
 International Journal of

Geo-Information

Article

Method for Mapping Rice Fields in Complex
Landscape Areas Based on Pre-Trained Convolutional
Neural Network from HJ-1 A/B Data

Tian Jiang, Xiangnan Liu * and Ling Wu

School of Information Engineering, China University of Geosciences, Beijing 100083, China;
15810071678@163.com (T.J.); wuling@cugb.edu.cn (L.W.)
* Correspondence: liuxn@cugb.edu.cn; Tel.: +86-108-232-3056

Received: 15 September 2018; Accepted: 27 October 2018; Published: 30 October 2018
����������
�������

Abstract: Accurate and timely information about rice planting areas is essential for crop yield
estimation, global climate change and agricultural resource management. In this study, we present
a novel pixel-level classification approach that uses convolutional neural network (CNN) model to
extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is
to explore the practicability of deep learning techniques for rice recognition in complex landscape
regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing
images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the
temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning
approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models.
Results show that our model performs better than SVM, with the overall accuracies being 93.60%
and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas
in southern China on the basis of a pre-trained CNN model by using time series data. And more
opportunity and potential can be found for crop classification by remote sensing and deep learning
technique in the future study.

Keywords: mapping rice fields; complex landscape; convolutional neural network; transfer learning;
time series of vegetation index

1. Introduction

Rice spatial distribution and area information have great significance for yield prediction,
greenhouse gas emission and human food security. Rice provides a stable source of energy for
more than half of the world’s population, most especially Asians [1,2]. However, surveys indicate
that agricultural areas were on a decline in the period of 1994–2014 and that rice planting fields only
occupy approximately 11% of global arable regions [3,4]. As global warming intensifies, rice plays
an increasingly important role that cannot be neglected because it can generate considerable amounts
of methane gas, which accounts for approximately 5–19% of the global emission to the atmosphere [5,6].
Food security, which is closely related to life security, has recently become the focus worldwide [7].
A comprehensive understanding of rice fields could aid the government’s decision making for resource
management [8]. Hence, precise information about rice planting areas is highly critical nowadays.

Unlike the field investigation in the past, remote sensing represents an important approach
to Earth observation and is thus becoming widely popular in crop monitoring because of its large
coverage, real-time capabilities and low costs [9]. The existing literature proposes several approaches
for estimating rice planting areas based on remote sensing. These approaches are grouped into three
types. First, as a response to survival circumstances, phenological features could well reflect regular
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changes in different plants, which are captured by various vegetation indexes (VIs) in practice [10–12].
Many studies have been conducted on the basis of the temporal curves of VIs, such as the normalized
difference vegetation index (NDVI), enhanced vegetation index (EVI) and land surface water index
(LSWI), given the unique component of rice planting areas, which is a mixture of soil, water and plants
during key phenological stages (transplanting and early growing period) [13,14]. Different thresholds
are also set to distinguish rice areas from other land types. For example, Chen [15] mapped rice fields
in the western regions of Guangdong province by analyzing the characteristics of the temporal NDVI
derived from the China environment satellite data. Thereafter, a novel VI known as the two-band
enhanced vegetation index (EVI2) emerged, achieving high consistencies across sensors because it
merely involves two bands without a blue one [16]. Wang [17] provided the threshold referring
signatures of the temporal profile of EVI2 to identify single-cropped rice in a fragmented area. In
further studies, multiple VIs (NDVI coupled with EVI, LSWI, or others) were utilized to determine the
threshold for estimating rice planting areas [14,18–21]. Second, several algorithms have been designed
on temporal VI profiles. Previous studies developed a dynamic time warping (DTW) method for
similarity-based time series data matching, which is commonly applied in disturbance classification,
speech recognition and other time series categories [22–24]. Guan [25] identified rice growth areas with
the NDVI-based DTW method. And NDVI time series profiles for each pixel were built and the DTW
distance with the standard rice growth NDVI profile was calculated for similarity comparison. Then
rice areas could be extracted by setting thresholds. However, this approach obtains unsatisfactory
outcomes because it neglects that different time intervals exist between different similar point pairs
when finding the best alignment between two time series [26]. Therefore, a substantial number of
improved algorithms have been proposed in other research and they perform better than the original
DTW, such as the Time Weighted Dynamic Time Warping (TWDTW) algorithm which introduced
a time constraint accounting for seasonality of land types [27,28]. Finally, considerable classification
approaches have been used in the existing literature. On the one hand, traditional models were
mostly built on the basis of the statistical characteristics of images and they include the maximum
likelihood classifier (MLC) and iterative self-organizing data analysis technique (ISODATA) [29–31].
However, these models are turned out to be a lower robust due to spectral variability [32]. On the
other hand, following the development of machine learning, several high automation methods, such as
neural network, SVM, decision tree and random forest, have been greatly utilized for remote sensing
classification [33–35]. However, the aforementioned models have a shallow structure, which fail to
extract deep signatures of various land types in satellite images. Recently, a power image processing
technique, that is, deep learning, has emerged. With deep networks, it can extract numerous features
in hierarchical structures; hence, numerous deep networks have been built in the field of remote
sensing [36]. Among them, CNN is the most effective in extracting deep features by convolution
process and achieving an outstanding performance [37–40]. However, CNN-based classification
methods in remote sensing mainly rely on high-resolution or hyperspectral images with high cost and
poor efficiency. Hence, new attempts must be made in the recognition of rice areas from mid-resolution
data based on deep learning models.

