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Abstract: Rooftop photovoltaics (RPVs) are crucial in addressing energy shortages and en-
vironmental concerns caused by fossil fuel combustion. To promote the optimal deploy-
ment of RPVs in Tianjin, a region with abundant solar resources and dense buildings, this
study proposes a framework that integrates building vector data with a deep learning model
to extract currently installed RPVs from remote sensing images, and further estimate the
development potential of RPVs. A total of 86,363 RPV polygons were extracted, covering an
area of 10.34 km2 More than 70% of these RPVs are concentrated on large and low-rise
buildings, and a similar proportion is found in industrial buildings, as these buildings offer
favorable installation conditions. Combining solar radiation and construction land develop-
ment planning, we further determined the potential deployment zone of RPVs covering
about 13% of the Tianjin's land area, which represents 31.31 TWh per year of power gener-
ation potential. In the future, it is recommended to prioritize RPV installation on large and
low-rise buildings or industrial buildings in the potential deployment zone, which could
provide higher power generation and contribute significantly to environmental emission
reduction goals. The proposed research framework can also be applied to other cities.

Keywords: rooftop photovoltaics; deep learning; remote sensing; installed RPVs; RPV
development assessment

1. Introduction

The historical reliance on traditional fossil fuels for economic development and ur-
ban expansion has led to energy shortages and environmental issues [1]. In response,
there has been a growing emphasis on renewable and clean energy, particularly solar en-
ergy. Photovoltaic (PV) technology, efficiently utilizing solar energy for electricity gener-
ation, has been growing rapidly, with the global installed capacity increasing from 136
GW in 2013 to 1411 GW in 2023 [2]. Within this growth, rooftop PV (RPV) systems, de-
ployed on various building rooftops, have also been expanded, reaching an installed ca-
pacity of 95 GW by 2022 [3]. RPV systems offer a viable solution to the shortage of ground
space in highly urbanized and densely populated regions. Additionally, through decen-
tralized and small-scale installations, RPVs can make considerable contributions to power
generation and be directly connected to consumers, providing a rapid response to energy
demand [4]. To advance the optimal development of RPVs and better understand their
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contribution to responding to energy and environmental challenges, it is essential to ac-
curately assess their deployment potential.

Existing studies on the potential assessment of RPVs generally follow a two-step ap-
proach: first, by estimating the available installation space, and then calculating the de-
ployment potential by considering factors such as solar radiation and PV conversion effi-
ciency [5,6]. The key distinction among these studies lies in the method used to estimate
the available space. For large-scale studies, researchers predominantly rely on empirical
regression models to estimate the area of available rooftop space [7-9]. For example,
Zhang et al. (2023) used a Random Forest (RF) regression model to estimate rooftop areas
and subsequently calculated the available rooftop space in China using a conversion fac-
tor that accounted for building geometric typology, shadows, and obstacles [8]. In con-
trast, small-scale studies primarily utilize deep learning techniques and remote sensing
images to identify available building rooftop [10-12]. For instance, Ni et al. (2024) calcu-
lated the available rooftop space at the city scale, considering non-shadowing rooftop ar-
eas determined by GIS tools and rooftop obstacles identified by DeepLab-v3 CNN model
[10]. While these studies consider multiple influencing factors to estimate the available
installation space of RPVs, the majority overlook the dynamic changes in the current sta-
tus of installed RPVs, and the gap between the available installation space of roof and the
actual installation space is the key point in evaluating the installation potential of RPVs.
The rapid development of RPVs and urbanization space expansion in China may affect
the accuracy of potential assessment results. In recent years, China has experienced rapid
growth in distributed PV systems (i.e., majority RPVs), with the share rising from 13% in
2016 to 41% in 2023 [13,14]. There is an urgent need for detailed mapping data of installed
RPVs. Therefore, we need to first accurately evaluate the current status of RPV installa-
tion, and then estimate the gap between future available space and the current situation
in order to assess the potential of RPVs.

Regarding the research methods for evaluating the current status of RPV installation,
previous studies have primarily focused on utilizing machine learning models to extract
installed PVs on building rooftops from remote sensing images (Table Al). For instance,
Zech and Ranalli et al. (2020) employed U-Net models with different backbone networks
to extract RPVs in Oldenburg, Germany [15], and Jie et al. (2020) utilized multiple deep
learning models (e.g., U-Net, SegNet) to identify RPVs in three cities in California, the
United States [16]. These studies have mainly concentrated on countries such as Germany,
the United States, and Australia. Only a few studies focus on China; for example, Jiang et
al. employed a U-Net model to extract RPV data in the Haian county of Jiangsu. Therefore,
the case studies of this research method in China also need to be enriched.

Given the considerations above, this study aims to evaluate the installed RPVs based
on a deep learning model and assess RPVs’ potential for future deployment using the
mega city of Tianjin in northern China as an example. Tianjin is a metropolis with a con-
centrated population, developed industry, and rapid development of RPVs. In Tianjin,
distributed PV systems mainly based on RPV installations increased by 1780 MW between
2016 and 2023 [13,14]. The main research content of this paper includes (1) developing a
simple and practical framework to extract installed RPVs from remote sensing images
based on a deep learning model; and (2) further assessing the development potential of
RPVs by considering key factors, such as solar radiation and construction land planning.
This research not only facilitates dynamic monitoring of the RPVs’ current status, but also
provides valuable insights for policymakers to reasonably plan future RPV deployment.
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2. Data and Methods
2.1. Study Area

The study area for this research is Tianjin municipality, situated in the North China
Plain and bordering the Bohai Sea. Tianjin enjoys abundant sunlight, with an annual av-
erage solar radiation of approximately 5256 MJ/m?, which is highly favorable for the de-
velopment of RPV systems. Over the past decade, Tianjin has witnessed a rapid increase
in the installed capacity of RPVs. Currently, Tianjin’s ambitious renewable energy targets
are evident in its “14th Five-Year Plan” for renewable energy development, which out-
lines a goal to increase solar PV capacity to 5600 MW by 2025 [17]. For RPVs, Tianjin has
been actively responding to the national policy “Notice on carrying out the pilot work of
rooftop distributed photovoltaic development in the whole district” [18] by launching
comprehensive RPV deployment projects in four districts. Additionally, Tianjin is pro-
moting PV installation on new public buildings and factories, aiming for a 50% coverage
rate by 2025 [19]. Based on the considerations above, this study strategically selects Tianjin
as the research area.

