Enhancing Wheat Growth, Physiology, Yield, and Water Use Efficiency under Deficit Irrigation by Integrating Foliar Application of Salicylic Acid and Nutrients at Critical Growth Stages
Abstract
:1. Introduction
2. Results
2.1. Growth Parameters
2.2. Physiological Parameters
2.3. Yield Parameters and Irrigation Water Use Efficiency
2.4. Heatmap Clustering Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Site Description and Cultivation Conditions
4.2. Experimental Design and Treatments
4.3. Data Recorded
4.3.1. Growth Parameters
4.3.2. Physiological Parameters
4.3.3. Yield and Yield Components
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme (UNEP). Options for Decoupling Economic Growth from Water Use and Water Pollution. 2017. Available online: https://www.resourcepanel.org/reports/options-decoupling-economic-growth-water-use-and-water-pollution (accessed on 2 May 2024).
- Wu, B.; Tian, F.; Zhang, M.; Piao, S.; Zeng, H.; Zhu, W.; Liu, J.; Elnashar, A.; Lu, Y. Quantifying global agricultural water appropriation with data derived from earth observations. J. Clean. Prod. 2022, 358, 131891. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Schmidhalter, U. Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation. Agric. Water Manag. 2017, 182, 1–12. [Google Scholar] [CrossRef]
- Ali, O.A. Wheat responses and tolerance to drought stress. In Wheat Production in Changing Environments; Hasanuzzaman, M., Nahar, K., Hossain, M., Eds.; Springer: Singapore, 2019; pp. 129–138. [Google Scholar]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Shahgholi, S.; Sayfzadeh, S.; Hadidi Masouleh, E.; Shahsavari, N.; Zakerin, H. Assessment of zinc, boron, and iron foliar application on wheat yield and yield components under drought stress. Commun. Soil Sci. Plant Anal. 2023, 54, 1283–1292. [Google Scholar] [CrossRef]
- Nyaupane, S.; Poudel, M.R.; Panthi, B.; Dhakal, A.; Paudel, H.; Bhandari, R. Drought stress effect, tolerance, and management in wheat—A review. Cogent Food Agric. 2024, 10, 2296094. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef]
- Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 2022, 23, 8519. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 153–188. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Sardans, J.; Penuelas, J.; Ogaya, R. Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest. Biogeochemistry 2008, 87, 49–69. [Google Scholar] [CrossRef]
- Sanaullah, M.; Rumpel, C.; Charrier, X.; Chabbi, A. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 2012, 352, 277–288. [Google Scholar] [CrossRef]
- Bassirirad, H. Kinetics of nutrient uptake by roots: Responses to global change. New Phytol. 2000, 147, 155–169. [Google Scholar] [CrossRef]
- Christophe, S.; Jean-Christophe, A.; Annabelle, L.; Alain, O.; Marion, P.; Anne-Sophie, V. Plant N fluxes and modulation by nitrogen, heat and water stresses: A review based on comparison of legumes and non legume plants. Abiotic Stress Plants–Mech. Adapt. 2011, 79–118. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H.M. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Zolfaghari Gheshlaghi, M.; Pasari, B.; Shams, K.; Rokhzadi, A.; Mohammadi, K. The effect of micronutrient foliar application on yield, seed quality and some biochemical traits of soybean cultivars under drought stress. J. Plant Nutr. 2019, 42, 2715–2730. [Google Scholar] [CrossRef]
- Sharifi Kalyani, F.; Siosemardeh, A.; Hosseinpanahi, F.; Jalali-Honarmand, S. Effect of nutrients foliar application on physiological traits, morphological traits, radiation use efficiency, and grain yield of dryland wheat. Gesunde Pflanz. 2023, 75, 1–15. [Google Scholar] [CrossRef]
