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Abstract: This paper presents a collaborative manufacturing cell implemented in a laboratory setting,
focusing on developing learning-based interaction abilities to enhance versatility and ease of use.
The key components of the system include 3D real-time volumetric monitoring for safety, visual
recognition of hand gestures for human-to-robot communication, classification of physical-contact-
based interaction primitives during handover operations, and detection of hand–object interactions
to anticipate human intentions. Due to the nature and complexity of perception, deep-learning-based
techniques were used to enhance robustness and adaptability. The main components are integrated
in a system containing multiple functionalities, coordinated through a dedicated state machine. This
ensures appropriate actions and reactions based on events, enabling the execution of specific modules
to complete a given multi-step task. An ROS-based architecture supports the software infrastructure
among sensor interfacing, data processing, and robot and gripper controllers nodes. The result is
demonstrated by a functional use case that involves multiple tasks and behaviors, paving the way for
the deployment of more advanced collaborative cells in manufacturing contexts.

Keywords: collaborative robotics; manufacturing cell; interaction abilities; volumetric detection;
intention anticipation; learning-based algorithms

1. Introduction

Moving beyond efficiency and productivity, Industry 5.0 focuses on building human-
centric industrial systems by developing technologies that enable the collaboration between
humans and robots [1,2]. Collaborative robotics is becoming a very relevant field with
the increasing number of situations where humans and robots can coexist and perform
joint tasks together. In line with this, automation concepts like human–robot collaboration
(HRC) are expected to impact and transform the way we live and work across diverse
domains. The industrial domain is no exception, and manufacturing cells are evolving in a
direction where humans and robots coexist seamlessly and, moreover, interact mutually in
numerous collaborative tasks. The combination of human skills and robotic capabilities
holds the potential to significantly improve the execution of complex tasks in targeted
application areas like assembly, manufacturing, and material handling.

As the field of HRC continues to advance, three key research areas are emerging as
critical [3–6]: the design of safe and ergonomic workcells, the development of multimodal
interaction abilities, and the implementation of data-driven learning techniques. Safety
and ergonomics remain primary considerations when integrating robots into industrial
environments [7–9]. Collaborative robots must seamlessly interact with human workers
while minimizing the risk of accidents or injuries. Achieving this balance requires robust
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safety mechanisms, including advanced sensing technologies, real-time risk monitoring,
and adaptive control strategies [10–12]. Researchers are also continually exploring inno-
vative approaches to enhance ergonomic aspects, with the ultimate goal of improving the
well-being and comfort of human workers [13–15].

A key challenge in human–robot collaboration is to develop robots with multimodal
interaction abilities, leading to more natural and productive work environments. These
abilities should allow them to understand and respond to humans through various com-
munication channels, as discussed in [16,17]. In contrast to traditional robotic systems
that rely primarily on visual data and programming interfaces, the current trend involves
the integration of multiple modalities, such as vision, speech, touch, and haptic feedback.
These advancements stem partly from efforts to endow robots with multimodal perception
capabilities, enabling them to gather information from various sensory sources, including
depth cameras and force/torque sensors. Researchers are exploring new techniques to
allow workers to effectively communicate their intentions, as well as to simplify robot
programming and control [18].

Despite advances, the effective coordination of actions and natural communication
between human and robotic partners remain critical bottlenecks that need to be further
addressed. In particular, research on interaction through physical contact [19–21] and
the anticipation of human intentions [22–25] holds significant promise for enhancing
operational efficiency and user experience. On the one hand, current robots frequently
encounter difficulties in understanding the subtle nuances of tactile interactions and the safe
execution of coordinated movements during tasks requiring physical contact (e.g., during
handover tasks [26,27]). Conversely, the ability to accurately predict human intentions can
significantly enhance the quality of collaborative partnerships, enabling robots to respond
intuitively and proactively to human actions. However, the precise nature of anticipation
and the underlying mechanisms supporting it remain open questions in robotics research.
Ongoing investigations aim to address fundamental questions, such as how anticipatory
processes can be modeled and implemented within robotic systems and what impacts
may result.

Bearing this in mind, the integration of learning-based techniques is becoming increas-
ingly essential in dealing with HRC systems that can learn from experience and adapt to
changing conditions [28]. Robots can acquire new skills and adapt their behavior based on
large amounts of data collected from sensors, enabling them to perform complex tasks with
increased efficiency and autonomy. In this context, the main challenges to be addressed
include the real-time operation, the adaptability to real-world scenarios with variations,
and the effective generalization to new and unseen situations [29,30]. Learning algorithms
trained on biased datasets may exhibit poor performance in real-world applications. This
is particularly concerning in HRC, where robots must interact with humans from different
backgrounds and abilities. At the same time, traditional learning techniques often exhibit
difficulties in generalizing their knowledge to new situations or environments. This can be
problematic in HRC, where robots must adapt to the dynamic and often unpredictable na-
ture of human interactions. It is also important to highlight that current learning techniques
focus on predicting immediate outcomes rather than anticipating future events. This limits
the robot’s ability to understand human intentions and human–robot interactions, leading
to inefficient and potentially unsafe interactions.

The Augmanity project has faced some of these challenges and carried out research
and developments in this domain. In this context, a prototype of a manufacturing cell
(Figure 1) was built, where several innovative features were successfully implemented
and tested. This paper presents the work on developing learning-based technologies to
facilitate natural human–robot collaboration. We focus on core interaction abilities such as
workspace awareness, hand gesture recognition, interaction through physical contact, and
human intention anticipation. Each interaction ability is described and experimental results
are provided to validate the approach in real-time scenarios. We detail the architectural
components and implementation options to elucidate their advantages and limitations,
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while also highlighting key design choices and their impact on prediction accuracy using
real data. The challenge was not focused only on the individual abilities, but also in their
integration in a fully functional use case. In line with this, the second part of the paper
presents an integrated multimodal system through a tailored use case demonstration.

The rest of the paper is structured as follows: Section 2 provides an overview of the
collaborative cell and explores the design considerations regarding the core interaction
abilities. Sections 3 and 4 describes the methodologies and implementation of these interac-
tion abilities, distinguishing between supervised and proactive collaboration, respectively.
Section 5 outlines the integration of these abilities into an application case study. The most
important results and considerations arising from the work are discussed in Section 6.
Finally, Section 7 concludes the paper.