2.2. Data Source

Remote sensing images serve as the primary data for extracting solar PV, with com-
monly utilized datasets including the Landsat series (15 m/pixel or 30 m/pixel) and the
Sentinel series (10 m/pixel or finer). These datasets are freely accessible online but are lim-
ited by relatively lower spatial resolutions. Higher-resolution imagery, available from
commercial satellites like Spot-6/7 (1.5 m/pixel or finer), Gaofen-2 (0.8-1 m/pixel or 4
m/pixel), and the Google Static Maps API (0.15 m/pixel), offers improved detail but cannot
be freely collected [20]. To enhance the generalizability and adaptability of the proposed
framework, Google Earth images were selected as the primary input for the deep learning
model. Google Earth, an open-source platform, provides extensive global coverage at var-
ying spatial resolutions (0.15-15 m/pixel). In this study, images were acquired within the
Tianjin region from 2018 to 2023, featuring a resolution of 0.3 m/pixel.

Additionally, solar radiation data were sourced from WorldClim'’s historical climate
data with a spatial resolution of 1 km [21]. Land use planning data were derived from the
General Planning of Land Space of Tianjin report [22]. Other data were obtained from
previous studies. Specifically, the building vector data include 280 million buildings in
East Asia identified by deep learning from remote sensing images [23]. Local Climate
Zones (LCZ) data represent global coverage for 2018 with a spatial resolution of 100 m,
encompassing 10 building types and 7 natural land cover types [24]. Building functions
include residential, commercial, industrial, administrative and public services, transpor-
tation, and parks and green spaces, with parks and green spaces considered unsuitable
for RPVs’ deployment [25].

2.3. Methodology

The proposed framework for RPVs’ extraction and potential analysis is presented in
Figure 1. It consists of three main components: (1) extracting the spatial location and size
of installed RPVs from remote sensing images based on the adapted U-Net semantic seg-
mentation model and rooftop vector data; (2) further finding the potential deployment
zone considering solar radiation and construction land planning; and (3) estimating the
power generation, and the environmental and economic impact of RPVs.
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Figure 1. The framework of extraction and potential estimation of rooftop photovoltaic (RPV).

2.3.1. Extraction of Installed RPVs

With the emergence of high-resolution remote sensing images, a variety of machine
learning techniques have been employed to extract geospatial and detailed information
about installed RPVs from these images. Conventional machine learning algorithms, such
as RF classifiers and Support Vector Machines (SVMs), have often been used for RPV clas-
sification relying on feature extraction [26,27]. With the rapid development of deep learn-
ing, more advanced semantic segmentation models utilizing convolutional neural net-
works (CNNs) have been adopted to extract RPVs owing to their superior ability to learn
image features compared to conventional machine learning algorithms [28,29]. A well-
known semantic segmentation model is U-Net, which was originally introduced in 2015
to address medical image segmentation challenges [30]. This model can enhance segmen-
tation performance by combining low-level and high-level features through skip connec-
tions, and achieve high-accuracy results with relatively small datasets and shorter training
times. Therefore, we utilized the U-Net network as the basic model to extract installed
RPVs. By adjusting the basic model’s parameter and integrating building vector data, we
identified RPVs from remote sensing images as outlined below:

(1) Data preparation and pre-processing

Data preparation. To optimize computational resources and enhance processing effi-
ciency, the remote sensing images were divided into 512 x 512 pixel tiles in TIFF format.
Furthermore, we found RPV polygon samples across various districts and building func-
tions in the Google Earth online platform and manually annotated these using the LabelMe
tool. A total of 765 tile samples were labeled across Tianjin. The samples were divided into
training (60%), validation (20%), and independent test (20%) sets using random sampling
(random.sample() function in Python 3.8.0 with a fixed random seed of 0). The validation
set was used to monitor model performance during training and guide hyperparameter tun-
ing (e.g., learning rate and batch size). The independent test set was strictly reserved for the
final evaluation to ensure an unbiased and reliable assessment of the model’s generalization

ability.
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Data pre-processing. We first conducted shadow detection on the input tiles for the
model, followed by data augmentation for those containing shadows, as follows:

Shadow detection: We employed a shadow detection algorithm to identify images
with shadowed areas. As the blue (B) and green (G) bands of images contain the most
shadow information, the shadow index (SI) defined in Equation (1) was applied [31], and
shadows were detected using Otsu’s thresholding operation [32].

SI=(B-G6)/(B+6) 1)

Data augmentation: For images containing shadows, data augmentation techniques
were utilized to enhance the model’s robustness to shadows. These techniques included:
(1) Random scaling or warp: the scaling ratio was randomly set between 0.25 and 2. (2)
Random flipping: images were flipped with a 50% probability. (3) Random clipping and
padding: images were randomly clipped and then pasted onto a new canvas of the target
size, with the excess areas filled with gray bars (RGB: 128,128,128). (4) Random color trans-
formation: the hue, saturation and brightness of images were randomly adjusted to make
the features of shadowed areas more distinct, thereby improving the model’s detection
capability. For example, the data augmentation results for an image with shadows are
shown in Figure Al.

