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Abstract: As an important part of urban vitality, street vitality is an external manifestation of street
economic prosperity and is affected by the built environment and the surrounding street vitality.
However, existing research on the formation mechanism of street vitality focuses only on the built
environment itself, ignoring the spatial spillover effect on street vitality. This study uses 5290 street
segments in Shenzhen as examples. Utilizing geospatial and other multisource big data, this study
creates spatial weight matrices at varying distances based on different living circle ranges. By
combining the panel threshold model (PTM) and the spatial panel Durbin model (SPDM), this
study constructs a spatial autoregressive threshold model to explore the spatial nonlinear effects of
street vitality, considering various spatial weight matrices and thresholds of construction intensity
and functional diversity. Our results show the following: (1) Street vitality exhibits significant
spatial spillover effects, which gradually weaken as the living circle range expands (Moran indices are
0.178***, 0.160***, and 0.145*** for the 500 m, 1000 m, and 1500 m spatial weight matrices, respectively).
(2) Construction intensity has a threshold, which is 0.1466 under spatial matrices of different distances.
Functional diversity has two thresholds: 0.6832 and 2.2065 for the 500 m spatial weight matrix, and
0.6832 and 1.4325 for the 1000 m matrices, and 0.6832 and 1.2724 for 1500 m matrices. (3) As an
international metropolis, street accessibility in Shenzhen has a significant and strong positive impact
on its street vitality. This conclusion provides stakeholders with spatial patterns that influence street
vitality, offering a theoretical foundation to further break down barriers to street vitality.

Keywords: street vitality; built environment; threshold effect; spatial effect; spatial autoregression;
construction intensity; functional diversity

1. Introduction

Streets and the vitality of cities are strongly related and as observed by Jane Jacobs “if
the streets are vibrant, the city is also Vibrant’ [1]. Streets, as the basic units of urban life, not
only serve the function of city transportation, but are also important venues for residents”
activities and are a concentration of urban vitality [2]. People use streets for socializing,
leisure, and other functional activities; thus, streets are increasingly seen as social spaces
rather than merely spaces for mobility [3]. Prosperous, bustling streets can enhance human
activity and social interaction, facilitate transactions, and attract talent and capital, thereby
boosting urban competitiveness and creativity, maintaining urban resilience, and ultimately
achieving sustainable development [4]. Jacobs first identified four formative conditions
for street vitality: mixed-use, density, new and old buildings, and short streets, which
spurred exploration into the mechanisms of street vitality formation [2,5]. In recent years,
the rapid development of information technology and the use of multisource big data have
led people to re-examine and verify street vitality. Street vitality is considered a complex
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concept occurring in urban street spaces, closely related to the built environment itself and
having distinct spatial characteristics [6–10].

Due to the proximity effect, elements in geographic space often impact their surround-
ings, a phenomenon typically manifested as spatial effects [11–15]. Street vitality is clearly
influenced by other streets within a certain range; when a street’s vitality changes due to
positive or negative factors, this change acts as either positive or negative feedback on the
surrounding streets [16]. However, previous studies based on geographic big data were
limited to exploring the impact mechanisms of the streets’ own built environment on street
vitality, considering the built environments of streets as independent and not accounting
for spatial or group dependencies [17], thus overlooking the important role of spatial effects
in the formation of street vitality. Although the existence of regional interactions has been
confirmed, the spatial scale and range of these spatial effects remain unknown, particularly
when streets are used as the basic research unit; how the distance decay mechanism of
spatial effects manifests is still unknown [18]. Clarifying the spatial effects of street vitality
at different geographical distances helps to quantitatively describe this influence mecha-
nism. While most scholars focus on analyzing the interrelationship between street-built
environments and street vitality, they often overlook the exploration of urban vitality’s
spatial effects, with the built environment acting as a constraining factor [19,20]. Wu and
others’ research method accounts for both spatial and nonlinear effects, but it primarily
focuses on urban vitality by dividing Shanghai into 72 research units [21]. Our study
concentrates on the linear aspects of street spaces, which are smaller in scale and have a
larger sample size, thus providing a micro-level supplement to their work.

Methods, such as least squares regression, multiple linear regression, geographically
weighted regression, and the entropy weight model, have provided various effective
approaches for exploring the formation of street vitality [22–24]. However, these methods
assume a potential linear relationship, which may overestimate or underestimate the
nonlinear effects of variables. Moreover, when using these methods, it is challenging to
integrate the nonlinear effects and spatial effects of street vitality. Recently, Han et al.
observed that the relationship between certain urban morphological characteristics and
street vitality is nonlinear, with correlations changing dramatically upon exceeding specific
thresholds of these attributes [25]; meanwhile, with the widespread use of machine learning,
Xu et al. employed the random forest method to reveal the nonlinear effects of street features
on pedestrian perception, and Li et al. identified street vitality automatically through deep
learning based on the number of pedestrians and the classification of activities on the
streets, and used street view semantic segmentation to measure five selected street building
environment variables related to vitality, providing us with a new perspective for further
understanding of the built environment [26,27]. Additionally, Zhao et al. systematically
analyzed the spatiotemporal heterogeneity of the built environment’s impact on street
vitality by constructing a geographically and temporally weighted regression (GTWR)
model, providing insights into exploring nonlinear and spatial effects [28]. Based on this,
we constructed a model that can describe nonlinear (particularly in pursuit of thresholds)
and spatial effects, namely the spatial autoregressive threshold model. This model analyzes
the spatial nonlinear effects of neighboring streets on the vitality of a given street under
different built environment constraints.

Over the past few decades, the rise of the Internet has made the acquisition of mul-
tisource geographic big data possible, providing a new avenue for quantitative research
into the mechanisms of street vitality formation. Many scholars have begun to use data,
such as POIs, public reviews, social media check-ins, location tracking, and mobile signal-
ing [29–33], employing projection pursuit models to analyze urban vitality from multiple
perspectives and dimensions, including fuzzy comprehensive evaluation and spatial analy-
sis, achieving significant progress. The increasing prevalence and use of location-aware
technologies enable people to add location data to online social networks in various ways,
such as by posting reviews at event locations (like public reviews) or leaving notes at
specific places (e.g., Gaode Maps, Baidu Maps). The widespread use of location-based
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services (LBS) has provided researchers with unprecedented opportunities to mine and
visualize location-based tracking data and social media data, enhancing our understanding
of human mobility [34]. Based on this principle, by acquiring urban street geographic
information big data, we can conduct extensive macro and micro analyses.