Generally, the difficulties in rice field mapping accurately are strongly correlated with rice spatial
distribution, tillage mode and growing conditions. In southern China, rice is widely cultivated in
areas where croplands are highly fragmented with little patches and plant structure is highly complex,
leading to errors in distinguishing rice areas from surrounding land types. The current study seeks
to determine whether we can use temporal VI features to obtain precise information about rice
planting areas with the aid of deep learning. The approaches based on temporal VI determine the
selection of high temporal resolution satellite data. Moderate resolution imaging spectroradiometer
(MODIS) images are commonly used in previous research. However, despite their high temporal
resolution, MODIS images are not appropriate for our study because they may cause a mix-pixel
problem due to low spatial resolution. Accordingly, retrieving satellite data calls for appropriate spatial
and higher temporal resolution. In comparison with Landsat information with a 16-day revisit cycle,
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HJ-1 A/B satellite data, which exhibit a 30 m spatial resolution and a four-day revisit cycle (unite for
two days), bring a new direction for time series development. As we mentioned previously, CNN is
significant in estimating rice fields and effective in extracting deep features. However, the number of
available samples from remote sensing images is limited, making it difficult to support the training
step. Transfer learning occurs with sharing knowledge from one or more source tasks and then
applying such knowledge to a similar target domain [41]. Hence, we are interested in the use of the
CNN model for extracting features of temporal VI through introducing the transfer learning method
instead of training from scratch. For comparison, the SVM model is also used in experiment. SVM is
a nonparametric classifier with a shallow structure that transforms a linear inseparable problem from
a low dimensional space into a high dimensional feature space via a nonlinear mapping algorithm to
make such problem linearly separable [42].

Considering the necessity and challenges of mapping paddy rice fields with complex landscapes
in southern China, we aim to explore the feasibility of using the CNN deep model for accurate rice
field mapping on the basis of VI time series images. This study ultimately provides a pixel- and
deep temporal feature-based model for rice area extraction. Meanwhile, the SVM model is also used
for comparison.

2. Materials and Data Processing

2.1. Study Area

Zhuzhou City is situated in the east of Hunan Province, China, expanding from 26◦03′05” to
28◦01′07” E and 112◦57′30” to 114◦07′15” N (World Geodetic System-1984 (WGS-84) Coordinate
System) and is adjacent to Xiangjiang River (Figure 1). The city is part of the subtropical monsoon
zone with sufficient sunlight and warm and humid climate. Paddy rice cultivation is abundant in
this city due to the annual average temperature of 16–18 ◦C and precipitation of 1500 mm. The city is
also a famous commodity grain base in China. Additionally, Zhuzhou City belongs to typical hilly
landforms, hence the patchiness and fragmentation of its cropland. Furthermore, the complex planting
structure in this region heightens the difficulty in accurately estimating rice fields on remote sensing
images. Thus, Zhuzhou is appropriate for our study.
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2.2. Data Collection and Pre-Processing

2.2.1. Satellite Data

Eight HJ-1 A/B images from 13 May to 3 November 2017 were collected in our work to generate
EVI datasets for machine learning and classification. Table 1 summarizes the concrete acquisition date
of these images. Among them, there are two images in May (13 May and 29 May), two images in
July (22 July and 26 July), two images in August (20 August and 25 August), one image in September
(18 September) and one image in November (3 November). All of the images were downloaded freely
from the China Center for Resources Satellite Data and Application (http://www.cresda.com/CN/).
The major parameters of the two satellites are presented in Table 2. Two charge coupled device (CCD)
sensors were loaded with 30 m spatial resolution, 360 km detection width and four-day temporal
resolution. These sensors were also identical in the range of multispectral bands, which comprised four
channels, that is, band 1 (blue): 0.43–0.52 µm, band 2 (green): 0.52–0.60 µm, band 3 (red): 0.63–0.69 µm
and band 4 (near infrared): 0.76–0.90 µm.

