; Rayimbaev, J. Exploring late-time cosmic acceleration: A study of a linear f(T) cosmological model using observational data. Phys. Dark Universe 2024, 45, 101514. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Model-independent reconstruction of f(T) teleparallel cosmology. Gen. Relativ. Gravit. 2017, 49. [Google Scholar] [CrossRef]
- Qi, J.Z.; Cao, S.; Biesiada, M.; Zheng, X.; Zhu, Z.H. New observational constraints on f(T) cosmology from radio quasars. Eur. Phys. J. C 2017, 77. [Google Scholar] [CrossRef]
- Basilakos, S.; Nesseris, S.; Anagnostopoulos, F.K.; Saridakis, E.N. Updated constraints on f(T) models using direct and indirect measurements of the Hubble parameter. J. Cosmol. Astropart. Phys. 2018, 2018, 8. [Google Scholar] [CrossRef]
- El-Zant, A.; El Hanafy, W.; Elgammal, S. H0 Tension and the Phantom Regime: A Case Study in Terms of an Infrared f(T) Gravity. Astrophys. J. 2019, 871, 210. [Google Scholar] [CrossRef]
- Said, J.L.; Mifsud, J.; Parkinson, D.; Saridakis, E.N.; Sultana, J.; Adami, K.Z. Testing the violation of the equivalence principle in the electromagnetic sector and its consequences in f(T) gravity. J. Cosmol. Astropart. Phys. 2020, 2020, 47. [Google Scholar] [CrossRef]
- Benetti, M.; Capozziello, S.; Lambiase, G. Updating constraints on f(T) teleparallel cosmology and the consistency with big bang nucleosynthesis. Mon. Not. R. Astron. Soc. 2020, 500, 1795–1805. [Google Scholar] [CrossRef]
- dos Santos, F.B.M.; Gonzalez, J.E.; Silva, R. Observational constraints on f(T) gravity from model-independent data. Eur. Phys. J. C 2022, 82, 823. [Google Scholar] [CrossRef]
- Aljaf, M.; Elizalde, E.; Khurshudyan, M.; Myrzakulov, K.; Zhadyranova, A. Solving the H0 tension in f(T) gravity through Bayesian machine learning. Eur. Phys. J. C 2022, 82, 1130. [Google Scholar] [CrossRef]
- Sabiee, M.; Malekjani, M.; Mohammad Zadeh Jassur, D. f(T) cosmology against the cosmographic method: A new study using mock and observational data. Mon. Not. R. Astron. Soc. 2022, 516, 2597–2613. [Google Scholar] [CrossRef]
- dos Santos, F. Updating constraints on phantom crossing f(T) gravity. J. Cosmol. Astropart. Phys. 2023, 2023, 39. [Google Scholar] [CrossRef]
- Kavya, N.S.; Mishra, S.S.; Sahoo, P.K.; Venkatesha, V. Can teleparallel f(T) models play a bridge between early and late time Universe? Mon. Not. R. Astron. Soc. 2024, 532, 3126–3133. [Google Scholar] [CrossRef]
- Nunes, R.C.; Pan, S.; Saridakis, E.N. New observational constraints on f(T) gravity from cosmic chronometers. J. Cosmol. Astropart. Phys. 2016, 2016, 011. [Google Scholar] [CrossRef]
- Capozziello, S.; Caruana, M.; Farrugia, G.; Levi Said, J.; Sultana, J. Cosmic growth in f(T) teleparallel gravity. Gen. Relativ. Gravit. 2024, 56, 27. [Google Scholar] [CrossRef]
- Aguilar, A.; Escamilla-Rivera, C.; Said, J.L.; Mifsud, J. Non-fluid like Boltzmann code architecture for early times f(T) cosmologies. arXiv 2024, arXiv:2403.13708. [Google Scholar]
- Briffa, R.; Escamilla-Rivera, C.; Levi Said, J.; Mifsud, J. Growth of structures using redshift space distortion in f(T) cosmology. Mon. Not. R. Astron. Soc. 2024, 528, 2711–2727. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Bayesian analysis of f(T) gravity using fs8 data. Phys. Rev. D 2019, 100, 083517. [Google Scholar] [CrossRef]
- Sandoval-Orozco, R.; Escamilla-Rivera, C.; Briffa, R.; Levi Said, J. f(T) cosmology in the regime of quasar observations. Phys. Dark Universe 2024, 43, 101407. [Google Scholar] [CrossRef]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 52. [Google Scholar] [CrossRef]
- Kumar, S.; Nunes, R.C.; Yadav, P. New cosmological constraints on f(T) gravity in light of full Planck-CMB and type Ia supernovae data. Phys. Rev. D 2023, 107, 063529. [Google Scholar] [CrossRef]
- Wang, D.; Mota, D. Can f(T) gravity resolve the H0 tension? Phys. Rev. D 2020, 102, 063530. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301, Erratum in Phys. Rev. D 2010, 82, 109902. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H.W. f(T) models with phantom divide line crossing. Eur. Phys. J. C 2011, 71, 1552. [Google Scholar] [CrossRef]