This study aims to investigate the spatial nonlinear effects of street vitality within the
constraints of two key indicators of the street built environment. By leveraging multisource
big data and integrating the PTM and STDM models, we built a spatial autoregressive
threshold model to answer three questions: (1) When street construction intensity and
functional diversity fall within different threshold ranges, are the effects of threshold
variables and their control variables on street vitality consistent? (2) Do the spatial effects of
street vitality adhere to a distance decay mechanism within different living circle distances?
(3) When considering spatial effects, is it possible to improve the explanatory power of the
street vitality formation mechanism?

2. Literature Review
2.1. Definition and Measurement of Streets and Street Vitality

According to “Cihai”, a street is defined as “a relatively wide urban road flanked by
buildings, typically referring to road sections that have shops facing the street” [34]. From
this, it can be deduced that the most important characteristic of a street is to provide a
public space for social interaction and transactions; streets are not entirely synonymous
with urban roads, which prioritize fast traffic, while streets emphasize slower traffic and
spaces for social activities.

Streets, as the public spaces most characteristic of urban areas, are rarely mentioned
in the normative documents of our country’s planning and design system and are often
represented as “urban roads”. Therefore, urban planning standards merely continue
the method of traffic categorization, lacking a category for “urban street planning” and
primarily focusing on “urban road system planning”. According to the 2012 revised Urban
Road Engineering Design Specifications, urban roads are classified into expressways, arterial
roads, secondary arterial roads, and branch roads; since expressways primarily serve a
transit function, they are not within the scope of this study [35]. The streets mentioned in
this article are those where the urban main arteries, secondary arteries, and branch roads
extend from the centerline to a certain distance on both sides, including all buildings and
their setback spaces on both sides containing POIs.

Jane Jacobs noted that urban streets act as lines on a macro level and as surfaces on a
micro level, which are crucial in forming public activity spaces within cities. She observed
that while these spaces serve as venues for public interaction, it is ultimately the people
who infuse these spaces with vitality [1]. Jan Gehl, in his book Life Between Buildings,
stated that vitality comes from human interaction, meaning that the vitality of street public
space is generated by human activities. He emphasized that slow traffic can promote
street vitality [36]. In 1998, Montgomery characterized “street vitality” as encompassing
pedestrian flow, the utilization of facilities, and the prevalence of cultural activities along
streets [37]. In summary, people and their activities are the foundation of street vitality.
The physical environment of streets provides a place for activities and influences people’s
behavior [38].

With the popularization and widespread application of big data, real-time pedestrian
flow data on streets has become more accessible, and researchers often use the intensity of
a street’s active population to represent it. Spatial big data containing geographic location
information, such as Baidu LBS data, Baidu Heatmap data, and mobile signaling data, are
frequently used to measure street vitality. For instance, Han, Patrizia, and others used
social network review data and location data to represent street vitality [17,39,40]. Xia, Kim,
and others used mobile location information to represent street vitality [41–43]. Zeng, Liu,
and others used traffic trajectory data to represent street vitality [44–46].
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2.2. The Role of the Street Built Environment in the Mechanism of Street Vitality Formation

Various factors of the built street environment impact street vitality. Bernick and
Cervero characterized the built environment from three dimensions: density, diversity, and
design [47]. Later, Belzer and Autler added two more dimensions, namely transportation
distance and destination accessibility, to evaluate the built environment [7,48]. Jacobs
emphasized the importance of street diversity and construction intensity (density) for
street vitality. In his 1998 study, Montgomery underscored “development intensity” as
a critical driving force behind vibrant urban life [49]. Based on an empirical study of
Chengdu’s street space, Li and others found that construction intensity has the greatest
impact on street vitality within a certain scale [50]. Wu and others’ research shows that
functional diversity plays a significant role in enhancing street vitality [7]. However, some
studies have found that construction intensity can have entirely different effects at different
stages of urban development [51]. Wu and others found that when streets have varying
levels of construction intensity, increasing functional diversity also produces different
impacts [32]. Construction intensity and functional diversity have spatial clustering and
spillover effects. Different streets have different spatial geographic positions, so the mecha-
nisms by which construction intensity and functional diversity impact street vitality need
further exploration.

2.3. The Impact of Spatial Effects on Street Vitality

In 1933, German geographer Walter Christaller introduced the central place theory,
which describes how town centers serve surrounding areas, and laid an early theoretical
groundwork for understanding spatial effects [52]. Subsequently, Swedish economic
geographer Tord Palander emphasized the role of spatial factors in enhancing economic
vitality. Fu and colleagues examined the spatial spillover effect in urban clusters and
discovered that this effect is not a simple linear relationship. Instead, as distance increases,
it first strengthens and then weakens in an inverted U-shape [53]. Xiang and others
showed that infrastructure in neighboring areas has a positive effect on local economic
growth, demonstrating the positive spillover effects of infrastructure development within
the Shenyang economic region [54]. Hu and others, based on the characterization of
POI data, studied the spatial agglomeration and boundary effects in Ningbo, revealing
significant clustering patterns in commercial spaces [55]. Although previous research has
begun to focus on the spatial effects of built environment factors, such as infrastructure and
commercial activities on urban vitality, most of this research is on a large scale and lacks
street-level studies to explore the thresholds and boundaries of spatial effects.