Table 1. Acquisition of remote sensing data.

No. Satellite Sensor Spatial Resolution (m) Acquisition Date

1 HJ1B CCD1 30 13 May 2017
2 HJ1B CCD2 30 29 May 2017
3 HJ1A CCD2 30 22 July 2017
4 HJ1A CCD2 30 26 July 2017
5 HJ1B CCD2 30 20 August 2017
6 HJ1A CCD1 30 25 August 2017
7 HJ1B CCD2 30 18 September 2017
8 HJ1A CCD2 30 3 November 2017

Table 2. Major load parameters of HJ-1A/B satellites.

Platform Payload Channel Spectral
Range (µm)

Spatial
Resolution (m)

Detection
Width (km)

Revisit
Cycle (day)

HJ-1A CCD

1 0.43–0.52

30
360 (single),
700 (double) 4

2 0.52–0.60
3 0.63–0.69
4 0.76–0.90

HIS − 0.45–0.95 100 50 4

HJ-1B

CCD

1 0.43–0.52

30
360 (single),
700 (double) 4

2 0.52–0.60
3 0.63–0.69
4 0.76–0.90

IRS

5 0.75–1.10
150 720 4

6 1.55–1.75
7 3.50–3.90
8 10.5–12.5 300

All acquired images needed to be processed prior to use in ENVI5.2 image processing software
(Exelis VIS, White Plains, NY, USA). The processing mainly covered the following five aspects. First,
absolute radiometric calibration was performed for each band of the image according to the coefficient
and formula of radiometric calibration that was provided by the China Center for Resources Satellite
Data and Application and then stacked together for later use. Second, we obtained the spectral
response curve data from the China Center for Resources Satellite Data to produce four spectral
response functions and converted the image format to prepare for atmospheric correction. Third,
we conducted the atmosphere correction through the FLAASH module (Spectral Sciences Inc. &

http://www.cresda.com/CN/
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U.S. Air Force Research Laboratory). Fourth, automatic registration was completed among CCD
images to eliminate the errors of different sensors, with the root mean square (RME) error was less
than one pixel. Finally, the images were uniformly re-projected to the Universal Transverse Mercator
(UTM)-WGS84 system.

2.2.2. Ancillary Datasets

The ground-truth data, together with observation points from Google Earth, were used in this
study to promote classification and verification. There were 3577 points for result verification in total.
In field surveys, 419 points were visited and every land use patch covered more than 900 square meters.
Then position that was located by a Global Position System (GPS) device and the corresponding land
type of each site were recorded. Other points were selected from Google Earth randomly. All these
points were stored to a raster dataset with a TIFF format and 30 m spatial resolution. This dataset can
be regarded as reference data for accuracy assessment.

3. Methodology

A novel idea based on deep learning was proposed in this study to accurately estimate paddy
rice areas in southern China. The workflow of our approach is shown in Figure 2. On the basis of EVI
time series data, we applied the SVM model and CNN model to proceed classification, respectively.
The CNN model was built by pre-trained method and the features of EVI time series curves (shape,
amplitude and abstract features) could be extracted to assist classification. Then a comparative analysis
on accuracy assessment between two results were completed. The concrete procedures are follows.
(1) We calculated the VI of multitemporal satellite data and then reconstructed the time series curve
as input. (2) A deep learning model for classification was developed on the basis of the framework
of the Convolutional Architecture for Fast Feature Embedding [43], which introduced the strategy of
transfer learning. (3) Model training and validation were conducted by selecting different samples.
(4) For contrast, SVM and deep learning model were used for classification, separately.
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3.1. Construction of EVI Time Series