- Karami, K.; Abdolmaleki, A. f(T) modified teleparallel gravity models as an alternative for holographic and new agegraphic dark energy models. Res. Astron. Astrophys. 2013, 13, 757–771. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q.; Lee, C.C.; Luo, L.W. Equation of state for dark energy in f(T) gravity. JCAP 2011, 1, 21. [Google Scholar] [CrossRef]
- Cardone, V.F.; Radicella, N.; Camera, S. Accelerating f(T) gravity models constrained by recent cosmological data. Phys. Rev. D 2012, 85, 124007. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mukherjee, A.; Sen, A.A. Dark Energy with Phantom Crossing and the H0 Tension. Entropy 2021, 23, 404. [Google Scholar] [CrossRef]
- Adil, S.A.; Akarsu, O.; Di Valentino, E.; Nunes, R.C.; Özülker, E.; Sen, A.A.; Specogna, E. Omnipotent dark energy: A phenomenological answer to the Hubble tension. Phys. Rev. D 2024, 109, 023527. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Özülker, E.; Vazquez, J.A. Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D 2021, 104, 123512. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Özülker, E.; Vazquez, J.A.; Yadav, A. Relaxing cosmological tensions with a sign switching cosmological constant: Improved results with Planck, BAO, and Pantheon data. Phys. Rev. D 2023, 108, 023513. [Google Scholar] [CrossRef]
- Akarsu, O.; Di Valentino, E.; Kumar, S.; Nunes, R.C.; Vazquez, J.A.; Yadav, A. ΛsCDM model: A promising scenario for alleviation of cosmological tensions. arXiv 2023, arXiv:2307.10899. [Google Scholar]
- Akarsu, O.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef]
- Akarsu, O.; De Felice, A.; Di Valentino, E.; Kumar, S.; Nunes, R.C.; Ozulker, E.; Vazquez, J.A.; Yadav, A. ΛsCDM cosmology from a type-II minimally modified gravity. arXiv 2024, arXiv:2402.07716. [Google Scholar]
- Akarsu, O.; De Felice, A.; Di Valentino, E.; Kumar, S.; Nunes, R.C.; Ozulker, E.; Vazquez, J.A.; Yadav, A. Cosmological constraints on ΛsCDM scenario in a type II minimally modified gravity. arXiv 2024, arXiv:2406.07526. [Google Scholar] [CrossRef]
- Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv 2024, arXiv:2404.03002. [Google Scholar]
- Calderon, R.; Lodha, K.; Shafieloo, A.; Linder, E.; Sohn, W.; de Mattia, A.; Cervantes-Cota, J.L.; Crittenden, R.; Davis, T.M.; Ishak, M.; et al. DESI 2024: Reconstructing dark energy using crossing statistics with DESI DR1 BAO data. JCAP 2024, 10, 048. [Google Scholar] [CrossRef]
- Escamilla, L.A.; Özülker, E.; Akarsu, O.; Di Valentino, E.; Vázquez, J.A. Do we need wavelets in the late Universe? arXiv 2024, arXiv:2408.12516. [Google Scholar]
- Escamilla, L.A.; Akarsu, O.; Di Valentino, E.; Vazquez, J.A. Model-independent reconstruction of the interacting dark energy kernel: Binned and Gaussian process. JCAP 2023, 11, 51. [Google Scholar] [CrossRef]
- Sabogal, M.A.; Akarsu, O.; Bonilla, A.; Di Valentino, E.; Nunes, R.C. Exploring new physics in the late Universe expansion through non-parametric inference. Eur. Phys. J. C 2024, 84, 703. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Antoniadis, I.; Lust, D. Anti-de Sitter → de Sitter transition driven by Casimir forces and mitigating tensions in cosmological parameters. Phys. Lett. B 2024, 855, 138775. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Antoniadis, I.; Lust, D.; Noble, N.T.; Soriano, J.F. From infinite to infinitesimal: Using the Universe as a dataset to probe Casimir corrections to the vacuum energy from fields inhabiting the dark dimension. Phys. Dark Univ. 2024, 46, 101715. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Antoniadis, I.; Bielli, D.; Chatrabhuti, A.; Isono, H. Thin-wall vacuum decay in the presence of a compact dimension meets the H0 and S8 tensions. arXiv 2024, arXiv:2410.18649. [Google Scholar]
- Awad, A.; El Hanafy, W.; Nashed, G.G.L.; Saridakis, E.N. Phase Portraits of general f(T) Cosmology. JCAP 2018, 2, 52. [Google Scholar] [CrossRef]
- Hashim, M.; El Hanafy, W.; Golovnev, A.; El-Zant, A.A. Toward a concordance teleparallel cosmology. Part I. Background dynamics. JCAP 2021, 7, 052. [Google Scholar] [CrossRef]