3. Scope of Research and Data
3.1. Research Scope

Located in southern Guangdong Province, Shenzhen is a coastal city on the eastern
shore of the Pearl River Estuary, directly adjacent to Hong Kong. It is bordered by Daya Bay
and Dapeng Bay to the east, the Pearl River Estuary and Lingding Yang to the west, and is
connected to Hong Kong by the Shenzhen River to the south. To the north, it neighbors are
the cities of Dongguan and Huizhou. Shenzhen is located south of the Tropic of Cancer,
between longitude 113◦43′ and 114◦38′ east, and latitude 22◦24′ and 22◦52′ north. The
total area of the city is 1997.47 square kilometers. In 2023, Shenzhen’s GDP reached CNY
3.46 trillion, ranking third in the nation after Beijing and Shanghai. The registered total
population of Shenzhen’s communities in 2023 was 21.6377 million, making it a major first-
tier city in China. Based on these economic and demographic factors, Shenzhen’s vitality
has been enhanced. By selecting Shenzhen as the research area to examine the spatial
nonlinear effects of street vitality at different thresholds of street construction intensity and
functional diversity, this study can offer robust suggestions for future development and
stimulating street vitality in new first-tier, second-tier, and third-tier cities in China, as well
as in cities of developing countries.
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As shown in Figure 1, this study takes the street spaces of Shenzhen as the research
object. Referring to the Code for Urban Road Engineering Design and the OSM open road
network’s road classification standards, and considering the setting of buffer zones for
calculating street-related indicators, this paper classifies streets with an interface width
(including certain spaces, like plazas formed by building setbacks on both sides of the
street) of 140 m or more as main roads, those between 90 and 140 m as secondary roads,
and those between 50 and 90 m as branch roads. Finally, based on factors, such as road
intersections and rivers, the streets are divided into several segments, resulting in a total of
5290 street samples. Considering that Jan Gehl emphasized that slow traffic is an important
condition for fostering street vitality, this paper divides the street into three parts on the
plan: the first is the vehicular lane, the second is the sidewalks on both sides of the vehicular
lane, and the third is the setback space between the vehicular lane and building facades. In
calculating street pedestrian flow, the vehicular lane part is excluded, and only the vitality
values of the remaining two parts are calculated [35].

Figure 1. Research scope and road network data.

3.2. Data Collection and Cleaning

We have obtained road network data, Baidu Huiyan LBS data, Amap POI data, and
Baidu building data. The data statistics are as shown in Table 1.

Table 1. Summary of basic data.

Data Type Source Description Link

Baidu building data a Contains 663,184 records “https://map.baidu.com/ (accessed on 14 June 2022)”
Baidu Huiyan data b Total of 5290 segments “https://huiyan.baidu.com/ (accessed on 15 June 2022)”
Amap POI data c Total of 3,506,483 records “https://ditu.amap.com/ (accessed on 14 July 2023)”
Road network data d Total of 761,414 records “https://www.openstreetmap.org/ (accessed on 24 October 2023)”

Street view images a A total of 158,612 valid street
view images “https://map.baidu.com/ (accessed on 7 June 2024)”

Note: a: Baidu Maps; b: Open Street Map official website; c: Baidu Huiyan; d: Gaode Maps Open Platform.

3.2.1. Road Network Data

Based on the road network downloaded from OSM and satellite map data from
Baidu Maps, we manipulated the data using ArcGIS Pro 3.0.0 to split and extend it as
required by the study, to obtain complete and accurate centerline data for streets. We
ultimately obtained 882 arterial roads, 1861 secondary roads, and 2547 minor roads, totaling
5290 segments.

https://map.baidu.com/
https://huiyan.baidu.com/
https://ditu.amap.com/
https://www.openstreetmap.org/
https://map.baidu.com/
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3.2.2. Baidu Huiyan LBS Data

We obtained Baidu Huiyan population grid data for a continuous week from 10 July to
16 July 2022, amounting to 168 time points of LBS data. Compared to the data from April,
the second quarter, the vitality of Shenzhen’s streets was higher in July, hence we selected
data from this week in July as our sample base. The original data does not show specific
population distributions at any given time point but is based on a grid system, recording the
frequency of calls to the Baidu SDK within a 200 m grid every hour, representing a relatively
coarse set of data. To better represent this specific population distribution, we used the
Random Points tool in ArcGIS Pro to simulate and generate street population distributions.
For streets of different classifications, we used different ranges of spatial connections to
derive the relative population numbers within the street’s extent. To eliminate errors
caused by unusual conditions at any specific time point, we used the mean of the relative
population numbers from 168 time points over the week as the relative population number
for that street.

3.2.3. Amap POI Data

As China’s digitalized cities continue to develop, urban spatial carriers are abstracted
into points of interest and presented to users through map apps. The Amap Open Platform
provides various functions for querying POI information. In this study, we searched
Shenzhen using POI categories (data collected in September 2023), obtaining 19 major
categories totaling 761,414 valid entries.

3.2.4. Baidu Building Data

Using Python-based web scraping technology, we obtained building data for Shenzhen
for the years 2019 and 2023 (including certain fields, such as the number of building floors,
and land area). Due to partial data loss in 2023 (suburban areas missing), we combined
data from 2019 and 2023 and cleaned it to obtain a more complete set of building outline
data for Shenzhen, totaling 663,184 records.

3.2.5. Street View Images

Simultaneously, based on the road network data of the study, street view sampling
points were generated every 100 m along the road network. For roads shorter than 100 m,
sampling points were generated based on the road endpoints. Finally, street view images
were obtained using Python, resulting in a total of 158,612 valid street view images. The
following Figure 2 shows the semantic segmentation results of the street view image at
point number 164 on a secondary road: the sky represents 19.5% of the image, grass is 2.9%,
and trees are 6.9%.

Figure 2. Semantic segmentation results of street view.
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4. Methodology
4.1. Explanatory Variables

Streets, as one of the largest public spaces in cities, carry profound social and cultural
implications [37]. Within the context of urban geography and urban planning, street vitality
is widely classified as the enduring force of urban streets [56], the diversity of urban life [1],
or the activities of people on the streets [36]. To maintain street vitality, an active population
density must reach a sufficiently high level to facilitate interaction between people and
space, leading to transactions and social interactions. With the rapid development of the
Internet, the use of mobile phones for socializing, navigation, payments, etc., has become
extremely common among urban residents. These mobile Internet services record users’
locations, generating passive LBS data, which, after being anonymized and aggregated, can
be used for urban big data analysis. Therefore, this study uses a week’s worth of continuous
LBS data to quantify street vitality (Table 2), with the following calculation method:

H =
1

7 ∗ 24

7

∑
i=1

24

∑
j=1

Pij (1)

where H represents the average heat value of a street over a week, i represents the i-th
day of the week (i = 1, 2, . . ., 7), j represents the j time point of a day (j = 1, 2, . . ., 24), and
Pij represents the relative population number at a certain time point on a street. The final
result will be the linear density (number of people per hundred meters) of the average
relative population over seven consecutive days within each street segment, serving as the
data representing street vitality.