(2) Adapted U-Net model

To achieve our goals, several meaning modifications were made to the classic U-Net
network, resulting in the adapted U-Net model. The architecture of the adapted model is
illustrated in Figure 2. The input image was processed through a left contraction path and a
right expansion path, ultimately producing an output that classified each pixel as either
background (black) or RPV (red). Specifically, in the left contraction path, the input image
underwent two consecutive 3 x 3 convolutions, a Rectified Linear Unit (ReLU) activation,
and a 2 x 2 max pooling operation. This process was repeated until the feature map resolu-
tion was reduced to 32 x 32, with the number of feature channels doubling at each downsam-
pling step, ultimately reaching 1024 channels. In the right expansion path, up-convolutions
were applied to double the resolution of the feature map while halving the number of chan-
nels. The feature map from the corresponding layer in the left contraction path was concat-
enated with the upsampled feature map, followed by the application of two 3 x 3 convolu-
tions and ReLU activations. This process was repeated along the expansion path until the
feature map resolution matched that of the input image. Finally, a 1 x 1 convolution was
performed to produce pixel-level classification results.

In comparison to the classical U-Net, this adapted model incorporates several adjust-
ments, including the following: (1) the tile size was set to 512 x 512 pixels, allowing for
greater detail and information retention; (2) zero-padding was applied during convolu-
tional operations to maintain output dimensions consistent with the input image size. Ad-
ditionally, for the model configuration of adapted U-Net, we first referenced previous
studies and selected two of the most commonly used combinations of optimizers, and
learning rates [11,29,33]. Specifically, Combination 1 uses Adam optimizer with a learning
rate of 0.001, momentum of 0.9 and ReLU activation function; Combination 2 uses SGD
optimizer with a learning rate of 0.01, momentum of 0.9 and ReLU activation function.
We then systematically tested these combinations. As shown in Table A2, Combination 1
consistently outperformed Combination 2 across all metrics. Therefore, we adopted Com-
bination 1 (Adam optimizer, 1 x 10 learning rate, and ReLU activation functions) as our
final configuration. Other hyperparameters were tailored to align with the existing com-
puting resources and model requirements. Specifically, we set the batch size to 20 and the
epoch number to 100. Furthermore, the SoftMax function was applied to compute the
pixel classification probability in the final feature layer, and the binary cross-entropy loss
function was utilized as the optimization objective [30,33]. Based on the hyperparameter
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configuration above, the adapted U-Net model was implemented with the Pytorch pack-
age in PyCharm 2023.2.

Satellite image 5 & = 128 64 642 Output

o
¥ 128 128

512x 512

RGB

3x3 Conv2d+ReLU

2x2 MaxPool

2x2 Upscale+ 2x2 Conv2d
Copy+Concatenate

1x1 Conv2d+SoftMax

Figure 2. Architecture of adapted U-Net model. Each blue box represents a multi-channel feature
map, and each white box indicates a copied feature map. The arrows in different directions denote
various operations within the model. The number in the bottom-left corner of each box specifies the
size of the feature map, while the number at the top of each box indicates the channel number of the

feature map.

(38) Postprocessing

The adapted U-Net model produced a pixel-level classification output of all PVs, pre-
sented in raster format for the Tianjin region. Since the objective was to extract the location
and area of RPVs, the results required further transformation and processing, as illus-
trated in Figure 3. First, PV pixels were converted into vector polygons to facilitate the
attainment of more details [34]. Based on building vector data, we then filtered the PV
polygons outside the building rooftop boundary to obtain RPV polygons. Next, ArcPy
geoprocessing tools were used to eliminate internal holes and noise in the RPV polygons,
with a noise threshold of 1.6 m?, which is the typical size of an individual solar panel [35].
Given that RPV panels are typically rectangular, GIS geometric processing tools were ap-
plied to regularize the shape of RPV polygons. Finally, incorrect RPV polygons were man-
ually corrected by visual interpretation and field surveys.

Google earth images PVs’ extraction results Vectorized and filtered RPV
polygons
4

117°1'0"E
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Figure 3. Postprocessing of RPVs. The area shaded in red represents the rasterized PV panels,

while the region enclosed by the red lines delineates the vectorized boundaries of the RPV panels.

(4) Model validation and accuracy assessment

To evaluate the accuracy of the revised U-Net model in detecting RPVs, four key
metrics were employed, including Precision, Recall, F1-score, and IoU. Specifically, Precision
is the ratio of true-positive predictions to the total number of positive predictions made
by the model, which reflects the accuracy of the model in predicting the positive class
(Equation (2)). Recall is the ratio of true-positive predictions to the total number of actual
positive samples (Equation (3)). It indicates the model’s ability to detect all the positive
samples. Additionally, the F1-score is the harmonic mean of Precision and Recall, provid-
ing a single score that balances both metrics (Equation (4)). A high FI-score indicates that
the model has a good balance between Precision and Recall. Finally, IoU is a metric used
to measure the overlap between the predicted bounding box and the actual bounding box,
commonly applied in object detection and image segmentation tasks (Equation (5)). It is
calculated as the ratio of the intersection area to the union area of the predicted and actual

regions.
Precision = TP /(TP + FP) (2)
Recall =TP/(TP + FN) 3)
F1 — score = 2 X Precision X Recall/(Precision + Recall) 4)
IoU =TP/(TP + FP + FN) (5)

where TP means true positive, representing pixels correctly classified as positive (i.e.,
RPV). FP means false positive, expressing pixels incorrectly classified as positive. TN
means true negative, representing pixels correctly classified as negative (i.e., background).
FN means false negative, expressing pixels incorrectly classified as negative.

2.3.2. Estimation of RPVs’ Impact

The currently installed RPVs and those planned for installation in the potential de-
ployment zone have significant impacts on power generation, environmental emission
reduction, and economic benefits. Specifically,

(1) Power generation impact of RPVs
The power generation of installed RPV (Py;rent) is the power generated by existing
roof-mounted PV, which can be assessed as follows:

Peyrrent = SAcurrent X GTI X CE X OF (6)

where SA .y rene is the area of installed RPVs; GTI is the tilted radiation at the optimum
angle [36]; CE is the conversion efficiency of the PV panels; OE represents the overall effi-
ciency for the PV system. Based on previous studies, the range of values for CE and OE
can be found in Table A3. Additionally, based on the rated power (RP) of 200 W/m? [8],
the capacity of current installed RPVs can be estimated as follows:

ICoyrrent = SAcurrent X RP )

Potential RPV power generation and installed capacity in the potential deployment
zone can be calculated as follows:

Pruture = SAputure X CF X GTI X CE X OE (8)

ICfuture = SAfuture X CF X RP )
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where SAgy e is the area of the potential deployment zone; CF represents the conver-
sion factors by adjusting the SAg¢, to the suitable rooftop area of PV, which can be seen
in Table A3.