Figure 1. The prototype collaborative manufacturing cell: LARCC. Several sensors cover the robot
and operator spaces for volumetric monitoring and gesture interaction, including LiDARs (red circles)
and RGB-D cameras (red rectangles). The cell includes a UR10e COBOT with a Robotiq 2F gripper.

2. Overview of the Collaborative Cell
2.1. The Prototype Manufacturing Cell

LARCC, the Laboratory for Automation and Robotics’ Collaborative Cell, is a pro-
totype collaborative cell housed in the Laboratory for Automation and Robotics at the
University of Aveiro. The collaborative robotic system integrates specific technological com-
ponents that play a crucial role in its operation. On the sensory side, the LARCC is equipped
with multimodal devices, including three LiDAR Velodyne VLP-16 sensors and four Orbec
Astra Pro 3D-cameras strategically positioned throughout the volume of the cell. This
arrangement ensures adequate coverage and data acquisition from various perspectives.

The robotic system consists of a UR10e collaborative robot equipped with a Robotiq
2F gripper. The main computing unit is based on a dedicated computer platform equipped
with a 11th Generation Intel Core i7-11700 CPU running at 2.50 GHz. The 128 GB RAM
memory and the inclusion of two NVIDIA RTX 3080 GPUs provide ample computational
capacity for the tasks to be carried out, namely in the offline training of deep learning
models. The computer runs on Ubuntu 20.04, ensuring stability and compatibility with the
software components.
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In terms of software development and integration, the project adopts a design ap-
proach based on the Robot Operating System (ROS) middleware [31]. The ROS framework
is based on the concepts of modularity and reusability that suit both exploratory research
and industrial applications. In this context, this study represents an effort towards actively
exploring the integration of ROSs into collaborative industrial settings to leverage their
flexibility, extensive libraries, and large community support.

2.2. Core Interaction Abilities

The coordination between a human operator and a robot can be achieved through
different collaboration strategies. The first strategy that is assumed to be essential is one
in which a human operator act as a supervisor through the full or partial control of the
robot’s actions. Controlling robots based on direct interactions requires interfaces that
effectively allow humans to communicate their goals. For that purpose, the collaborative
system is endowed with nonverbal communication interfaces in the form of hand gestures
and physical interaction by contact. On the one hand, hand gestures help to communicate
an action or a correction to the robot, being a powerful strategy even in noisy industrial
environments. On the other hand, the communication using physical contact is a promising
strategy found in human–human teams to improve fluency and comfort in challenging
tasks (e.g., during the contact phase in object handover). These interfaces rely on the
assumption of some level of mutual attention or participation.

Conversely, the operation of humans and robots as independent collaborators also of-
fers numerous advantages. A major concern of the project is the safety of human operators,
the robotic system, and objects present in the environment. In this context, a volumetric
detection system was developed in order to provide an additional level of security that
contributes to safe collaborative work. An additional example of indirect interaction with
potential benefits arises in scenarios where robots are assigned tasks to provide assistance,
offering help as required. To address these requirements, two additional interaction abil-
ities, namely workspace awareness and human intention anticipation, were devised to
support and complement supervised collaboration. Thereby, the robot can anticipate needs,
react proactively, and ultimately improve the efficiency and safety of the collaborative
process without requiring explicit instruction. These abilities reduce the human’s cognitive
load as they are relieved from the need to request assistance or coordinate every aspect of
task execution.

The manufacturing cell operates through the integration of these robotic technologies
oriented toward collaborative processes. The design approach adopted by the Augmanity
project emphasizes a set of interaction abilities that can be applied across various domains,
regardless of the specific application (e.g., assembling, quality control and inspection).
An overview of the ROS-based system architecture is depicted in Figure 2. The system
functionalities cover the basic building blocks related to sensory feedback and manipulator
control. The 3D perception and monitoring of the collaborative cell ensures, in real time,
a complete awareness of the human and COBOT activities within the shared space, with
automatic sensor configuration and calibration [32,33].

This paper extends existing decision models developed for hand gesture recogni-
tion ([34]), physical interaction classification [35], volumetric detection [36], and human
intention anticipation [37]. Here, we enhance these decision models by incorporating addi-
tional features and considerations essential for their effective real-time integration into the
ROS framework. In line with this, an illustrative fully functional use case of human–robot
collaboration is provided, wherein the autonomous system is governed by a finite-state
machine that triggers the sequence of sub-tasks to be executed.
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Figure 2. Overview of the system architecture.

2.3. Contributions and Novelty

This section highlights the key contributions and novel aspects of our proposed col-
laborative cell design; while individual components like gesture recognition, physical
interaction classification, workspace awareness, and human intention anticipation have
been explored in previous research, our work presents a novel integration of these func-
tionalities within a complete, real-time operational framework utilizing ROS for seamless
communication and control. This integrated approach goes beyond existing research by
offering a more comprehensive and user-friendly solution for human–robot collaboration
in industrial settings. It promotes efficient communication, proactive assistance, and real-
time adaptation, leading to an enhanced user experience in human–robot collaboration
(HRC) scenarios. It offers a flexible, adaptable, and safe framework for human–robot
interaction, paving the way for improved efficiency, productivity, and user experience in
industrial settings.

The integration of the core interaction abilities emphasizes two important design con-
siderations. First, these abilities are designed to be non-domain-specific and can be applied
across various collaborative tasks in diverse industrial settings. This flexibility allows
for broader application and adaptation compared to solutions focused on specific tasks.
Second, we adopt a complementary strategy by combining supervised (human control) and
proactive (robot assistance) collaboration strategies. Supervised interaction is facilitated by
hand gestures and physical contact, enabling intuitive communication. Proactive assistance
is achieved through workspace awareness and human intention anticipation, reducing the
human cognitive load and improving overall efficiency.

From the perspective of enhanced adaptability, our system utilizes deep learning
techniques for hand gesture recognition, physical contact classification, and human inten-
tion anticipation. These approaches offer adaptability to variations in human actions and
environmental conditions. They can learn and improve their performance over time by con-
tinuously processing new data. Additionally, our design emphasizes real-time operation
and addresses challenges like variations in human behavior and limited training data. This
approach offers practical significance in real-world industrial applications, where robots
must interact with diverse human collaborators and adapt to dynamic situations.