Table 2. Daily street vitality data statistics.

Date Relative Population on Streets Mean Maximum Minimum Standard Deviation

Monday 7,283,132 8.43 550.57 0 12.58
Tuesday 7,209,726 8.37 500.76 0 12.15
Wednesday 7,249,843 8.41 522.80 0.014 12.36
Thursday 7,190,898 8.31 459.81 0.014 11.04
Friday 7,409,353 8.58 566.89 0.011 12.93
Saturday 7,322,311 8.45 485.01 0.022 12.22
Sunday 6,993,683 8.12 522.80 0.017 11.50

Note: mean represents the average relative population per 100 m of street (number of people per 100 m of street).

Based on the above calculation method, the average vitality at specific times between
10 July and 16 for the Shenzhen street units was obtained through visual analysis, as shown
in Figure 3:
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Figure 3. Vitality kernel density map of streets at different time points.

4.2. Threshold Variables and Control Variables

As key metrics of the built environment, construction intensity and functional di-
versity are utilized as threshold variables in this research [57,58]. Additionally, to more
precisely explain the connection between construction intensity, functional diversity, and
street vitality, and to improve the interpretability of the model, this article draws on the
research of Ma, Wang, and Chen using certain variables, such as accessibility, public service
facilities, building footprint density, sky view factor (SVF), and green view index (GVI), as
controls [59–61]. The definitions and calculation methods for the threshold variables and
control variables are shown in Table 3.
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Table 3. Threshold variables and control variables.

Type Variable Name Description

Threshold variable

Construction
intensity

Based on street POI data, the linear density of POIs along the
streets is used as an indicator of street construction intensity.

Functional
diversity

POIs are categorized into 16 major classes, and the Shannon
diversity index is calculated to determine functional diversity.

Control variable

Integration Standardized angular integration measured using Depthmap.

Public transport facilities and services Calculated based on the line density of public transport
stations, such as bus and subway stations.

Public facilities and services

The service level of public facilities is represented by the
linear density of three categories of POIs: public amenities,
transportation facilities, and government and other
social organizations.

Building
occupation density

The total area occupied by buildings on both sides of a certain
street divided by the length of the street (square meters
per kilometer).

Sky view factor The ratio of sky pixels to the total pixel count in street
view images.

Green view index The ratio of the total pixels of grass and trees to the total pixel
count in street view images.

4.2.1. Construction Intensity

This paper characterizes construction intensity by the linear density of the number of
POIs within a street area. Depending on the width of arterial roads, secondary roads, and
alleys, different distances are used for spatial connections when counting the number of
POIs within a street. The specific formula for calculation is as follows:

C =
∑n

i=1 Ni

L
(2)

where C represents the construction intensity, n is the number of POI categories, Ni repre-
sents the number of the i-th type of POI on the street, and L represents the length of the
street. Figure 4 shows the density map of the street construction intensity.

Figure 4. Kernel density map of street construction intensity.

4.2.2. Functional Diversity

The article assesses the diversity of functional facilities on streets by using the POI
diversity index. Based on the Amap POI classification coding table, researchers catego-
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rized the POIs of Shenzhen’s streets into 16 main types, including catering services, road
ancillary facilities, scenic spots, government agencies, and social organizations, as well as
accommodation services. Utilizing the Shannon diversity index, the research team defined
the specific formula for calculating the POI diversity index as follows:

e = −∑n
j=1(Pi ∗ ln Pi) (3)

Pi =
Nj

∑n
j=1 Nj

(4)

where e represents the diversity of street functions, Pi represents the proportion of the j-th
category of POIs, n represents the number of POI categories, and Nj represents the quantity
of the j-th category of POIs on a particular street. To account for the absolute number
differences between different categories of POIs, we first normalize the number of POIs
before calculating their diversity index. Figure 5 shows the map of street function diversity.

Figure 5. Kernel density map of street functional diversity.

4.2.3. Accessibility

Accessibility ensures that citizens can easily and efficiently reach these activity centers,
which promotes social interaction and economic activities on urban streets. We have chosen
two indicators to characterize street accessibility: integration and public transportation
facilities services.

Integration is a measure of the connectivity of a street to other streets; the higher the
integration of a street, the more convenient it is to travel from this street to others, and
the better the overall connectivity. We have calculated the integration of streets based on
Depthmap, and the formula is as follows:

NAIN = (node_countˆ1.2)/(total_depth + 2) (5)

where NAIN represents the normalized integration, node_count indicates the number of
segments within the global scope, and total_depth represents the total topological depth
within the global scope. Figure 6 shows the visualization of the street integration.

Public transportation facilities and services are used to measure the availability and
convenience of public transportation. Streets with higher levels of public transportation
facility services provide greater convenience for residents relying on public transit, thereby
effectively reducing dependence on private vehicles, promoting the development of sustain-
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able transportation, and also aiding in the revival of slow traffic, enhancing the functional
role of the street as a “street”. Equation (6) is as follows:

PTS=
N
L

(6)

where PTS represents the density of public transportation facilities and services on the
street, N is the number of public transit stops, such as bus stations and subway stations
within the street area, and L represents the length of the street. Figure 7 shows the visual-
ization of the density of public transportation facilities and services on the street.

Figure 6. Kernel density map of street integration.

Figure 7. Kernel density map of street public transportation facilities and services.

4.2.4. Public Facilities and Services

This paper uses the linear density of three types of points of interest (POIs)—public
facilities, transportation facilities services, and government institutions and other social
organizations—to represent public utility services. This approach comprehensively reflects
the density of facilities and services available for public use within an area. The calculation
method is as follows:

PFS =
∑(N1 + N2 + N3)

L
(7)
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where PFS represents the density of public facilities and services on the street, indicating the
number of POIs for public facilities, transportation facilities and services, and government
institutions and other social organizations within the street area. The visualization of this is
shown in Figure 8:

Figure 8. Kernel density map of street public facilities and services.