(2) Environmental impact of RPVs

The RPV environmental impact (E) refers to the carbon and air pollutants” emission
reduced by the replacement of conventional electricity by RPV power generation, which
are usually calculated in terms of emissions generated by an equivalent amount of thermal
power generation, as follows:

Ecurrent/future(g) = Pcurrent/future X EF(g) (10)

where g is environmental factors, including carbon, SOz and NOXx; Er is the thermoelectric
emission factor, which is 0.832 kg kWh for carbon, 0.160 g kWh for SOz, and 0.179 g
kWh- for NOx [37].

(3) Economic impact of RPVs

In this study, the RPV economic impact is the electricity bill savings from RPV gen-
eration using the net present value (NPV) as a measure. The lifespan (N) of PV modules
is 25 years. The net present value (NPV) was employed to assess the economic impact of
an RPV over its service life (25 years), which is calculated based on cost and income. The
cost includes the initial investment cost and the operation and maintenance cost. The in-
come comprises savings on electricity bills from self-consumption and income from sell-
ing surplus power to the grid. Moreover, it is assumed that the degradation rate of the
RPV modules introduced only a minor change of around 0.7% per year [38]. Therefore,
the economic impact can be expressed as follows:

NPVeurrent/future = _CO X ICcurrent/future +
N (Pcurrent/future,yx0‘XPRpur"'Pcu‘r‘rent/future,yX(l_a)XPFgrid_COM,yxlccurrent/futuTe) (11)

y=1 (1+1)Y

where C, and Cpy are the initial investment cost and the operation and maintenance
cost of an RPV system, respectively [39]. a is the proportion of self-consumed electricity
power [38]. PRy, is the customer-side electricity price from Tianjin Development and
Reform Commission, PFg.;4 is the on-grid tariff [40]. r is the social discount rate, which
is set to 8%.

3. Results
3.1. Accuracy Evaluation of Adapted U-Net Model

The performance of the adapted U-Net model in extracting installed RPVs was as-
sessed using four widely recognized metrics, Precision, Recall, F1-score, and Intersection
over Union (IoU), which were calculated based on the confusion matrix (Table A4). As
shown in Figure 4, all four metrics perform well, demonstrating the stability and efficiency
of the model. Notably, Recall and Precision exhibit a concentrated and high level of per-
formance, indicating the model’s robustness in accurately predicting positive results. The
mean values of Recall, Precision, F1 score and IoU were 91%, 93%, 92%, and 85%, respec-
tively. These evaluation results fall within the range estimated by previous studies, which
utilized the classic U-Net model or its derived models for PV extraction (Table 1). Mean-
while, the evaluation results from this study outperform most of the previous research.
This indicates that the adapted U-Net model is highly effective in accurately detecting
solar panels on rooftops.
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Table 1. Accuracy evaluation of adapted U-Net model.
Model Recall (%) Precision (%) F1-Score (%) IoU (%) Source
U-Net (ResNet18) 76 83 79 65
U-Net (ResNet101) 76 86 81 68 [15]
U-Net (ResNet34) 77 84 80 68
U-Net (ResNet50) 79 84 81 69
U-Net / / 80 64 [41]
U-Net 81 84 83 70 [16]
U-Net + GFM + EDN 83 86 85 74
U-Net (ResNet50) 89 41 79 [42]
U-Net 90 79 86 79 [43]
U-Net + ResNet50/RNN 90 99 / 90 [28]
U-Net 86 94 90 81
-Net (R t50) + 2
U-Net (ResNet50) 95 97 96 9 [29]
Transformer
Adapted U-Net 91 93 92 85 This study

To further assess the accuracy of the adapted U-Net model, its extracted RPV data
were compared with two publicly available PV datasets from other studies [29,44], as il-
lustrated in Figure 5. Several representative sites were selected, considering different
building functions. The results indicate that the RPVs extracted by the adapted U-Net
model are closer to the real PV panels (al-a4), as more detailed information was captured.
Moreover, small-scale PVs on buildings such as residential and public service buildings
were also accurately identified (b4 and c4), whereas these PVs were not detected in the
studies by Zhang et al. (2022) and Chen et al. (2024) (b2-b3 and c2—c3). This discrepancy
can primarily be attributed to the latter studies’ focus on detecting large-scale centralized
PV systems. Notably, large-scale PV systems, such as the system deployed on the canopy
of the Tianjin west railway station, were not detected by the two studies (d2-d3), possibly
due to interference from reflective surfaces of adjacent glass. By contrast, the adapted U-
Net model effectively identified these PV systems. Overall, the adapted U-Net shows
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higher accuracy in identifying RPVs, particularly in detecting small-scale and easily con-
fused RPVs.

Google earth images Zhang et al. (2022) Chen et al. (2024) This study

10"E,

Industrial
building

Residence

38°59"27"N

Public services
(Nankai university)

Transport
(Tianjin west
railway station)

_

JEALARLRY
FLALLALLLE
Fhibhbdiim
|n-rrr.rrr'

Figure 5. Comparison of RPV extraction results with other studies’. The green shaded area repre-
sents the rasterized RPV panels from Zhang et al. (2022) [44], while the regions enclosed by the
green and red lines denote the vectorized boundaries of the RPV panels from Chen et al. (2024)
[29] and this study, respectively.

3.2. Extraction of Currently Installed RPVs

A total of 86,363 RPV polygons were extracted in Tianjin, covering a total area of
10.34 km?, which only accounts for approximately 2% of the municipal total building area.
This suggests significant potential for further development of rooftop PV systems in Tian-
jin. Compared with available statistics in 2023, the area of installed RPVs falls within the
statistical range for the household and distributed PV installation area (1.16-19.04 km?),
underscoring the rationality of our findings.