In summary, the contributions of this paper cover the following:
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1. The introduction of a collaborative cell endowed with learning-based core interaction
abilities that can be applied across various domains (non-domain-specific abilities).

2. The evaluation of communication interfaces allowing direct interaction with the
cell, employing contrastive learning (CL) for the recognition of user-specific visual
gestures and a feedforward neural network (FNN) for the classification of contact-
based interaction primitives.

3. The development of coordination strategies featuring proactive monitoring of shared
spaces and anticipation of human intentions based on hand–object interactions.

4. The presentation of a full functional use case demonstrating the real-time operation of
the collaborative cell.

3. Supervised Collaboration
3.1. Hand Gesture Recognition

The hand gesture recognition (HGR) module is a communication system based on
computer vision and deep neural networks that enables human operators to demonstrate
their intentions to robots. The real-time HGR system consists of two sequential components:
hand detection and gesture classification (illustrated in Figure 3). The hand-detection pro-
cess utilizes the human pose detection and tracking module of MediaPipe [38] to estimate
33 key points of the human pose. From these key points, we extracted a small window
centered on the hand to be used for classification. To overcome the false classification
problem, the detection module incorporates the verification of three constraints, as follows:

1. Hand level constraint: The module calculates the midpoint of the operator’s chest.
The constraint is satisfied if the center of the hand is above this limit.

2. Hands overlapping constraint: The module checks if the bounding boxes of the
left and right hands overlap. The constraint fails if there is an overlap between the
bounding boxes.

3. Overlapping face constraint: The module examines whether any of the MediaPipe
key points associated with the face (anatomical landmarks on the face) are inside the
bounding box of the hand. The constraint fails if any face key point is found within
that bounding box.

Detection
node

Constraints

Classi-
fication
node

Logit
ThresholdA

NONE

Fail

Valid

Less

Greater

No sign detected

’A’ sign detected

for this case!

Figure 3. Overview of the hand gesture recognition system.

If any of these constraints fail, then the system does not proceed to the classification
step. This verification ensures that gesture classification is performed under conditions
similar to the training.

The gesture classification module employs an Inception-v3 architecture [39] trained
with a simultaneous multi-loss contrastive learning method [34]. This training approach
achieves excellent performance on datasets with images featuring complex backgrounds,
and generalizes well to datasets encompassing different users and illumination conditions.
These properties make it ideal for an industrial-use system. The convolutional neural
network was trained using a dataset consisting of four gestures derived from American
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Sign Language (ASL), namely A, L, F, and Y. This implementation allows the programming
of the COBOT with four different behaviors triggered by the performed gesture. The
gesture is determined by analyzing the output of the CNN and selecting the class with the
highest value. However, this approach could lead to false classifications if the operator is
not performing any of the expected gestures.

To address this issue, an analysis of the logits (inputs of the SOFTMAX layer in the
CNN) is performed. For the chosen class, a threshold is applied to the logit value. If the
value is below the threshold, the image is classified as a fifth class, NONE, representing
the absence of any valid gesture. Optimal thresholds for each class were determined by
acquiring a new dataset, where none of the four ASL gestures were performed. The logit
distributions for hand images performing the respective gesture and those not performing
the gesture were compared, and thresholds were set to maximize the precision score of
each class.

Figure 4 shows the logit distributions for images showing a hand gesture, where it
can be seen that, for example, the L and F classes have very strong logit values, making
them more easily separable. On the other hand, A class has a sparse logit distribution; but
even so, it is reasonably separable with the right threshold, which is nonetheless much
smaller than the ones for the other three classes. Despite these considerations, the classifier
remains prone to potential misclassification among the four original classes, compromising
the intended communication between humans and machines; while these misclassifications
can be considered outliers, they are likely to occur in a system that runs continuously. In
order to address this concern, we propose an approach to enhance gesture estimation by
applying data filtering techniques.

5Fr
eq
u
en
cy

Logit

0 5 10 15

A

5 0 5 10 15

F

L

5 0 5 10 15
0.0
0.2
0.4
0.6
0.8
1.0
1.2

5 0 5 10 15

Y

A F L Y

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Figure 4. The four histograms represent the logit distribution of the four classes when passing images
from one class through the hand classification model. In each histogram, the black line represents the
threshold value that optimizes the precision score.

To achieve this, we analyze a sequence of classifications and implement a method to
reduce the influence of outliers that may occur in practical implementations. The analysis
uses the values obtained in a confusion matrix in a test dataset normalized by columns,
which indicates the precision for each class. This evaluation is described in Algorithm 1,
which uses classifications generated by the system described in Figure 3. This procedure is
performed continuously for each classification. The classBu f f er input is an ordered list of
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indexes of the last N frame classifications. The cm stores the values of the confusion matrix
normalized by columns, where the lines correspond to the ground truths and the columns
to the predictions.

Lastly, the algorithm weights the sequential classifications linearly, placing more
emphasis on the most recent classifications. The maximum weight is 1 and the minimum is
the configurable parameter wmin.

Algorithm 1 Gesture filtering.
Input: classBu f f er; cm; wmin

classesProb← ∅
∆w← 1−wmin

N
for i from 0 to 4 do ▷ 5 classes
prob← 0
w← wmin

for j from 0 to size(classBu f f er) do
prob← prob + cm[i][classBu f f er[j]]×w

N
w← w + ∆w

end for
insert prob into classesProb

end for
return classesProb

By utilizing both logit thresholds and gesture filtering, we can significantly reduce
the misclassification rate of our model, resulting in a more robust system suitable for de-
ployment in unstructured environments. This improvement is evidenced by the confusion
matrix presented in Figure 5. To accurately interpret this matrix, it is essential to understand
that classes A–Y are considered positive, transmitting some form of information to the robot
or triggering specific events. Conversely, the NONE class is regarded as negative, indicating
an absence of transmitted information.