4.2.5. Building Coverage Density

The building coverage density on streets differs from POI linear density, as it focuses
on the actual land use within the street area, including residential, commercial, industrial,
and other types of buildings. It reflects the intensity of land use in street spaces. The
calculation formula is as follows:

b = ∑n
i=1 Bi/L (8)

where b represents the building coverage density, Bi represents the footprint area of the i-th
type of building within the street area, n represents the number of building categories, and
L represents the length of the street. Figure 9 shows the map of building coverage density
on the street.

Figure 9. Kernel density map of the street building coverage area.
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4.2.6. Sky View Factor

Using street view images, the images are segmented into 19 categories via a deep
learning model, and the proportion of sky elements is extracted as needed. The calculation
formula is as follows:

SVF = ∑n
i=1 Skyi/Totali (9)

where n denotes the number of points within a street segment that include street view
images, Sky indicates the pixel size of the sky element, and Total represents the pixel size
of the entire street view image.

4.2.7. Green View Index

Similar to the sky view actor, we extract the grass and tree categories from the street
view segmentation as elements for calculating the green view index. The calculation
formula is as follows:

Gvi = ∑n
i=1 (Grassi + Treei)/Totali (10)

where n denotes the number of points within a street segment that include street view
images, Grass indicates the pixel size of the grass element, Tree indicates the pixel size of
the tree element, and Total represents the pixel size of the entire street view image.

4.3. Selection of Distance for Spatial Weight Matrices

The concept of “living circles” originates from Japan, where residents center activities,
such as shopping, leisure, social interaction, and healthcare, around their homes, creating
spatial or activity spaces [62]. Following the “15-min city” proposed by French scholar
Carlos Moreno, numerous scholars have defined concepts, like the 5-min, 10-min, and
15-min living circles, by the distances people can travel slowly (including walking and
cycling) within 5, 10, or 15 min [63–66]. Research by Paul et al. found that the average
walking speed at uncontrolled crossing points is 1.433 m per second [67]. Studies by Zhang
Huiling and others have found that the walking speed of adults is 1.21 m/s, with a stride
of 0.69 m and a cadence of 1.80 steps/s [68].

This paper introduces the concept of living circles, defining the influence range of
streets as 5-min, 10-min, and 15-min street living circles, and constructing three different
geographical spatial weight matrices at distances of 500 m, 1000 m, and 1500 m, respectively.
In the spatial weight matrices at 500, 1000, and 1500 m, there are, respectively, 303, 33, and
13 isolates. Taking the 500 m spatial weight matrix as an example, if the distance between
the centers of two streets exceeds 500 m, they are considered unconnected with a weight of
0; otherwise, they are considered connected, with the weight being the reciprocal of the
distance. Their spatial connectivity is shown in Figure 10.

Using spatial weight matrices at three different distances, the global autocorrelation
was tested using Moran’s I index. The results indicate a strong positive spatial autocorrela-
tion in street vitality. Table 4 shows that the Moran’s I index values at distance thresholds
of 500 m, 1000 m, and 1500 m are 0.18, 0.16, and 0.15, respectively, all indicating statistically
significant spatial clustering patterns (p-value = 0.001).

Table 4. Moran’s I values for different distance weight matrices.

Distance
Weight Moran’s I p-Value Standard

Deviation

Number of
Isolated
Islands

Maximum
Number of
Connections

Average
Number of
Connections

500 m 0.178 0.002 (12.473) 0.014 303 21 5.029
1000 m 0.160 0.001 (31.014) 0.005 33 54 17.538
1500 m 0.145 0.001 (39.055) 0.004 13 81 35.752

Most data points in the Moran scatterplot (Figure 11) are concentrated in the first
and third quadrants, indicating that areas of higher vitality tend to be adjacent to other
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high-vitality areas, while low-vitality areas are adjacent to other low-vitality areas. As the
distance threshold increases, Moran’s I index decreases, indicating that the clustering of
street vitality becomes less significant at broader spatial scales.

Figure 10. Street connectivity map based on the spatial weight matrix at different distances. The blue
box indicates the magnified area of the figure below.

Figure 11. Moran scatterplots based on different distances.

5. Modeling Methods

Research by Li et al. has shown that the built environment has a threshold effect on
street vitality [69]. The most common method to test the threshold effects of variables
is the panel threshold model (PTM) proposed by Hansen [70], which can identify actual
thresholds through real data simulation and statistical testing, overcoming the subjectivity
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of selecting thresholds by grouped regression and cross models [71]. Based on the earlier
Moran’s indices, there is significant spatial correlation in street vitality. Relying solely
on the PTM model and ignoring its spatial spillover effects might lead to inaccuracies
in the regression results. The spatial panel Durbin model (SPDM) can control for spatial
correlations among the dependent variable, explanatory variables, and error terms [72].

The built environment has both threshold effects and spatial spillover effects on street
vitality, and these two effects are inseparable. Based on the strengths and weaknesses of
the panel threshold model (PTM) and the spatial panel Durbin model (SPDM), and the
needs of this study, referencing Wu et al.’s research [21] and adopting Feng’s modeling
approach [73], this paper constructs a spatial threshold model incorporating threshold and
spatial effects to explore the spatial nonlinear effects of streets within different threshold
ranges. Compared to PTM, it addresses several issues, such as overly high regression
coefficients due to ignoring spatial spillover effects; compared to SPDM, it accounts for
the widespread threshold effects in explanatory variables. Therefore, this model can better
explain the mechanisms behind the formation of street vitality.