The installed RPVs at district level, as illustrated in Figure 6, revealed that DL, BH,
and WQ possessed the largest RPV installation areas, measuring 1.77 km?, 1.54 km?, and
1.40 km?, respectively. This trend correlates with their substantial populations (30% of the
total) and higher economic output (54% of the total), thereby emphasizing the unique ad-
vantage of RPVs in facilitating energy supply proximity to high-demand areas. Notably,
DL and BH served as pilot districts for the county-wide distributed photovoltaic projects
initiated in 2021, which have experienced rapid development due to favorable policy con-
ditions [18]. In contrast, CC district, despite having the largest population and the second-
highest GDP following BH, exhibited the smallest RPV installation area. This limitation is
primarily attributable to its smallest geographical extent and high building density, which
constrain the rooftop space available for photovoltaic installation [45].
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District level (km?)

PN C L IRPV polygon
0.305 0.447 0.535 0.546 0.697 0.741 1.152 1.193 1.773 2.403

Figure 6. Installed RPV distribution at district and polygon level. The abbreviations of 11 districts
in Tianjin are XQ, Xiqing; DL, Dongli; CC, Central city; BC, Beichen; JN, Jinnan; BD, Baodi; WQ,
Wugqing; BH, Binhai New Area; NH, Ninghe; JH, Jinghai; JZ, Jizhou.

To investigate the distribution characteristics of RPVs at a finer polygon level, the
LCZ map was overlaid with the RPV polygons. The LCZ classification includes 10 built
and 7 natural land cover types, with built land cover zones categorized based on building
height and building density [24]. As shown in Figure 7a,b, it was observed that most RPV
polygons are concentrated in the LCZ8 region, representing over 50% of the total number
and total area of polygons. LCZ8 is considered highly suitable for RPV installation due to
its low building density, which minimizes the risk of rooftop shading. Additionally, build-
ings in this zone typically have flat and large roofs with fewer obstacles, providing ample
space for photovoltaic systems [46]. A clear trend is also found that RPV polygons are
primarily distributed across low-rise buildings (1-3 stories), including LCZ3, LCZ6, LCZ8
and LCZ9. This could be attributed to the simpler roof structures of low-rise buildings,
which offer a moderate load-bearing capacity and a lower-risk installation environment,
making them ideal for PV installations.

The variation characteristics of RPV polygons under different building functions are
also analyzed (Figure 7c). The results show that the majority of RPV polygons are distrib-
uted in industrial buildings, accounting for 75% of the total area for polygons. This indi-
cates that industrial buildings are more suitable for PV installations due to their typically
larger roof areas and flat roof type, facilitating the efficient layout of solar panels. Moreo-
ver, industrial facilities generally have higher electricity demands, making on-site PV sys-
tems highly beneficial in reducing electricity costs. RPV polygons in administrative and
public service buildings constituted 22% of the total RPV installation quantity, covering
13% of the total installation area. The installation of PV systems on these buildings is not
only due to their favorable conditions for installation, such as ample rooftop space, but
also serves as a demonstration to enhance public recognition and acceptance of PV power
generation [19]. RPVs in residential buildings account for 8% of the total RPV installation
area but represent a relatively high installation quantity (17%). Furthermore, a smaller
proportion of RPV polygons is observed on commercial and transportation buildings, cov-
ering 3% and 2% of the total area, respectively. The irregular roof shapes of these building
likely limit the feasibility of PV installation, resulting in lower RPV coverage.
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Figure 7. Spatial distribution of RPV polygons. In order, 11-17 represent heavy industry, dense

trees, scattered trees, bush, scrub, low plants, bare rock or paved, bare soil or sand, and water.

3.3. Determination of RPV Potential Deployment Zone

Based on the spatial distribution of installed RPVs, the future potential zones for RPV
deployment in Tianjin were further determined by considering critical factors such as solar
radiation and land spatial development planning. Solar radiation significantly influences
the effectiveness of PV systems, as higher solar radiation levels mean more energy output
for the same capital input [47]. As shown in Figure 8a, the annual solar radiation in Tianjin
generally decreases from east to west. Using the average annual solar radiation as a thresh-
old, Tianjin was classed into high and low solar radiation zones. By overlaying this radiation
classification with the presence or absence of installed RPVs, Tianjin was further divided
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into four specific zones (Figure 8b). The results reveal that only 30% of installed RPVs are
located in the high-solar-radiation zone (Zone I), while the majority are situated in the low-
solar-radiation zone (Zone II), indicating that many RPV systems are not operating at opti-
mal generation. This distribution pattern is largely influenced by building spatial locations,
with approximately 69% of Tianjin’s buildings situated in low-solar-radiation zones.

Based on above consideration, the high-solar-radiation zone without installed RPVs
(Zone 1II) is the preferred zone for future RPV deployment. It is worth noting that urban
building design and planning in China adhere to uniform national standard [8]. Therefore,
when assessing the RPV potential in China, it is crucial to consider government-led con-
struction land planning as this will determine the future installation spaces for RPVs. In
this study, based on the 2021-2035 construction land use planning for Tianjin [22] (Figure
8c), a potential deployment zone of RPVs for the next decade was identified by extracting
the overlapping region of construction land and Zone III (Figure 8d). The potential de-
ployment zone is primarily located in the southeast of Tianjin, encompassing districts
such as BH, JH and NH, and covering approximately 13% of the municipal land area.

Based on the result analysis in Section 3.2, it can be seen that industrial and LCZ8 build-
ings characterized by a large size and low density are more suitable for installing RPVs. As
shown in Figure 9, the area of LCZ8 buildings is the largest in the potential deployment
zone of RPVs, accounting for 77% of the total area of the potential deployment zone. Indus-
trial buildings also have the largest area in the potential deployment zone, accounting for
62%. Therefore, it is recommended to prioritize RPV installation in LCZ8 or industrial build-
ings in the potential deployment zone, which can maximize the utilization of limited rooftop
resources while also reducing installation and maintenance costs. This strategy not only en-
hances the efficiency of RPV deployment but also supports the overall sustainability and
economic feasibility of renewable energy integration in urban settings. It should be noted
that this recommendation is made under the assumption that existing buildings will not be
demolished and their functions will remain unchanged over the next decade.