A 97.77 0.24 0.25 0.41 0.95

F 0.25 95.88 0.0 0.0 1.3

L 0.5 0.73 98.76 0.81 9.13

Y 0.5 1.45 0.5 98.78 19.97

NONE 0.99

A

1.69

F

0.5

L

0.0

Y

69.04

NONE

Tr
ue

La
be

l

Predicted Label

Figure 5. Confusion matrix, in percentage (%), obtained using logit thresholds and gesture filtering.
The confusion matrix is normalized by the column.

This distinction is crucial because our methods are specifically designed to enhance
the precision of the positive classes, thereby reducing potential confusion. The effectiveness
of this approach is evident, as the positive classes achieve an accuracy of nearly 98%, which
represents a significant improvement over previous iterations of the system. However, it is
important to note that the model misclassifies the NONE class 30% of the time, leading to a
loss of the intended message from the user.

Despite this challenge, the system demonstrates strong performance with a tested
inference rate of 20 frames per second (FPS), maintaining a maximum inference time of
approximately 300 milliseconds. This trade-off between speed and accuracy is necessary; by
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sacrificing some of the model’s responsiveness, we have achieved much greater precision
and safety. This balance is crucial for applications in unstructured environments, where the
reliability of the system’s responses is paramount.

3.2. Physical Interaction Classification

One of the most inevitable requirements to perform coordinated and conjoint jobs
is object transfer between coworkers. Object handover in HRC emerged as a major field
of investigation and development, where human–robot physical contact stands as the
ultimate challenge to the efficiency and success of collaborative tasks. By the moment when
both agents are simultaneously in physical contact with the held object, the intervening
parties should have the same level of understanding of the other intentions. This type of
perception demands a communication channel between the human and the robot based on
physical interactions. Given that typically available sensorial measurements in COBOTs are
joints torque and six-axis force–torque sensors ([35]), we defined a set of contact primitives
to allow a basic ”vocabulary” that utilizes these exact same values. To effectively capture
the operator’s intentions, these contact primitives are designed to be intuitive for humans:

• PULL—a force applied in the direction towards the operator;
• PUSH—a force applied in the direction away from the operator;
• SHAKE—a fast, short, amplitude-alternating action imposed by the human hand on

the object;
• TWIST—a torsion imposed on an axis along the human arm–hand.

The system should perceive this vocabulary, despite the human operator variability
when performing physical interactions: users with different heights will produce distinct
force/torque patterns, for example. Moreover, tiredness and the used arm also have high
impact on the sensorial data behavior. Although these are simple to perform for humans,
the four primitives generate complex combinations of torques and forces along the robot
manipulator that are difficult for the correct sensor to output and analyze. For example,
Figure 6 shows the forces and torques produced by two distinct applied shakes.

Concerning this significant inconsistency, the primitive classification process demands
cognitive knowledge to correctly identify the human intention by their physical interaction:
it was developed a learning-based approach to classify the user’s primitive actions, such
that a supervised model should associate the COBOT real-time sensorial data with the class
of the intended human action.

The aimed physical communication channel is ensured through the development of a
multi-layer perceptron (MLP) network (which is the simplest and most traditional form of
deep neural network). This feedforward neural network (FFNN) is fed with the torques of
each one of the siz joints, the three-axis-component forces, and the three-axis-component
torques on the gripper, along a 0.2 s time window. The input Φ for the model is given by
Equation (1):

Φ =
[

T̂0,

Wrist Forces︷ ︸︸ ︷
F̂x0 , F̂y0 , F̂z0 ,

Wrist Torques︷ ︸︸ ︷
M̂x0 , M̂y0 , M̂z0 ,

Joints Torques︷ ︸︸ ︷
Ĵ10 , Ĵ20 , . . . , Ĵ60︸ ︷︷ ︸

The First Measurement of Action

, . . . , T̂N−1, F̂xN−1 , . . . , Ĵ6N−1︸ ︷︷ ︸
The Last Measurement of Action

]
(1)

where indices vary from 0 to N − 1, indicating the time instant of the data acquisition.
Thus, the set of inputs for the neural network is constituted by 260 values corresponding
to N = 20 sequential measurements of the 13 synchronous parameters. To improve the
classification results, the network structure was optimized to achieve the most suitable NN
for this time-series classification. The search space of this optimization, for each parameter,
is defined as follows:

• Number of hidden layers: 2, 3, 4.
• Neurons in each hidden layer: 16, 32, 64, 128.
• Dropout for the last hidden layer: 0%, 20%, 50%.
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• Activation function: ReLU, SELU, sigmoid.
• Optimizer: Adam, SGD, RMSprop.
• Batch size: between 32 and 128.
• Starting learning rate: between 0.0001 and 0.1.

Figure 6. Timeline behavior of FT values, for two different shake primitives [35]. The top two
rows depict the end-effector forces and torques along the three axes. Last row depicts the six robot
joint-captured torques.

The optimized neural network model consists of an input layer with 260 neurons and
3 fully-connected hidden layers. The first hidden layer is composed of 64 neurons with
ReLU as the activation function. The second and third layers are composed of 32 neurons
with SELU as activation function. The third hidden layer uses 20% dropout to improve
the generalization capability. Finally, the output layer, with four neurons, indicates the
confidence of each one of the predefined classifications (PULL, PUSH, SHAKE, and TWIST).
This output layer uses softmax as the activation function, which makes the sum of all four
output values equal to 1.

To achieve real-time classification, while supporting the deep learning model, an
algorithm was developed, considering two main assumptions. Firstly, the study specified a
fixed location for the object exchange, establishing a predefined ergonomic posture for the
COBOT during the handover process. This posture involves the robot’s arm being extended
towards the operator, holding an object in its gripper, and the end-effector being positioned
at a mid-range tilted angle of about 45◦ relative to the operator. Further investigations
confirmed the system’s robustness to slight variations around this handover configuration.
Secondly, the model considered the force and torque exerted by the gripper and the held
object on the robot’s sensors as an initial offset during the interaction phase. This approach
allowed the methodology to be independent of the weight and shape of new objects,
making it adaptable to various scenarios.