Extensive research has suggested that VIs can be used to objectively reflect plant growth states
with evident seasonal characteristics, periodicity and difference [19,44]. Thus, selecting a proper
index for our study was critical. NDVI, one of the most popular VIs, was successfully used to crop
monitoring [45,46]. However, saturation tends to occur in some regions with dense vegetation coverage,
thereby limiting its further application. As an improved VI, EVI has attracted increasing attention
given the interference of environmental factors and soil background. This index compensates for the
saturation problem of NDVI and shows a high sensitivity to vegetation changes; hence, we chose this
index instead of NDVI to detect different land types [33]. The EVI computational formula is given
as follows:

EVI = 2.5× ρNIR − ρRED
ρNIR + 6.0× ρRED − 7.5× ρBLUE + 1.0

(1)

where ρNIR, ρRED and ρBLUE correspond to the reflectances of near- infrared, red and blue
bands, respectively.

Despite the rigorous pre-processing operations conducted initially, it is clear that clouds, aerosols
and other external factors (like shadow and snows) are going to appear in VIs [47,48]. Thus, a filtering
algorithm is necessary to minimize noises in the next step. At present, three primary filtering algorithms
are commonly used: double logistic model functions, asymmetric Gaussian model functions and
Savitzky-Golay filtering method. In the current study, we chose the last to smoothen the EVI time
series. The Savitzky-Golay method implements local polynomial fitting on time series to generate
the filter value of each point; the major feature of it is to keep invariance of shape and width while
removing noises [49]. Furthermore, interpolation and polynomial fitting procedures were introduced
to obtain the daily EVI value. We illustrate the EVI time series of rice in Figure 3.
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3.2. Extraction of Different Phenological Patterns

On the basis of the dense stack of satellite data, every land type has its own phenological
sequence pattern corresponding to specific VI curves; this pattern could be introduced into crop
classification with certain characteristics [28,50]. Therefore, we divide the study area into four major
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land types; water, forest, rice and others (like bare land, building and abandoned cropland). The unique
characteristics of land types are expected to assist image classification. Therefore, it is extremely
essential to learn more about the characteristics of EVI time series curves, which accounts for the
phenological sequence patterns of objects. The typical EVI time series curves of four land types are
illustrated in Figure 4.
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3.3. Establishment of Classification Model Based on Deep Temporal Features

3.3.1. Architecture of CNN

With the advantages of local connections, shared weights, pooling and multiple layers, CNN,
a famous feed-forward network, was chosen as the main framework of our proposed model, which
consists of a number of neurons with learnable weights and biases [37,51]. We developed a model
based on LeNet-5 (Yann LeCun), which has been perceived as the basic prototype of existing CNNs.
We provided the model with a distinct architecture (Figure 5), including input, convolutional, pooling,
fully connected and output layers, to improve our understanding of CNN.
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Information is initially inputted into the network through the input layer for use in a later process.
Next is the convolutional layer, which is the core module of the entire network and plays a significant
role in feature extraction through convolution. There have multiple convolutional planes consist of
numerous neurons. Each neuron is locally connected to the former layer by convolutional kernels,
which simply dictate the feature extraction procedure. Then, a rectified linear unit (ReLU), a non-linear
activation function, is introduced to add nonlinear ability [52]. We utilized various convolutional
kernels convolved with the input to obtain different features. Although indefinite initially, these
kernels were adjusted by frequent training.

Pooling, which is linked to the convolutional layer alternately, is calculated by down sampling
to realize feature dimension reduction and that is why we also call it the down sampling layer. This
layer mainly contributes to the reduction of the number of connections among neurons, which not
only accelerates the computation but also helps to enhance robustness. The typical pooling algorithms
are the max pooling and the average pooling [53]. Generally, the pooling layer is regarded as the
secondary layer of feature extraction and is as important as the convolution layer.

The fully connected layer is aimed at implementing classification on the basis of locally separable
features acquired from previous layers. Each neuron is fully linked to all neurons on the upper layer.
The last layer is commonly considered as the output, where softmax logistic regression follows for
classification task.

3.3.2. Strategy of Transfer Learning

In order to solve the problem about insufficient samples from remote sensing data, transfer
learning, which can transfer previously knowledge to a new task, was introduced in our work. On
the basis of the content that was transferred, the methods of transfer learning were divided into four
categories; instance-based transfer learning, feature-based transfer learning, parameter-based transfer
learning and relational-based transfer learning [41]. We used the parameter-based transfer learning
that the model parameters were shared between target domain and source domain. In other words,
the model, which was trained by using a large amount of data from source domain, was applied
to target domain in which the model could be trained by less data. Therefore, the network could
assimilate generic features to promote its application in small database [54].