The specific steps of the computational model are as follows. First, identify the
threshold effects of the built environment on street vitality through PTM. Assume there are
dual thresholds λ1 and λ2 (λ1 < λ2) and set the dummy variable d1 to 1 when street vitality
is less than λ1, otherwise set it to 0; set the dummy variable d2 to 1 when street vitality is
no less than λ1 and no greater than λ2, otherwise set it to 0; set the dummy variable d3 to 1
when street vitality exceeds λ2, otherwise set it to 0. Subsequently, construct the interaction
terms between dummy variables d1, d2, d3, and street vitality, to identify the sample range,
and finally use the SPDM to study the impact of various control variables on street vitality
under conditions constrained by different threshold variables. We define the computational
method of the model as follows:

hi = γ0 + ρ∑n
i=1

(
Wi,jhi

)
+ γ1thri(thri < λ1) + γ2∑n

i=1
(
Wi,jthri

)
(thri < λ1)+

γ3thri(λ1 ≤ thri≤ λ2) + γ4∑n
i=1

(
Wi,jthri

)
(λ1 ≤ thri≤ λ2) + γ5thri(thri > λ2)

+γ6∑n
i=1

(
Wi,jthri

)
(thri > λ1) + γ7Xi + εi

(11)

Wi,j =

{
1
d2

i
(di ≥ d)

0(di < d)
(12)

where γ0 represents the expected value of hi when all explanatory variables are 0. γ1, γ3,
and γ5 represent the estimated coefficients for the direct effects of the built environment
on street vitality in the spatial threshold model, respectively γ2, γ4, and γ6 correspond to
the estimated coefficients for the spatial spillover effects of the built environment on street
vitality in the spatial threshold model, respectively. γ7, and γ8 represent the coefficients
for the control variable Xi and its spatial lag terms, respectively. h signifies street vitality,
and i denotes the ith street. thr represents the threshold variable in the model. Wi,j denotes
the spatial connection between the ith and jth streets. X stands for the control variables. εi
denotes the random error term. ρ is the total influence of the local street on neighboring
streets. Wi,j denotes the spatial correlation in the spatial lag model. di represents the
distance between the centers of streets, while di is the planar distance calculated based
on latitude and longitude. d represents the set distance thresholds, distributed as 500 m,
1000 m, and 1500 m.

6. Results
6.1. Spatial Effects of Street Vitality Using Construction Intensity as a Threshold Variable

Based on spatial weight matrices of 500 m, 1000 m, and 1500 m, we estimated the
spatial autoregressive threshold model with street construction intensity as the threshold
variable. The p-value for the single threshold is far below 0.01, indicating highly significant
results, while the hypothesis test for the dual threshold is not statistically significant,
suggesting that only one threshold exists in the development of construction intensity
(Table 5). At spatial weight matrices of 500, 1000, and 1500 m, the threshold value of
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construction intensity was consistently 0.1466. Based on the results of the threshold effect
test, we divided construction intensity into two ranges: the segments with a construction
intensity below 0.1466 are considered low-intensity, while those above this threshold are
considered high-intensity.

Table 5. Test results for construction intensity as a threshold variable.

Distance Weight
Matrix Model Threshold F p Bootstrap Crit1 Crit5 Crit10

500 m
Single threshold 0.1466 *** 117.50 0.0000 300 6.43 3.86 2.76
Double threshold (0.0586, 0.1466) 117.49 0.2933 300 162.46 141.53 133.97

100 m
Single threshold 0.1466 *** 126.85 0.0000 300 6.21 3.40 2.56
Double threshold (0.0622, 0.1466) 126.85 0.1425 300 168.32 149.42 139.86

1500 m
Single threshold 0.1466 *** 125.23 0.0000 300 6.66 3.97 2.78
Double threshold (0.0622, 0.1466) 125.23 0.2867 300 164.18 152.61 139.77

Note: *, **, and *** correspond to a 10%, 5%, and 1% significance level, respectively.

Based on the threshold regression model results (Table 6), it can be observed that
within various spatial extents, as construction intensity increases, the spatial effects become
more pronounced. In streets with high construction intensity, the construction intensity
significantly and importantly affects street vitality, with the impact decreasing with increas-
ing distance. In streets with low construction intensity, development intensity significantly
influences street vitality within 500 and 1000 m, but the influence becomes insignificant
at 1500 m. The impact coefficients and significance of control variables in the spatial
autoregressive threshold model based on spatial weight matrices of different distances
also vary.

Table 6. Spatial autoregressive threshold results under construction intensity constraints.

Spatial Weight Matrix Based on Different Distances

500 m 1000 m 1500 m

Threshold 0.1466 0.1466 0.1466
Spatial autoregressive estimation coefficient
Low range 0.0003 *** 0.0002 *** 0.0002 ***
High range 0.0006 *** 0.0003 *** 0.0003 ***
Control variables
Functional diversity 0.0026 ** 0.0027 *** 0.0022 **
Public transit facilities 1.9641 *** 1.9716 *** 1.9473 ***
Integration degree 0.4514 *** 0.4245 *** 0.2813 **
Building coverage density 5.26 × 10−7 *** 5.30 × 10−7 *** 5.28 × 10−7 ***
Public facilities and services 1.2796 *** 1.2576 *** 1.2701 ***
Sky view factor (SVF) 0.0308 *** 0.4170 *** 0.4136 ***
Green view index (GVI) −0.0178 ** −0.0200 *** −0.0136
R2 0.7210 0.7213 0.7209
Adjusted R2 0.7205 0.7208 0.7204
F-statistic 1516.03 1518.53 1515.47
ROOT MSE 0.0636 0.0636 0.0636
Prob 0.0000 0.0000 0.0000

5290 5290 5290
Note: *, **, and *** correspond to a 10%, 5%, and 1% significance level, respectively.

At a threshold of 500 m, whether for streets with low or high construction intensity, the
spatial spillover effect on street vitality is significantly present, with spatial autoregression
coefficients of 0.0003 and 0.006, respectively, both with p-values less than 0.01. Additionally,
public transit accessibility and public service facilities have a significantly positive impact
on street vitality. The model’s explanatory power (R-squared) is 0.7205, indicating that the
model can well explain the variation in the dependent variable.

At the 1000 m threshold, the positive impacts of streets with low and high construction
intensities remain significant, with slight changes in the coefficients, but still shows that
construction intensity significantly affects street vitality. The significance and direction
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of the impact of public transportation and public service facilities are consistent with the
results under the 500 m threshold.