Figure 7 depicts an example of a timeline where the robot classified three contact
primitives generated by the human operator. The algorithm for this real-time classification
operates in a loop and consists of three steps: recognizing that a physical interaction has
begun, collecting all the force and torque values for 0.2 s, and feeding the feedforward
neural network with the collected data to obtain the classification results. The first step
acquires external forces without any interaction, which are then used to define the trigger
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and subtract environmental forces during subsequent interactions. After that, the trigger
step waits for a force that is strong and sustained enough to be considered an interaction,
at which point the trigger is activated. The data collection step acquires sensor data and
presents it to the decision model to return a classification of the interaction primitive.

0.2 s 0.2 s 0.2 s

Collect Data Collect Data Collect Data

Begin
Physical

Interaction

Classified
Primitive

Classified
Primitive

Classified
Primitive

No
Physical
contact

Figure 7. Online primitive classification timeline example with three physical interactions.

To endow the robot with the capability of perceiving these physical interactions, a
dataset of human-produced primitives was collected. Part of this dataset was used for the
training of the neural network and the remaining part, used for testing, is composed of
1239 action samples (310 pulls, 287 pushes, 319 shakes, and 323 twists), performed by eight
different users. Testing the trained feedforward neural network with this dataset resulted
in the total classifications presented in Table 1, where it is possible to also visualize the
mean output confidence and the standard deviation for each group of results (true positive,
false positive, and false negative) for each one of the defined primitives.

Table 1. Total classifications for each group of predictions (TP, FP, and FN) for each interaction
primitive. The mean, and the related standard deviation, of the neural network output confidences
are presented.

Action Occurrences Outcome Total Mean NN Output
Confidence Standard Deviation

True Positives 310 0.98 0.055
PULL 310 False Positives 13 0.782 0.192

False Negatives 0

True Positives 280 0.974 0.07
PUSH 287 False Positives 4 0.673 0.107

False Negatives 7 0.175 0.153

True Positives 304 0.942 0.097
SHAKE 319 False Positives 11 0.795 0.199

False Negatives 15 0.153 0.137

True Positives 312 0.971 0.083
TWIST 323 False Positives 5 0.781 0.198

False Negatives 11 0.165 0.193

The conflict between the total predictions and the real actions for each primitive
is represented, in percentage, on the confusion matrix in Figure 8. This confusion ma-
trix evinces the distinction between the percentage of true positives for all the defined
contact primitives.
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Figure 8. Confusion matrix in percentage (%) obtained after testing the feedforward trained network.

Moreover, this learning-based approach should also be able to correctly identify several
continuously performed physical interactions, i.e., the human operator could establish not
only one single haptic primitive but a full contact vocabulary. To test the adaptability of
the proposed approach to this more complex purpose, the agent produced two sequential
physical contacts. One example of the force and torque values collected in this experiment
is presented in Figure 9.

Figure 9. Example of joint efforts (Nm) and wrist torques (Nm) and forces (N) felt by two sequential
performed contact primitives, for period of 1 s.

By having the deep learning model classifying in real time, the confidence neural
network outputs for each one of the four predefined primitives (PULL, PUSH, SHAKE,
TWIST), when an agent in consecutive interacting with two distinct physical contacts, is
shown in Figure 10. The presented results prove that the proposed deep learning solution
is applicable to classify human–robot physical contacts, being able to tackle most of the
problematic interactions, and even efficiently classifying several continuously performed
haptic primitives.
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Figure 10. Example of neural network output confidences for two sequentially performed contact
primitives. In this case, the ground truth is composed of 0.5 s of PULL, followed by 0.5 s of PUSH.
At each time step, the sum of all four output confidences is equal to 1, since the output layer uses
softmax as the activation function.

4. Human-Centric Proactive Interaction
4.1. Volumetric Detection

Volumetric detection plays a crucial role as a foundational element in enabling ef-
fective human–robot collaboration. This capability is essential for robots to develop a
comprehensive understanding of their surrounding environment in terms of spatial per-
ception. Without reliable volumetric detection, robots lack the necessary awareness of the
objects and obstacles present around them, potentially leading to hazardous situations. To
solve this, other approaches have been adapted the robot movement in relation to external
payloads, either at the beginning or at the end of contact [40]; such approaches have used
the knowledge of the human pose to adapt the manipulator planning [41]. Our approach
uses a occupancy mapping framework to accurately evaluate the presence of individuals
within a defined work volume, leveraging spatial analysis techniques to enhance precision
and reliability in monitoring human activity.

In our implementation of volumetric detection, we utilized OctoMap, a mapping
framework that employs octrees to represent space and offers a flexible and high-resolution
mapping solution [42]. OctoMap utilizes a probabilistic model, enabling efficient storage,
real-time updates, and accurate mapping in 3D environments. The output of OctoMap
consists of a list of occupied and free voxels.

The selection of OctoMap as the preferred volumetric mapping approach is attributed
to the in-depth comparative study conducted in [36]. The study evaluated different volu-
metric mapping techniques and explored various parameters within each approach. It was
observed that configuring OctoMap with a minimum voxel size of 0.1 m, a hit probability
of 1, and a miss probability of 0.4 resulted in optimal results. These settings contributed to
the superior qualitative and quantitative outcomes achieved using OctoMap compared to
other mapping approaches analyzed [36].

To enable volumetric detection within the context of this collaborative cell, a specific
work volume was defined. This work volume took the form of a rectangular prism and was
positioned in front of the robotic manipulator. In order to classify a cell as fully occupied,
OctoMap must detect the presence of occupied voxels within the work volume. To achieve
this, we implemented a point-in-polyhedron algorithm. This algorithm computes the
normal vectors for each face of the rectangular prism, which has dimensions of length l,
width w, and height h. Equation (2) is utilized to determine whether a voxel center vc lies
inside the prism:

|(⃗vc − c⃗) · n⃗β| ≤
β

2
, β ∈ {l, w, h} . (2)

By utilizing the provided equation, the coordinate vector of the voxel center is de-
termined with respect to the coordinate vector of the prism’s center (represented as c⃗).
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Following this calculation, the dot product between this vector and each normal vector is
computed. This computation facilitates an evaluation of the position of the voxel relative to
the center of the prism along a particular direction. If the resulting value exceeds half of
the corresponding dimension of the prism, the voxel is outside its boundaries.