In the experiment, the implementation of transfer learning was illustrated in Figure 6. First,
we set up a pre-trained model (Model 1) by using the Modified National Institute of Standards
and Technology (MNIST) database (http://yann.lecun.com/exdb/mnist/). The datasets consist
of handwritten numerals from high school students and staff of the Census Bureau. Specifically,
the datasets comprise 50,000 training samples and 10,000 testing samples, which are all in grayscale
and normalized into 28 × 28 pixels. More significantly, different handwritten numerals were mainly
distinguished by the shape of lines, which is similar to the EVI time series curve in our study.
Subsequently, parameters of Model 1 were stored as an individual file which was transferred into
Model 2. Ultimately, we conducted the fine tuning process by using EVI time series to determine the
final CNN model.

There were 1893 samples for deep learning, which were collected randomly by visual
interpretation and were sorted into training samples and testing samples according to the proportion
of 2:1. And these samples must be normalized uniformly before model training. As mentioned
above, it is essential to help the pre-trained CNN model reach an optimal state as much as possible by
adjusting several training parameters. Here, we mainly discuss the effects of two types of parameters,
that is, batch size and learning rate, on model performance. Batch size is briefly defined as the
numbers of samples for each training. Commonly, a large batch size equates to a precise descent
direction within a reasonable scope, as well as a slight oscillation. By contrast, a small batch size may
introduce randomness and poor convergence. Therefore, a proper batch size should be set in relation
to the sample scale. We adopted 100, 64 and 32 as batch sizes in the current work. Learning rate,
another important factor, is a parameter for adjusting gradient descent steps in a network. It basically

http://yann.lecun.com/exdb/mnist/
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depends on the speed of parameters in reaching their best values. In other words, an excessively high
learning rate updates parameters rapidly, causing the network to easily converge into a local optimum.
Conversely, an extremely low value reduces the efficiency and leads to a slow convergence. Thus,
there is no doubt that setting up a proper learning rate is extremely necessary. We set the values of 0.1,
0.01 and 0.001 to explore the impacts of different learning rates on the results.
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4. Results and Accuracy Assessment

4.1. Characteristics of EVI Time Series

From Figure 4, it can be seen that the shape, tendency and other aspects of the different temporal
curves show obvious variances. First, rice fields are extremely unique because they are partially covered
with a mixture of soil, water and rice seedlings during the transplanting and early growth periods [13].
Meanwhile, a low value is observed in the EVI curve. In the tilling and jointing stages, the roots and
leaves develop rapidly and the EVI value increases sharply to a peak beyond 0.6. According to the
phenological date of crops, rice begins to transform its growth pattern from vegetative growth (roots,
stems and leaves) to reproductive stages (blossom and fruit) when the produced organics are gradually
transported and stored in the grains. During this phenological stage, the ultimate grain number of
rice is determined and the EVI curve tends to decline. The curve constantly decreases until harvest
given that rice leaves undergo senescence and droop in the maturation stage. The forest has a long
growth cycle and has a constantly high EVI value throughout the rice development stages due to the
flourishing trees. The temporal curve is prone to being steady locally. The curves for water and others
are all characterized by low EVI values and are relatively smoother than the temporal curve of rice.
Water is constantly at an extremely stable state with a particularly low EVI value, which is close to the
properties of strong absorption. As a result of the diverse land types in our study area, we obtained
several types of temporal EVI curves, such as those for abandoned land and buildings, which were
mapped with similar features.