At the 1500 m threshold, the coefficients and significance of all previously mentioned
variables are similar to those at the 1000 m threshold. This suggests that despite the
expanded observation range, the impacts of construction intensity, public transportation,
and public service facilities on the dependent variable have not changed significantly.

For two indicators of street view images, the sky view factor (SVF) shows a significant
positive impact at all spatial weighted distances (500 m, 1000 m, and 1500 m), indicating
that higher SVF values are positively correlated with greater street vitality. This means
that increasing the sky view factor during construction intensity constraints can enhance
street vitality; the green view index (GVI) exhibits a significant negative impact at all
spatial weighted distances, implying that higher GVI values are negatively correlated with
lower street vitality. This suggests that increasing the green view in studies of construction
intensity constraints might suppress street vitality, especially noticeable within a medium
range (1000 m).

Although changes in the spatial weight thresholds resulted in variations in some
coefficients within the model, the overall performance of the model (represented by the
adjusted R-squared value) remained unchanged and at a high level, indicating that the
model’s explanatory power is similar across different spatial scales. When the spatial
weight threshold changed from 500 m to 1500 m, the magnitudes of the coefficients varied,
but the positive influence trend of the variables on street vitality did not change, indicating
that these factors consistently impact street vitality across different spatial scales. Enhancing
functional diversity, improving public transportation, increasing integration, expanding
buildings’ footprints, and developing public service facilities can bring positive urban
effects at multiple scales. Overall, both high and low construction intensity streets have
significant spatial spillover effects on street vitality at various spatial scales, which may
reflect the widespread impact of construction intensity on urban spaces.

6.2. Spatial Effects of Street Vitality Using Functional Diversity as a Threshold Variable

The estimation of the spatial autoregressive threshold model used functional diversity
as the threshold variable. The p-value for the single threshold is well below 0.01, indicating
highly significant results. The dual-threshold hypothesis test yielded a p-value less than
0.1, significant within the 90% confidence interval. The triple-threshold test results are not
statistically significant, indicating that there are two thresholds for functional diversity
(Table 7). The threshold values for functional diversity within a 500 m range are 0.6832
and 2.2065; within a 1000 m range, they are 0.6832 and 1.4325; within a 1500 m range, the
threshold values are 0.6832 and 1.2724.

Table 7. Results of functional diversity threshold variable test.

Distance Weight
Matrix Model Threshold F p Bootstrap Crit1 Crit5 Crit10

500 m
Single threshold 0.6832 *** 18.58 0.0000 300 5.75 3.63 2.83
Double threshold (0.6832, 2.2065) * 3.07 0.0833 300 7.47 3.93 2.89
Triple threshold Not significant - - - - - -

100 m
Single threshold 0.6832 *** 31.16 0.0000 300 6.35 3.63 2.81
Double threshold (0.6832, 1.4325) ** 4.50 0.0400 300 5.66 4.06 3.18
Triple threshold Not significant - - - - - -

1500 m
Single threshold 0.6832 *** 24.38 0.0000 300 5.79 3.52 2.94
Double threshold (0.6832, 1.2724) * 5.83 0.090 300 5.79 3.52 2.88
Triple threshold Not significant - - - - - -

Note: *, **, and *** correspond to a 10%, 5%, and 1% significance level, respectfully.

According to the test results of the threshold effect (Table 8), taking the 500 m spatial
weight matrix as an example, we have divided the construction intensity into three different
ranges. When the functional diversity is below 0.6832, the street segment is considered
to have low functional diversity. When the functional diversity is greater than 0.6832 but
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less than 2.2065, the street segment is considered to have medium functional diversity. If
the functional diversity is greater than 2.2065, the street is categorized as a high-functional
diversity segment.

Table 8. Results of the spatial autoregression threshold under functional diversity constraints.

Spatial Weight Matrix Based on Different Distances

500 m 1000 m 1500 m

Threshold (0.6832, 1.2681) (0.6832, 1.4325) (0.6832, 1.4325)
Spatial autoregressive estimation Coefficient
Low range 0.0004 *** 0.0002 *** 0.0002 ***
Moderate range 0.0004 *** 0.0002 *** 0.0002 ***
High range 0.0003 *** 0.0002 *** 0.0002 ***
Control variables
Construction intensity 0.2815 *** 0.2959 *** 0.2943 ***
Public transit facilities 1.6772 *** 1.7180 *** 1.7022 ***
Integration degree 0.2997 *** 0.2921 ** 0.1711 *
Building coverage density 5.06 × 10−7 *** 4.96 × 10−7 *** 4.93 × 10−7 ***
Public facilities and services 1.0531 *** 1.0578 *** 1.0726 ***
Sky view factor (SVF) 0.0719 *** 0.0808 *** 0.0785 ***
Green view index (GVI) 0.0180 ** 0.0142 0.0199 **
R2 0.7408 0.7411 0.7404
Adjusted R2 0.7403 0.7406 0.7399
F-statistic 1508.66 1510.83 1505.05
ROOT MSE 0.0613 0.0613 0.6138
Prob 0.0000 0.0000 0.0000
Sample size 5290 5290 5290

Note: *, **, and *** correspond to a 10%, 5%, and 1% significance level, respectively.

At a spatial scale of 500 m, streets of different levels of functional diversity (high,
medium, low) all have a significant positive impact on street vitality, with coefficients of
0.0004, 0.0004, and 0.0003, respectively, and all p-values are less than 0.01. Construction
intensity, public transit accessibility, integration, building footprint, and public service
facilities all show significant positive effects on the dependent variable.

At a spatial scale of 1000 m, the spatial spillover effect of functional diversity remains
significantly positive. The impact of public transportation accessibility and public service
facilities is similar to the 500 m model, being significantly positive. The positive effects of
development intensity, public transit accessibility, and public service facilities continue to
be significant.

At the 1500 m spatial scale, the spatial spillover effect of functional diversity remains
significantly positive, consistent with the results from the 500 m and 1000 m models. The
positive impact of functional diversity remains significant, but the coefficient decreases
further, which may indicate that the influence of functional diversity weakens with increas-
ing distance. The impacts of construction intensity, public transit accessibility, and public
service facilities are consistent with previous model results.