I (High radiation with installed RPVs) Bl III (High radiation without installed RPVs)
B 11 (Low radiation with installed RPVs ) 1V (Low radiation without installed RPV's)

5713 5766 5843 5960

(b) Classification map based on current status
of installed PRV and solar radiation
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Figure 8. Potential deployment zone for RPVs based on solar radiation and land planning.
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Figure 9. Area proportion of different building functions and LCZ types in potential deployment zone.

4. Discussion

The current and future deployment of RPVs has substantial implications for facilitat-
ing energy transition and addressing dual environmental challenges of climate change
and air pollution. For currently installed RPVs, according to the solar radiation and effi-
ciency factors of the PV panel and system, it can be estimated that the annual power gen-
eration is 1.95-2.95 TWh. This RPV generation could reduce carbon, SOz, and NOx emis-
sions by 1.62-2.45 MT per year (MT yr), 0.31-0.47 KT yr-, and 0.35-0.53 KT yr, respec-
tively.

In the future, if the RPV potential deployment zone is fully equipped with PVs, it can
be estimated that the annual RPV power generation could be increased to a minimum of
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31.31 TWh, which is equivalent to 41% of Tianjin’s thermal power generation in 2023 [48].
This presents a feasible pathway for the transition of traditional energy to renewable en-
ergy. Our estimated results of RPV’s power generation potential fall within the range of
others’ estimations (5-51.30 TWh) [5,6,8,49], which validates the reasonableness of our
findings. Meanwhile, the emission reductions causing by future RPV generation are 26.05
MT yr for carbon, 5.01 and 5.60 KT yr~ for SO2, and NOx. This highlights the importance
of RPV development in addressing environmental challenges, especially in densely pop-
ulated and highly industrialized cities like Tianjin, which face limited land supply for
large-scale PV installations.

The environmental emission reduction potential of the RPV potential deployment
zone is compared with other energy solutions and similar studies in other cities. Specifi-
cally, (1) comparison with other energy solutions: Due to geographical constraints, the
primary renewable energy sources developed in Tianjin include solar photovoltaic (PV),
wind power, and biomass energy, which accounted for 58%, 30%, and 12% of the total
installed renewable energy capacity in 2020, respectively [50]. To facilitate a meaningful
comparison, we evaluated the environmental mitigation potentials of RPV, wind power,
and biomass energy (e.g., straw combustion) on a unified basis of annual potential per
km?2. The results, presented in Table A5, demonstrate that RPV exhibits significantly
higher carbon and air pollution reduction potentials compared to wind power and straw
combustion, with wind power outperforming straw combustion. This indicates that solar
RPV is a leading energy solution for Tianjin in the future. (2) Comparison with studies in
other cities: RPV systems are predominantly deployed in densely built-up areas in eastern
China. Therefore, we selected three provincial capital cities—Tianjin (northern China),
Nanjing (central-eastern China), and Guangzhou (southern China)—for comparison.
These cities exhibit distinct building functions, climate conditions, and energy consump-
tion patterns, as summarized in Table A6. The environmental reduction potentials of RPV
installations in these cities are presented in Table A7. The analysis reveals that Nanjing
has the highest environmental reduction potential, followed by Tianjin and Guangzhou.
This discrepancy may be attributed to the fact that the Nanjing study focused exclusively
on residential buildings in the city’s five central districts, which offer more available in-
stallation space, whereas the studies in Tianjin and Guangzhou encompassed all building
types.

Furthermore, RPV power generation can yield significant economic benefits by saving
on users’ electricity bills. We employed the net present value (NPV) as a metric to assess the
economic benefits of RPVs over its service life (25 years). The findings indicate that the in-
stalled RPV systems in Tianjin can make profits ranging from CNY 4.31 to 10.57 billion with-
out any subsidies, with an investment payback period of 5 to 9 years. Additionally, the eco-
nomic benefits from RPV generation in the potential deployment zone are as high as CNY
189.01-694.49 billion. These returns can incentivize users to install PV systems, thereby fur-
ther promoting environmental emission reductions and the transition to renewable energy.

The RPV potential deployment zone is closely related to the existing infrastructure
and population density. Specially, within the potential deployment zone, there is an Ultra-
High-Voltage (UHV) substation, as shown in Figure A2a. This substation serves as a crit-
ical hub in the North China Power Grid, facilitating the transmission of electricity from
western Inner Mongolia to Tianjin. It plays a pivotal role in supporting the power load
distribution across the Beijing-Tianjin-Hebei region [51]. The presence of this substation
provides a favorable condition for the integration and transmission of photovoltaic-gen-
erated electricity. Due to data availability constraints, our discussion is currently limited
to the UHV substation. Additionally, the potential deployment zone is well connected to
major transportation arteries, including railways, highways, and urban expressways, as
illustrated in Figure A2b. This connectivity not only facilitates the transportation and
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installation of photovoltaic components but also supports efficient maintenance and op-
eration activities in the future. Finally, the potential deployment zone is densely popu-
lated, with the area of high- and medium-high-density population zones accounting for
44% of the total, as depicted in Figure A2c. Consequently, deploying RPV systems in this
zone can effectively address the high energy demand driven by the dense population.

There are several limitations to this study. Due to data acquisition constraints, the remote
sensing images used to extract installed RPVs were generated at inconsistent times. Conse-
quently, our assessment reflects a cumulative installation quantity over a period. Additionally,
confusion has arisen between rooftop PV panels and similar objects, such as glass. Addressing
this issue would ideally require both higher-resolution remote sensing images and higher-
performance computing devices. However, these conditions are challenging to fully meet. To
mitigate such confusion, we conducted as many on-site investigations as possible. Finally, in
the determination of the potential deployment zone for RPVs, we focused on key factors af-
fecting future RPV installation, as the available data did not allow us to fully account for all
factors. These limitations highlight the need for ongoing research and improved data collec-
tion methods to enhance the accuracy of RPV detection and predictions.