4.2. Details of Fine Tuning Procedure

With setting different values (100, 64 and 32) of batch size, the changes in model performance are
directly displayed in Figure 7. From an accuracy perspective (a,b), the curves under the three batch
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sizes rapidly increased and almost exceeding the value of 0.85 at the same time. Then, the curves
remained at a stable state, fluctuating around 0.90. When the iterations were completed, the accuracy
curves of the three batches were nearly equal. Moreover, three loss curves (c,d) showed an overall
consistent convergence. With the increase of iterations, the curves’ oscillation was low and tended
toward stability. Among them, a slighter oscillation could be observed when the batch size was set to
100. Therefore, the batch size of 100 was applied in our experiment.
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As for learning rate, the differences in model performance among three values of 0.1, 0.01 and
0.001 are shown in Figure 8 (a,b and c,d are corresponding different changes in accuracy curves and
loss curves, separately). Briefly, the results reflected that learning rate was positively related to model
performance. Firstly, it was clearly found that every accuracy curve suddenly reached a high value over
0.8. In particular, the 0.001 curve rose more slowly than the others did later on. After 1000 iterations,
the 0.1 and 0.01 curves already entered a smooth period, whereas the 0.001 curve had yet to exceed the
highest accuracy. When the iterated operation stopped, the accuracy of the 0.1 curve was the highest.
Additionally, three loss curves dropped quickly to a low value. The other curves, relative to the 0.001
curve, followed a similar trend after the iterations were executed over 3000 times. Considering the fast
convergence rate and higher accuracy, we ultimately set the learning rate to 0.1.
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4.3. Classification Results

We obtained the classification outcomes with SVM and the proposed method, which are displayed
in Figure 9. As seen in the map, (a,c) are produced by SVM model, including the area of four land types
and independent spatial distribution of rice, respectively; and (b,d) are the results by deep learning
technique, representing distribution of each land type and rice area shown individually. On the whole,
results obtained by SVM and CNN are roughly coincident. Our study area is mostly covered by forest
on hills. The water is made up of the Xiangjiang and Lushui Rivers, with the latter being a major
branch, combined with some small ponds scattered across the entire zone. But it must be noted that
distinct differences of rice are observed with two classification models. Two maps on the bottom
indicate that rice is mainly planted in the valleys because of the special terrain conditions of the hills.
As for others, it is mainly made up of building, bare land and abandoned cropland. The building is
concentrated in Lukou District and part of Zhuzhou City, with a particular distribution in the eastern
and northern areas, separately. Affected by the human intervention and other factors, a certain portion
of croplands on nearby rice fields appear to be abandoned.
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4.4. Accuracy Assessment

To evaluate the classifier’s ability to identify different objects, we make a comparative analysis
from two perspectives: visual effect and confusion matrix. For the sake of differences between
two classification results in detail, we select eight patches from Google Earth (Figure 10) where rice
fields are easily confused with the surroundings. We can see that (a,c) were covered with lush trees
but SVM model failed to identify them correctly. We investigated that some croplands were usually
abandoned and choked by large quantities of weeds, such as site (b). And the presented results
demonstrated that SVM classified such abandoned lands into rice rather than others. Conversely,
the proposed CNN model achieved the desired result. In terms of (d–h), we find that a plenty of rice
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were grown here, which were consistent with the outcomes obtained from the CNN model. In sum up,
the CNN model performs better than SVM in confusing regions.
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For intuitive and accurate assessment of results, we list more evaluation details of our model
in Table 3. A total of 3577 reference points was applied to evaluate the classification accuracy. There
were 886 points for forest, 860 points for others, 688 points for rice and 1143 points for others. In
conclusion, a good classification result was produced with an overall accuracy of 93.60%. Each class
achieved a high user’s accuracy of over 90% and rice field assessment reached an accuracy of 91.36%.
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As for the producer’s accuracy, it was calculated to be the lowest value 86.16% for water and 95.35%
for rice.

Table 3. Specifics of classification accuracy evaluation.

Reference Point

Class Forest Water Rice Others Total User’s Accuracy

Forest 849 9 12 6 876 96.92%
Water 0 741 14 21 776 95.49%
Rice 26 22 656 14 718 91.36%

Others 11 88 6 1102 1207 91.30%
Total 886 860 688 1143 3577

Producer’s accuracy 95.82% 86.16% 95.35% 96.41%
Overall accuracy 93.60%

Later on, we compared the accuracies between the SVM model and our method (Table 4).
Considering the rice field recognition, differences in the performance of the two classifiers are provided
clearly. The developed model in our research exhibited great superiority over the SVM model in terms
of its accuracies of 91.36%, 95.35% and 93.60%, which are higher than the values obtained for the
SVM model (i.e., 90.55%, 80.81% and 91.05%, separately). Therefore, the developed model enabled
us to map rice fields according to the temporal features of VIs obtained from the CNN in complex
landscape areas.

Table 4. Classification accuracies by using SVM and our proposed method.