In the context of street view images, the sky view factor (SVF) exhibits a significant
positive influence at all spatial weighted distances (500 m, 1000 m, and 1500 m), with
higher SVF values positively correlating with enhanced street vitality. This indicates
that increasing the sky view factor can promote street vitality under functional diversity
constraints, aligning with findings under construction intensity constraints. Similarly, the
green view index (GVI) presents significant positive impacts at all distances, suggesting that
higher GVI values are positively associated with increased street vitality. Under functional
diversity constraints, the augmentation of green views may enhance street vitality, opposite
to what is observed under construction intensity constraints, potentially because areas
with diverse functions make better use of green spaces, fostering more interactions and
activities, thereby enhancing street vitality with higher GVI values.

By comparing model results across different scales, we can see that functional diver-
sity, construction intensity, public transit accessibility, and public service facilities have a
sustained and significant spatial spillover effect on urban street vitality. Although street
integration has a significant impact on street vitality at the 500 m scale, its effect diminishes
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as spatial scales increase. Overall, these factors have a robust positive effect on urban street
vitality across different spatial scales, although the degree of impact varies.

In urban planning practice, it is important to enhance functional diversity, optimize
the public transportation network, and strengthen the construction of public service fa-
cilities to promote the integrated development of urban spaces. Additionally, strategies
for street integration may need to pay more attention to the actual conditions at the local
scale. Future research should consider using more detailed indices of functional diversity
and exploring the impacts of different factors on broader spatial scales to reach more
comprehensive conclusions.

7. Conclusions and Discussion
7.1. Conclusions

Using Shenzhen as a case study, this research utilizes multisource geographic big
data and integrates PTM and SPDM models. It introduces the concept of living circles,
establishes spatial weight matrices based on varying distances of living circles, and finally
conducts spatial autoregressive threshold model estimations to explore the spatial nonlinear
effects of street vitality under different thresholds of construction intensity and functional
diversity. The study results confirm that under the constraints of construction intensity
and functional diversity, street vitality exhibits significant spatial nonlinear effects, which
conform to the distance decay mechanism. The study also finds that there is one threshold
for construction intensity, while functional diversity has two thresholds. Furthermore, we
found that both construction intensity and functional diversity have significant positive
impacts on street vitality across different distance weight ranges, but these impacts are
subject to threshold effects.

This means that enhancing the construction intensity and functional diversity of a
particular street not only boosts its own vitality but also positively affects the vitality of
surrounding streets, thereby promoting the overall vitality of the city. At the same time, the
threshold effects of construction intensity and functional diversity reveal nonlinear changes
in street vitality, as these factors vary. This means that within a certain range, enhancing
construction intensity and functional diversity can significantly boost street vitality, but
once a certain threshold is exceeded, the positive effects will diminish.

Within various distance weight ranges, the density of public transportation services
has the greatest impact on street vitality in Shenzhen, followed by the density of public
facility services. Urban integration, which ranks third in importance, along with public
transportation services, are indicators of street accessibility. This indicates that for a densely
populated, first-tier international metropolis, like Shenzhen, there is a massive residential
and commuting population. The effectiveness of public transportation services directly
affects the daily travel efficiency and quality of life of urban residents. Moreover, a good
public transportation system can reduce traffic congestion and increase energy efficiency.
Additionally, high-quality public facilities and transportation services can elevate the living
standards of all residents and reduce social inequality. Therefore, for a major first-tier city,
like Shenzhen, investing in and developing an efficient public transportation system and
comprehensive public facilities is a key strategy for achieving socio-economic development,
enhancing urban competitiveness, and improving the quality of life for residents.

For street view characteristics at the human scale, when construction intensity is used
as the threshold variable, the spatial autoregressive coefficient of the green view index is
negative, which is consistent with Jiang’s findings. Although streets with high green view
index values signify higher quality streets, this does not necessarily mean higher pedestrian
flow and vitality, requiring more research to confirm this conclusion [74].

7.2. Discussion

In the field of economics, many scholars have found through spatial econometric
models that urbanization has a significant spatial spillover effect on local energy efficiency.
At the same time, many scholars have used threshold models to explore the nonlinear
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relationship between urbanization and local energy efficiency. However, while a lot of
research has explored the complex relationships of the built environment in the formation of
street vitality, few have investigated the spatial effects of street vitality, and even fewer have
examined the nonlinear effects of the built environment on street vitality in conjunction
with spatial effects. This study focuses on how street vitality and its spatial effects vary
when street construction intensity and functional diversity are within different ranges, and
it sets spatial weight matrices at various distances. The results confirm the presence of
significant spatial nonlinear effects on street vitality, which can help us better understand
the mechanisms behind the formation of street vitality.

However, there are still some areas in the article that merit further consideration.
Firstly, although the LBS data based on Baidu Huiyan include hundreds of millions of
passive samples, they still cannot fully represent the specific distribution of the street popu-
lation, such as users without Baidu apps on their phones, users who have not authorized
location permissions, and some who do not use mobile phones at all. Secondly, the data
we obtained have been coarsened; even though we processed the data with ArcGIS Pro
to obtain as accurate information as possible, discrepancies still occurred. Thirdly, since
the process of street vitality formation is extremely complex, our selected control variables
cannot fully explain street vitality; moreover, although we used different buffer distances
for different types of streets, real-world streets are complex and interlocking, and even main
roads have significant differences. This study also raises some issues that need further dis-
cussion. Firstly, since the basis of spatial analysis is the setting of scales, when the research
scale differs, the research results often vary. This study only sets three different distance
thresholds. If we further reduce the interval between thresholds and increase the number of
distance thresholds, will it yield more detailed results? Secondly, this study only conducted
empirical research on Shenzhen, and whether similar spatial effects occur in different types
of cities and regional contexts needs further verification. Finally, spatial effects including
spatial agglomeration effects, spatial spillover effects, spatial heterogeneity, and spatial
scale effects, etc., need further in-depth exploration.

Overall, the method proposed in this paper represents a proactive attempt to explore
the spatial effects of street vitality and the nonlinear effects of the built environment on
street vitality, providing a theoretical foundation for further understanding the mechanisms
of street vitality formation, and offering nuanced suggestions for urban street management
and construction.
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