- Hashim, M.; El-Zant, A.A.; El Hanafy, W.; Golovnev, A. Toward a concordance teleparallel cosmology. Part II. Linear perturbation. JCAP 2021, 7, 053. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, S.; Kibris, C.; Akarsu, O. ΛsCDM cosmology: Alleviating major cosmological tensions by predicting standard neutrino properties. arXiv 2024, arXiv:2406.18496. [Google Scholar]
- Nesseris, S.; Basilakos, S.; Saridakis, E.N.; Perivolaropoulos, L. Viable f(T) models are practically indistinguishable from LCDM. Phys. Rev. D 2013, 88, 103010. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Sagredo, B.; Nesseris, S.; Sapone, D. Internal robustness of growth rate data. Phys. Rev. D 2018, 98, 083543. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z∼1.75. JCAP 2012, 7, 53. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. Roy. Astron. Soc. 2015, 450, L16–L20. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z∼0.45: Direct evidence of the epoch of cosmic re-acceleration. JCAP 2016, 5, 14. [Google Scholar] [CrossRef]
- Adame, A.G. et al. [DESI Collaboration] DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars. arXiv 2024, arXiv:2404.03000. [Google Scholar]
- Adame, A.G. et al. [DESI Collaboration] DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest. arXiv 2024, arXiv:2404.03001. [Google Scholar]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Carr, A.; Zuntz, J.; Kessler, R.; Davis, T.M.; Hinton, S.; Jones, D. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DESI Collaboration] The Dark Energy Survey: Cosmology Results with 1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset. arXiv 2024, arXiv:2401.02929. [Google Scholar] [CrossRef]
- Aver, E.; Olive, K.A.; Skillman, E.D. The effects of He I 10830 on helium abundance determinations. JCAP 2015, 7, 11. [Google Scholar] [CrossRef]
- Cooke, R.J.; Pettini, M.; Steidel, C.C. One Percent Determination of the Primordial Deuterium Abundance. Astrophys. J. 2018, 855, 102. [Google Scholar] [CrossRef]
- Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. PArthENoPE reloaded. Comput. Phys. Commun. 2018, 233, 237–242. [Google Scholar] [CrossRef]
- Blas, D.; Lesgourgues, J.; Tram, T. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes. J. Cosmol. Astropart. Phys. 2011, 2011, 34. [Google Scholar] [CrossRef]
- Brinckmann, T.; Lesgourgues, J. MontePython 3: Boosted MCMC sampler and other features. arXiv 2018, arXiv:1804.07261. [Google Scholar] [CrossRef]
- Audren, B.; Lesgourgues, J.; Benabed, K.; Prunet, S. Conservative constraints on early cosmology with MONTE PYTHON. J. Cosmol. Astropart. Phys. 2013, 2013, 1. [Google Scholar] [CrossRef]
- Murakami, Y.S.; Riess, A.G.; Stahl, B.E.; Kenworthy, W.D.; Pluck, D.M.A.; Macoretta, A.; Brout, D.; Jones, D.O.; Scolnic, D.M.; Filippenko, A.V. Leveraging SN Ia spectroscopic similarity to improve the measurement of H0. JCAP 2023, 11, 46. [Google Scholar] [CrossRef]
Dataset | PP+CC+DESI | Union3+CC+DESI | DES5Y+CC+DESI |
---|---|---|---|
Dataset | PP+CC+DESI+RSD | Union3+CC+DESI+RSD | DESY5+CC+DESI+RSD |
---|---|---|---|
Dataset | PP+CC+DESI+RSD | Union3+CC+DESI+RSD | DES5Y+CC+DESI+RSD |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.S.; Barcelos, A.M.; Nunes, R.C.; Akarsu, Ö.; Kumar, S. Mapping the ΛsCDM Scenario to f(T) Modified Gravity: Effects on Structure Growth Rate. Universe 2025, 11, 2. https://doi.org/10.3390/universe11010002
Souza MS, Barcelos AM, Nunes RC, Akarsu Ö, Kumar S. Mapping the ΛsCDM Scenario to f(T) Modified Gravity: Effects on Structure Growth Rate. Universe. 2025; 11(1):2. https://doi.org/10.3390/universe11010002
Chicago/Turabian StyleSouza, Mateus S., Ana M. Barcelos, Rafael C. Nunes, Özgür Akarsu, and Suresh Kumar. 2025. "Mapping the ΛsCDM Scenario to f(T) Modified Gravity: Effects on Structure Growth Rate" Universe 11, no. 1: 2. https://doi.org/10.3390/universe11010002
APA StyleSouza, M. S., Barcelos, A. M., Nunes, R. C., Akarsu, Ö., & Kumar, S. (2025). Mapping the ΛsCDM Scenario to f(T) Modified Gravity: Effects on Structure Growth Rate. Universe, 11(1), 2. https://doi.org/10.3390/universe11010002