Classification
Methods Classification Accuracy Forest Water Rice Others

SVM
User’s accuracy (%) 89.48 98.93 90.55 87.81

Producer’s accuracy (%) 96.05 86.05 80.81 97.11
Overall accuracy (%) 91.05

CNN-based
User’s accuracy (%) 96.92 95.49 91.36 91.30

Producer’s accuracy (%) 95.82 86.16 95.35 96.41
Overall accuracy (%) 93.60

5. Discussion

Our paper intends to explore the possibility of mapping rice planting areas via deep learning
technology in southern China with complex landscapes. The classification results show that our model
outperforms traditional machine learning methods and thus prove the importance of the phenological
signatures of rice identification on remote sensing images. Specifically, rice shows its own states
throughout the entire growth process as seasonal climate variations. In the early growth periods,
paddy rice is planted on flooded fields, which are a mixture of water, rice seedlings and soil. Then,
rice grows continuously until the period changes from the vegetative stage to the reproductive stage.
Over time, the rice leaves begin to turn yellow and wither before harvest. All these results can be
connected to a unique phenological curve, which can be deemed to a crucial point in this research.
Hence, effective extraction and the manner of utilizing these rice identification features is urgent to be
studied. We adopted the rising concept of deep learning. As a powerful tool for feature extraction,
CNN is particularly popular in image classification as it can effectively capture some shallow and
abstract features in former and deeper layers, respectively. Accordingly, the outcomes are more
convincing. In the experiment, different phenological curves were entered into the CNN model to
obtain comprehensive and representative features, which would help the classification process. Our
method is good to deal with the temporal and spatial heterogeneities of rice due to the diverse cropping
system, which makes results more accurate.
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Nevertheless, there still have some inevitable errors and constrains. At first, the VI time series
exerts great influence on the classification model. On the one hand, enough data sources should be
gathered for constructing a fitting time series curve. But, uncontrollable clouds and rain coverage lead
to lacking data collecting in southern China, particularly in growing seasons. We selected as much
data as possible to reduce the fitting offset of curves. On the other hand, affected by atmospheric
factors, some noises are produced in the VI time series although the preparation of filter operations.
Therefore, a proper filter algorithm should be supposed to study further. Next, model training is also
significant for error analysis. Various aspects are involved, such as quantity of samples, layers of
network, iterations and so on. We used the simplest structure with seven layers in this study, hence
the difficulty in extracting deeper features that affected model performance. So, a suitable CNN and
its best parameters should be determined through constant attempts. Moreover, we assumed that
only four types of EVI time series curves exist and they were entered into the CNN model for our
study area. But in fact, the landscape is complex and diverse in hilly areas and some misclassification
may occur. Consequently, we should consider other types with different features of VI time series
as much as possible. Lastly, the current research merely concentrated on the signatures of VI time
series curves. Other signatures, such as spatial and texture signatures, are also close to remote sensing
classification in lots of literatures. In order to improve the CNN-based classification method, the
establishment of a rice identification model based on multi-features learning should be the key focus
of my further works.

6. Conclusions

This research put forward a novel VI- and CNN-based method for rice planting areas recognition
on multispectral satellite images of southern China. We paid attention to capturing the unique
signatures of rice phenological curves to distinguish them from other land covers. Thus, VIs were
certainly used to reflect the growth changes of different vegetation. Due to make up the oversaturation,
EVI was chosen as the optimal index to monitor the vegetation growth. We started by generating
various EVI time series curves from multi-temporal CCD data gained from HJ-1 A/B satellites. Then,
a pre-trained CNN model containing seven layers was developed to extract the deep temporal features
of EVI curves. For comparative analysis, we also produced a rice area map with the SVM algorithm.
Finally, we tested the classification results by using ground truth points and visual identification
information from Google Earth. Considering the rice fields, we carried out a quantitative comparison
of the two methods later. In conclusion, our proposed model performed better than SVM on account
of the user’s accuracy, the producer’s accuracy (especially with a wide gap) and the overall accuracy.

Generally, we provided a flexible approach and tried our best to elaborate its theoretical basis
which uses phenological features gained by deep learning technology for estimating rice planting areas.
Furthermore, several concrete statistical indexes were applied to confirm the feasibility of the proposed
approach in actual experiments. This innovative approach effectively facilitated rice identification on
mid-high resolution remote sensing images of complex landscape areas, which was not only broad the
ways of rice information extraction but also meaningful in predicting grain yield, mitigating climate
change and managing resources. Overall, this idea shows great promise and may contribute to further
research in the future.
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