5. Conclusions

This study proposes a framework that integrates rooftop vector data into the adapted
U-Net model to extract installed RPVs in Tianjin. Based on the extraction results, we further
determined the potential deployment zone of RPVs by incorporating key influencing fac-
tors. The main research conclusions are as follows: First, a total of 86,363 RPV polygons were
extracted from remote sensing images, covering an area of 10.34 km?. These RPV polygons
are primarily distributed in large and low-rise buildings and industrial buildings, as these
types of buildings provide optimal installation conditions. Second, the potential deploy-
ment zones of RPVs, characterized by high solar radiation and alignment with government
land planning, are further determined, which are mainly situated in the southeastern region
of Tianjin. The installation of RPVs in these zones will produce about 26.05 TWh of power
generation potential while bringing a 26.05 MT yr carbon emission reduction and 5.01 and
5.60 KT yr SO, and NOx emission reductions. Given the conclusions above, in the future,
we recommend prioritizing RPV installation on large and low-rise buildings or industrial
buildings in the potential deployment zone of RPVs, which could maximize the power gen-
eration potential and contribute to achieving carbon neutrality and pollution reduction
goals.

Additionally, future research could further explore the topics below.

(1) Addressing deployment challenges in RPV potential zones for industrial and res-
idential buildings (the two largest building categories by area). Residential buildings face
(a) limited roof space: the relatively small roof areas of many residential buildings con-
strain the scale of PV system installation; (b) shading issues: the prevalence of trees and
adjacent structures in residential areas creates significant roof shading, adversely affecting
PV system efficiency; and (c) aesthetic considerations: homeowners often have specific
aesthetic preferences for PV system appearance and installation methods, increasing de-
sign and installation complexity. Industrial buildings present (a) high initial investment:
the typically large-scale PV installations required for industrial buildings demand sub-
stantial upfront capital; (b) energy demand synchronization: the concentrated energy con-
sumption patterns of industrial operations necessitate more sophisticated energy manage-
ment systems to optimize PV utilization; and (c) structural implications: large-scale PV
installations may impact building structures and roof waterproofing, requiring additional
engineering design and maintenance considerations.

(2) The impacts of RPVs on urban climate. Specifically, the Weather Research and Fore-
casting (WRF) model can be used to simulate urban climate changes under three scenarios:
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baseline scenario (without RPVs), current RPV installation scenario, and scenario based on
the potential deployment zones for RPVs. By comparing these scenarios, we can quantify
the effects of RPVs on urban temperature, heat distribution, and other microclimatic varia-
bles. The simulations results may reveal that widespread RPV deployment could lead to
localized temperature changes due to alterations in surface albedo and heat exchange pro-
cesses. For instance, RPVs might reduce surface temperatures by shading rooftops but could
also contribute to increased ambient temperatures if the absorbed solar energy is re-emitted
as heat. These findings would provide critical insights into the trade-offs between renewable
energy generation and urban climate regulation. Furthermore, there are potential challenges
in integrating the potential deployment zones of RPVs into the WRF model. This requires
accurate spatial data on building characteristics and rooftop suitability, as well as careful
parameterization of RPVs within the model. Addressing these challenges would require in-
terdisciplinary collaboration and advanced modeling techniques.
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Abbreviations

The following abbreviations are used in this manuscript, and the abbreviations of
equation variables are in italics.

PV Photovoltaic

RPV Rooftop photovoltaic
B Blue band of images
G Green band of images
TP True positive

Fp False positive

TN Ture negative

FN False negative

) F— Power generation of installed RPV



ISPRS Int. ]. Geo-Inf. 2025, 14, 101

18 of 25

SAcurrent Area of installed RPVs

GTI Tilted radiation at optimum angle

CE Conversion efficiency of the PV panels

OE Overall efficiency for the PV system

ICoyrrent Capacity of current installed RPVs

RP Rated power of PV panels

Pruture RPV power generation in the potential deployment zone

SAruture Area of potential deployment zone

CF Conversion factors adjusting the SAgy ¢y to the suitable rooftop area of
PV

[Cryture Potential installed capacity in the potential deployment zone

E Environmental impact based on RPVs’ current status and future potential

current/future

zone

EF Thermoelectric emission factor

NPV Net present value

Co Initial investment cost of RPV system

Com Operation and maintenance cost of RPV system

a Proportion of self-consumed electricity power

PRyur Customer-side electricity price

PFyiq On-grid tariff

r Social discount rate

LCZ Local climate zone

IoU Intersection over Union

Appendix A

(a) Google earth image (the red boxes indicate
the RPV panels and their shadows)

117°5'6"E

(b) Flipped vertically
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(c) Clipped

(d) Color transformation

Figure A1l. Data augmentation processing.
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Figure A2. Existing infrastructure and population in the RPV potential deployment zone: (a) 1000
kV substation (source: [52]), (b) Population density (source: [53]), (c¢) Road networks (source: [54]).

Table A1l. Research on small-scale PV extraction based on machine learning.