Once the number of occupied voxels nv inside the work volume has been determined,
a decision-making process takes place. Instead of setting a fixed threshold for the number
of voxels required to classify a cell as fully occupied, which would render the system
less robust due to potential changes in the dimensions of the work volume, we employ
a percentage-based decision strategy. This decision is based on the ratio of the occupied
voxel volume to the total volume of the work volume, denoted as op, as calculated in
Equation (3):

op =
nv · R3

l · w · h . (3)

By multiplying the number of voxels in the work volume by the cube of their resolution
R, we obtain the occupied volume detected by OctoMap. Dividing this by the total volume
of the cell yields the desired ratio. With this ratio established, we can empirically define a
threshold for cell occupancy. In our case, the threshold was set at 15 %. Further details can
be observed in Figure 11.

Figure 11. Volumetric detection within the collaborative cell. The work volume is depicted by the
prominent red prism, while the purple dots represent the point cloud captured by one of the LiDARs.
The red dots correspond to the centers of the occupied voxels detected by OctoMap.

4.2. Human Intention Anticipation

The concept of anticipation has been studied across diverse research domains. For
example, in biology, experimental findings have demonstrated anticipatory processes at
various organizational levels [43]. In general terms, anticipation refers to the influence of
predictions on the current behavior of a system, whether natural or artificial. Prediction
models provide insights into potential future states of the environment or system. This
perspective of looking to the future aims to integrate such information into decision-making
or planning processes. Consequently, a system becomes anticipatory as it incorporates
such a model and adjusts its current behavior accordingly. The ability to adjust behavior in
anticipation of future events influences the execution of behavior and learning in living or-
ganisms. Similarly, anticipation is considered a crucial ability for cognitive robots operating
in dynamically changing environments, helping the design of robots capable of proactive
behavior; while most current robots can react based on what they sense and remember,
they lack the ability to consider future outcomes (i.e., to connect the robot’s actions in the
present to its final goal).
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Robot assistants in manufacturing or assembly tasks provide a prime example where
anticipating human intentions and/or needs is critical for an effective workflow, potentially
impacting safety and cycle time. This can be accomplished through various methods,
which can be broadly categorized into two approaches: those that focus on human motion
prediction and those that focus on human intent recognition based on environmental
cues. On the one hand, methods that focus on detailed human motion prediction, like
probabilistic movement primitives (ProMPs) [44], can be computationally expensive for
real-time applications in industrial settings; while they are powerful for complex motion
sequences, ProMPs require the modeling and prediction of entire human motion trajectories.
On the other hand, recognizing subtle cues and monitoring task progress fall into the latter
category. Among them, eye gaze has deserved particular attention as a powerful tool for
discerning the operator’s potential intentions [45].

In contrast to previous approaches, our work emphasizes the robot’s ability to perceive
and recognize the object being manipulated by the human operator as a key component
for making predictions about its needs. Knowing the object in the user’s hand can provide
valuable contextual information, revealing both current activity and future intentions. The
solution adopted in our work focuses on detecting and tracking the hand and finger key
points from visual data. The proposed framework combines the strengths of Mediapipe
in detecting hand landmarks in an RGB image with a deep multi-class classifier that
predicts the grasped object from a set of 21 key points.This focus on hand–object interaction
(HOI) allows for a computationally efficient and real-time applicable strategy for intention
anticipation, particularly suited for industrial collaborative tasks. The advantages and
limitations of using this novel approach for the recognition of human-grasped objects can
be found elsewhere [37].

In this work, we developed an object-recognition module by leveraging a pretrained
convolutional neural network (CNN) that was optimized in our previous work [37]. This
CNN, while originally trained for a different set of objects, was fine-tuned for the task of
recognizing screwdrivers, pliers, Rubik’s cubes, and water bottles. The training dataset
was obtained using images of hand postures holding these objects, captured and annotated
according to the previously established protocol. The exact number of samples of the entire
dataset per class and per user is shown in Table 2.

Table 2. Number of samples in the dataset per class and user.

Dataset Bottle Cube Plier Screwdriver Total

User1 649 890 943 956 3438
User2 771 836 872 898 3377
User3 746 834 904 930 3414

Total 2166 2560 2719 2784 10,229

The classification model achieved a high overall accuracy of 90.5% on the held-out
test set, comprising 20% of the original dataset. A confusion matrix was generated to
visualize the classification performance for each object class (Figure 12). The diagonal
elements represent correctly classified instances, while off-diagonal elements indicate
misclassifications between object categories. The confusion matrix highlights the high
precision and recall rates for most objects, with some confusion observed between the pliers
and the screwdriver.

Subsequently, the object-recognition module was tested in a real-time setting within a
collaborative human–robot interaction scenario. The experiments conducted to validate the
proposed anticipation system involve a task where the robot assists a human in a tabletop
scenario by recognizing objects held in the hand based on their grasping pattern. The
experimental setup comprises a UR10e robot, two Orbbec Astra Pro RGB-D cameras, and a
set of four objects positioned on a table (Figure 13).
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Figure 12. Confusion matrix for object classification using a CNN model.

Figure 13. Experimental setup depicting the collaborative cell where the study was conducted. On
the left, it features two RGB-D cameras (marked as white rectangles 1 and 2) and the UR10e COBOT
(marked as white rectangle 3). On the right are the objects used to discriminate based on their
grasping patterns.

The robot observes the worker’s hand, while a real-time CNN deep model identifies
the specific object being grasped. Upon object recognition, the robot delivers the corre-
sponding tool or part to assist the worker. The functional blocks of the anticipatory system
were developed separately. The prediction model offers the possibility of incorporating
action selection in their planning through a decision-making block. Figure 14 illustrates
the developed anticipatory system, including the decision-making block and movement
planning using the MoveIt library.

Camera 1

Camera 2

RGB
Image

Depth
Image

RGB
Image

keypoint
detection

3D hand
pose

locator

keypoint
detection

object
recognition

antecipative
decision
making

movement
planning

Figure 14. Functional blocks of the anticipatory robotic system.

The classifier employs logits, which are the raw, non-normalized output values pro-
duced by the neural network model. To illustrate this, Figure 15 depicts the temporal
evolution of the logits for each object class when the grasped object is a bottle. This figure
showcases how these raw scores change over time during the network’s prediction process.
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The real-time classification process also relies on thresholds determined from an analysis of
the output values obtained during repeated pick-and-place movements performed with
each object. By comparing these logits to pre-established thresholds that are specific to each
object, the classifier determines the identity of the object being grasped. This approach
allows for efficient and accurate object recognition, enabling the robot to reliably respond
to the user’s actions in real-time scenarios; while the initial results show promise, further
efforts are ongoing to facilitate the integration of anticipation and planning within uncertain
contexts, especially considering the inherent variability of human behavior.
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Figure 15. Temporal evolution of CNN object classifier logits by picking up and dropping the bottle
four times.

5. Application Case Study

The methods described in the preceding section have been developed specifically for
setups that involve human–robot collaboration. The overall system incorporates human
awareness, human–robot communication, and object handover capabilities, enabling the
resolution of a large set of industrial use cases that require collaboration between humans
and robots. The application case study presented in this paper is based on a typical human–
robot interaction scenario, where a human operator interacts with a palletizing robotic
arm to inspect the object it is holding. The robot’s behavior is represented by a finite-state
machine, which uses the output of the decision models to transition between states.

5.1. Demonstration’s Software

The application case study presented in this paper utilizes specific software com-
ponents that play a crucial role in its operation of the collaborative cell. The movement
control of the UR10e was achieved using MoveIt [46], a widely adopted motion planning
framework in ROS. This framework offers various joint planners, simplifying the imple-
mentation of different robot motions. Furthermore, the MoveIt drivers enabled real-time
sensor data acquisition from the robot at a maximum frequency of 500 Hz, enhancing the
responsiveness of the system.

Additionally, the framework offers the capability to utilize ROS actions, a communica-
tion mechanism that is inherent to ROS that facilitates the execution of long-running tasks
and enables asynchronous behavior between different components of a robotic system.
Actions enable non-blocking execution, allowing the robot to engage in other operations
while waiting for the completion of a particular action. This simultaneous operation en-
hances the robot’s responsiveness to external interactions, such as hand gestures or physical
engagements, while concurrently executing other commands.

To facilitate the implementation of a robust and scalable control, sensing, and decision-
making system, the logic of the finite-state machine was implemented using the SMACH
library [47]. SMACH provides a comprehensive set of classes and functions that enable the
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modular implementation of states and triggers. This modular approach not only enhances
the system’s robustness but also facilitates scalability, allowing for the seamless addition of
new functionalities as needed. In terms of decision models, the hand gesture recognition
is implemented in Pytorch, and also uses MediaPipe. The physical interaction module is
programmed in Keras API, from TensorFlow2. The third decision module uses OctoMap,
as mentioned in Section 4.1. All these systems are integrated in the ROS framework.

5.2. State Machine

The robotic arm is controlled by a finite-state machine with six states. Each state
encompasses specific configurations of arm and gripper movements, velocities, and acceler-
ations. Transitions between states are triggered by events generated by the decision models
previously described. Figure 16 provides a diagram of the finite-state machine.

S0 - Start

S1 - Fast Object Manipulation

S2 - Safe Object Manipulation

S3 - Object Handover

S4 - Wait For Interaction

S5 - Wait To Recover Object

S6 - Recover Object

e1 - operator detected e2 - operator not detected

e3 - gesture
A detected

e9 - object available

e5 - interaction
PULL detected

e8 - gesture
F detected

e1
0

-
ob

je
ct

re
co

ve
re

de6 - interaction
PUSH detected

e99 finish demo

Figure 16. Demonstration’s state machine diagram; Sn labels are prefixes for states, and en labels are
prefixes for events (triggers). Events triggered by user interaction are marked in red.

• State 1—Fast Object Manipulation. The demonstration begins in State 0, which is an
initiation state that immediately switches to State 1. In this State 1, the robotic arm
carries out a palletizing task, manipulating two objects 1 and 2 between two distinct
positions, as depicted by the red zones in Figure 17. The arm operates at maximum
speed, performing wide movements to minimize task cycle time. The state machine
monitors the output of the volumetric detection node, which detects the presence of
a human operator. If an operator is detected within the monitored volume, the state
machine switches to State 2.

• State 2—Safe Object Manipulation. While the operator is present and there is no
engagement with the robot, the state machine remains in State 2. In this state, the robot
performs in a slower motion and more retracted movements, displaying awareness of
the operator’s presence. However, it continues the initial palletizing task for objects 1
and 2. There are two triggers to exit State 2. If the volumetric detection module detects
the operator leaving the monitored volume, the state machine goes back to State 1.
Alternatively, if the hand gesture recognition module detects the operator correctly
performing the A hand gesture, and the robot possesses an object in the gripper, the
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state machine goes to State 3. If the robot does not have an object, the program waits
for the robot to grasp one before switching states.

• State 3—Object Handover. State 3 acts as a transient state between States 2 and 4. The
transition from State 2 to State 3 occurs when the operator requests an object. In State
3, the robotic arm moves to a handover position. The trigger to switch to State 4 is an
internal robot event that verifies if it has reached the handover position.

• State 4—Wait for Interaction. In this state, the robot remains stationary in the handover
position, placing the object at about a 45◦ angle, in a configuration similar to the one
represented in Figure 17. The state machine monitors the output of the physical
interaction classification module, which recognizes two available interactions: PUSH
and PULL. The PUSH interaction results in the rejection of the object held by the robot,
prompting a return to State 2 to resume palletizing. On the other hand, the PULL
interaction triggers the gripper to release the object, allowing the operator to retrieve
it. Subsequently, the robot retracts to a safe position and goes to State 5.

• State 5—Wait to Recover Object. During this phase, the human operator is handling
the object. Once the inspection is complete, the operator places the object in an area
designated for object recovery, as indicated by the green zone in Figure 17. To signal
the intent of object recovery to the robot, the operator performs the F gesture. This
triggers the state machine to transition to State 6.

• State 6—Recover Object. State 6 initiates a slow movement to retrieve the object
from the designated object-recovery area. Upon completing the movement, the state
machine automatically switches back to State 2.

Figure 17. View of the human–robot interaction space. The red zones are the regions that the robot
uses to continuously place and swap objects 1 and 2. The green zone is the designated area for object
recovery. The robot is in a position ready for operator physical interaction.