Sources Study Areas PV Type Models Precision Evaluation
. IoU: 64%, accuracy: 94%; F1-
[41] Swiss Rooftop PV U-Net Score: 80%
(1) ToU = 65%, Precision = 83%,
Recall = 76%, F1-Score = 79%;
(1) U-Net (ResNet18); (2) IoU = 68%, Precision = 84%,
Oldenburg, (2) U-Net (ResNet34); Recall = 77%, F1-Score = 80%;
[13] Germany Rooftop PV (3) U-Net (ResNet50); (3) IoU = 69%, Precision = 84%,
(4) U-Net (ResNet101) Recall = 79%, F1-Score = 81%;
(4) IoU = 68%, Precision = 86%,
Recall = 76%; F1-Score = 81%
(1) mlIoU: 72.792%, Variance:
(1) U-Net with trasfer learning; 1.286 x 104,
(2) U-Net without trasfer learn-  (2) mloU: 40.017%, Variance:
[55] Fresno, Oxnard, small-scale resi- ing; 1.191 x 102
Stockton dential solar panels (3) CrossNets (a cross-learning  (3) mloU: 74.268%, Variance:
driven U-Net method); 2.481 x 10-3;
(4) Adaptive CrossNets (4) mloU: 74.279%, Variance:
1.458 x 10-5
(1) SegNet (Eff-b1); (1) IoU: 66.97‘%;, Precision:
(2) LinkNet; 83.48%,
[16] Fresno, Stockton, Rooftop PV (3) U-Net; ! Recall: 77.20%, F1-Score: 80.22%;
Modesto ’ (2) ToU: 69.23%, Precision:
(4) EPN; 83.60%,

(5) U-Net + GFM + EDN

Recall: 80.11%, F1-Score: 81.82%;
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(3) IoU: 70.28%, Precision: 83.83,
Recall: 81.30%, F1-Score: 82.54%;
(4) IoU: 71.11%, Precision:
84.79%,

Recall: 81.50%, F1-Score: 83.11%;
(5) IoU: 73.60%, Precision:
86.17%,

Recall: 83.45%, F1-Score: 84.79%
(1) IoU: 78.7%, Precision: 78.7%,
Recall:90.0%, F1-Score: 86.4%;
(2) IoU: 85.9%, Precision: 90.9%,

Hai’an county (1) U-Net; Recall
4 ’ Rooftop P 2) Refi ;
[+3] China ooftop PV ( é) ?DQZ :’j:i; 89.7%, F1-Score: 90.3%;
P (3) IoU: 86.8%, Precision: 92.8%,
Recall
89.4%, F1-Score: 91.1%
-Net: Th ing 1 f U-
17 cities around U.Net ¢ cod.mg ayet o U Net Count Recall: 91.90%; Area Re-
[56] the world Rooftop PV is replaced with a pre-trained call: 96.25%
Resnet50. (ResNet50) T
For object: the maximum value
solar home systems of F1-Score is 79%. When the
42 R -Net (R
[42] wanda (<100 W) U-Net (ResNet30) Recall is 89%, the Precision is
41%.
Table A2. Accuracy of different hyperparameter combinations.
Recall (%) Precision (%) F1-Score (%) IoU (%)
Combination 1 91 93 92 85
Combination 2 80 78 79 76
Table A3. Parameters for calculating the RPV power generation potential.
Parameter Low (%) High (%) Source
CF Conversion factor of suitable rooftop 25 59 [5,8,57]
CE Conversion efficiency of the PV panels 15 20 [8,58,59]
OE Overall efficiency of the PV system 75 85 [8,59]
Table A4. Confusion matrix for RPV detection.
TP (%) TN (%) FN (%) FP (%)
Value 19.15 77.57 1.90 1.37

Table A5. Comparison of environmental emission reduction potential of annual RPV power gener-

ation in Tianjin with other energy solutions.

Biomass (Agricultural Straw)

RPV Wind Lower Calorific Value Lower Calorific Value
=15 MJ/kg =18 MJ/kg
Power generation potential
(GWh/km?) 19.51 1.58 0.12 0.14
Carbon reduction (MT/km?) 1.62 x 102 1.31 x 103 9.98 x 10~ 1.20 x 10
SOz reduction (KT/km?) 3.12 x 103 2.53 x 10+ 1.92 x 10-5 2.30 x 105

NOx reduction (KT/km?) 3.49 x 103 2.83 x 10+ 2.15 = 105 2.58 x 105
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Note: The potential for wind power generation and agricultural straw yield was derived from other
research [60,61]. Among these, the agricultural straw yield represents the total amount of straw that
could potentially be utilized for energy under the soil ecological retention scenario (low scenario). This
yield, when multiplied by the lower heating value and power generation efficiency, equals its power
generation capacity. The lower heating value ranges from 15 to 18 MJ/kg [62], and the power genera-
tion efficiency is assumed to be 0.3 [63]. The calculation of the environmental emission reduction po-

tential for wind power and straw combustion power generation is the same as that of RPV.

Table A6. Building types, climate conditions and energy consumption patterns in Tianjin, Nanjing

and Guangzhou.

City Main Building Function Climate Conditions Energy Consumption Patterns
Climate Sunshine Hours
Tianjin = Residential and industrial Temperate Mon-  2500-2900 Energy consumption is mainly coal-
Buildings soon based, accounting for 45% of total energy

consumption. Different industrial energy
consumption: industry is the main en-
ergy-consuming sector, accounting for
77% of total consumption.

Nanjing Residential, industrial ~Subtropical Mon- 2132 Different industrial energy consumption:
and historical preserva- soon industry is the main energy-consuming
tion buildings sector, accounting for 61% of total con-
sumption.
Guangzhou Residential and commer- Subtropical Mon- 1880 Different industrial energy consumption:
cial buildings soon the service industry is the main energy-

consuming sector, accounting for 51% of
total consumption.

Note: Data on main building functions are from the Statistical yearbook [48,64]. The sunshine hours
of Tianjin are from the 14th Five-Year Plan of Tianjin’s renewable energy development [50]; sun-
shine hours in Nanjing and Guangzhou are from China Meteorological Data Network [8,9]. Energy

consumption data of Tianjin, Nanjing and Guangzhou are from local statistical yearbooks [6,10,11].

Table A7. Comparison of environmental emission reduction potential of RPV power generation in

Tianjin with other cities.

Tianjin Nanjing Guangzhou
Low High Low High Low High
Carbon reduction (MT/km?) 0.016 0.058 1.778 2.074 0.094 0.153
SO: reduction (KT/km?) 0.003 0.011 0.433 0.490 0.018 0.029
NOx reduction (KT/km?) 0.003 0.012 0.410 0.465 0.020 0.033
Sources This study [59] [65]
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