6. Discussion and Results

The solutions proposed in this paper introduce several aspects to enhance human–
robot collaboration, with a focus on safety, interaction abilities, and industrial applications.
We have integrated multimodal sensing capabilities to improve the robot’s awareness of
the human operator. This increased awareness enables the robot to adjust its behavior and
movements for safe interaction, switching to slower and more cautious movements in the
presence of the operator to prioritize safety and minimize the risk of accidents or collisions.
This also promotes task efficiency, as the system employs rapid object manipulation when
there is no risk of collision. The incorporated hand gestures and physical interaction
recognition enable intuitive and natural communication for the human. Moreover, using
ASL for hand gesture recognition and simple interaction primitives for physical interaction
further allowed for a straightforward and easily comprehensible communication system.
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Although the collaborative system is user-friendly, it accommodate a wide range of
possible events, resulting in complex human–robot interaction when necessary. The inte-
gration of these features into a comprehensive solution confirms their suitability not only
as standalone components but also in complex applications. Furthermore, we considered
ergonomics when designing the finite-state machine that governs the robot’s behavior. We
defined specific robot configurations, velocities, and accelerations in each state to ensure
comfortable and ergonomic task performance during human interaction. Our approach
is specifically tailored to industrial use cases, such as palletizing tasks. By integrating
decision models, sensing modules, and the finite-state machine within a collaborative cell,
we demonstrate the practicality and adaptability of our approach to real-time operation.

Each described feature has its own performance assessed by metrics published in
specific papers, as reported in the previous section. However, the integration of those
features in a global solution is a result that confirms their suitability not only in standalone
mode, but also in complex applications. Table 3 includes a set of links for video clips and
other sources of information available on online platforms that illustrate the performance
and functionality of the integrated cell, as well as demonstrations in standalone actions.

Table 3. Qualitative indicators of performance.

Feature Link

Application case study ➀ https://youtu.be/c5i2uKO9SoI (accessed on 8 July 2024)

Hand gesture recognition
➁ https://youtu.be/F3uH_sBS1yM (accessed on 8 July 2024)
➂ https://www.kaggle.com/datasets/joelbaptista/hand-
gestures-for-human--robot-interaction (accessed on 8 July 2024)

Physical interaction

➃ https://youtu.be/Xpv3msB7mdQ (accessed on 8 July 2024)
➄ https://youtu.be/ydZqHMQwlus (accessed on 8 July 2024)
➅ https://youtu.be/c3o96O5K1rg?si=5qYwjXoMAvw0sD8E
(accessed on 8 July 2024)

Volumetric monitoring ➆ https://youtu.be/6M159G4xxKI (accessed on 8 July 2024)
➇ https://youtu.be/77XK-L295Eo (accessed on 8 July 2024)

Human intention anticipation ➈ https://youtu.be/DnPNmu9UzDI (accessed on 8 July 2024)

However, the development of collaborative cells for real-world scenarios presents a
number of significant challenges requiring further research. The use of learning-based
methods in industrial settings requires the system to be able to deal with the variability
in human behavior and a number of different users. Learning models may need to adapt
to different user preferences, work styles, or even physical capabilities; while challenges
exist, integrating data acquisition for personalized modeling holds promise for the fu-
ture of human–robot collaboration in industrial settings. As technology advances and
costs decrease, it could become a more widely adopted approach to deal with specific
users distributions.

In addition to overcoming technical challenges, moving knowledge from research
labs to real-world industries poses a significant engineering barrier. Often, there is a lack
of established processes, evident in the absence of comprehensive architectural models
and methods. In the context of robotics, widely-used standardized components, software
frameworks, and systems play a crucial role in application development. These resources
are valued for their adoption and compatibility across different hardware and software
platforms. However, due to lack of standards, building robotic systems often requires
expertise instead of following established engineering protocols. For example, integration
frameworks and middleware serve different development objectives. On the one hand, aca-
demic platforms like ROS and YARP prioritize flexibility, making them ideal for exploratory
research. On the other hand, business-oriented platforms like OpenRTM and SmartSoft
emphasize structured role separation and robust support for the development environment.

https://youtu.be/c5i2uKO9SoI
https://youtu.be/F3uH_sBS1yM
https://www.kaggle.com/datasets/joelbaptista/hand-gestures-for-human--robot-interaction
https://www.kaggle.com/datasets/joelbaptista/hand-gestures-for-human--robot-interaction
https://youtu.be/Xpv3msB7mdQ
https://youtu.be/ydZqHMQwlus
https://youtu.be/c3o96O5K1rg?si=5qYwjXoMAvw0sD8E
https://youtu.be/6M159G4xxKI
https://youtu.be/77XK-L295Eo
https://youtu.be/DnPNmu9UzDI
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7. Conclusions

This work investigated the integration of safety, multimodal communication interfaces,
and deep learning techniques in order to advance the potential of collaborative robotics
in industry. The focus was on the methodological and software aspects adopted during
the system development and integration process. At this point, it is pertinent to make the
following comments. First, the developed framework ensures awareness of human and
robot activities, showing promising features to be applied in advanced adaptive control
strategies. Second, the learning techniques adopted in the communication interfaces proved
to be suitable for real-time operation. Furthermore, the proposed methodology to classify
contact-based interactions paves the way for more effective forms of communicating
human intentions through a haptic channel. Third, this study presented the practical
implementation of a case study and the usefulness of ROS for a seamless integration and
interoperability among different modules.

The core abilities addressed in our study provide a technology and application in-
dependent way of characterizing the entire system performance; while the current study
establishes the feasibility of the system, future work will focus on a comprehensive eval-
uation of the system’s performance and user experience. This includes conducting user
studies with human collaborators to assess the system’s usability and acceptability in
real-world scenarios. Additionally, quantitative evaluation will be conducted to measure
the accuracy and response times of the individual modules, providing concrete evidence for
the system’s overall effectiveness. These evaluations will further strengthen the presented
work and pave the way for future research on optimizing human–robot collaboration in
industrial settings. It is expected that the development of reusable building blocks with
clearly defined properties could help the technology transfer from research to industry.
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