- Moradi, L.; Siosemardeh, A. Combination of seed priming and nutrient foliar application improved physiological attributes, grain yield, and biofortification of rainfed wheat. Front. Plant Sci. 2023, 14, 1–15. [Google Scholar] [CrossRef]
- Hussain, R.A.; Ahmad, R.; Nawaz, F.; Ashraf, M.Y.; Waraich, E.A. Foliar NK application mitigates drought effects in sunflower (Helianthus annuus L.). Acta Physiol. Plant. 2016, 38, 83. [Google Scholar] [CrossRef]
- Amanullah; Khair Muhammad, K.; Azam, K.; Imran, K.; Zahir, S.; Zahid, H. Growth and yield response of maize (Zea mays L.) to foliar NPK-fertilizers under moisture stress condition. Soil Environ. 2014, 33, 116–123. [Google Scholar]
- Ding, Z.; Kheir, A.M.; Ali, O.A.; Hafez, E.M.; ElShamey, E.A.; Zhou, Z.; Wang, B.; Ge, Y.; Fahmy, A.E.; Seleiman, M.F. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J. Environ. Manag. 2020, 277, 111388. [Google Scholar] [CrossRef] [PubMed]
- Khalvandi, M.; Siosemardeh, A.; Roohi, E.; Keramati, S. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon 2021, 7, e05908. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Emam, Y.; Ashraf, M.; Arvin, M.J. Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop. Pasture Sci. 2019, 70, 36–43. [Google Scholar] [CrossRef]
- Yang, H.; Fang, R.; Luo, L.; Yang, W.; Huang, Q.; Yang, C.; Hui, W.; Gong, W.; Wang, J. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. Front. Plant Sci. 2023, 14, 1226041. [Google Scholar] [CrossRef] [PubMed]
- El Sherbiny, H.A.; El-Hashash, E.F.; Abou El-Enin, M.M.; Nofal, R.S.; Abd El-Mageed, T.A.; Bleih, E.M.; El-Saadony, M.T.; El-Tarabily, K.A.; Shaaban, A. Exogenously applied salicylic acid boosts morpho-physiological traits, yield, and water productivity of lowland rice under normal and deficit irrigation. Agronomy 2022, 12, 1860. [Google Scholar] [CrossRef]
- Azmat, A.; Yasmin, H.; Hassan, M.N.; Nosheen, A.; Naz, R.; Sajjad, M.; Ilyas, N.; Akhtar, M.N. Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ 2020, 8, e9960. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Matin, M.A.; Fardus, J.; Hasanuzzaman, M.; Hossain, M.S.; Parvin, K. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot. 2019, 72, 1762. [Google Scholar] [CrossRef]
- Hafez, E.M.; Kheir, A.; Badawy, S.A.; Rashwan, E.; Farig, M.; Osman, H.S. Differences in physiological and biochemical attributes of wheat in response to single and combined salicylic acid and biochar subjected to limited water irrigation in saline sodic soil. Plants 2020, 9, 1346. [Google Scholar] [CrossRef]
- Kang, G.; Li, G.; Xu, W.; Peng, X.; Han, Q.; Zhu, Y.; Guo, T. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 2012, 11, 6066–6079. [Google Scholar] [CrossRef]
- Agami, R.A.; Alamri, S.A.; Abd El-Mageed, T.; Abousekken, M. Salicylic acid and proline enhance water use efficiency, antioxidant defense system and tissues’ anatomy of wheat plants under field deficit irrigation stress. J. Appl. Bot. Food Qual. 2019, 92, 360–370. [Google Scholar]
- Yavas, I.; Unay, A. Effects of zinc and salicylic acid on wheat under drought stress. J. Anim. Plant Sci. 2016, 26, 1012–1101. [Google Scholar]
- Alotaibi, M.; El-Hendawy, S.; Mohammed, N.; Alsamin, B.; Al-Suhaibani, N.; Refay, Y. Effects of salicylic acid and macro-and micronutrients through foliar and soil applications on the agronomic performance, physiological attributes, and water productivity of wheat under normal and limited irrigation in dry climatic conditions. Plants 2023, 12, 2389. [Google Scholar] [CrossRef]
- Safar-Noori, M.; Assaha, D.V.M.; Saneoka, H. Effect of salicylic acid and potassium application on yield and grain nutritional quality of wheat under drought stress condition. Cereal Res. Commun. 2018, 46, 558–568. [Google Scholar] [CrossRef]
- Dodig, D.; Zorić, M.; Jović, M.; Kandić, V.; Stanisavljević, R.; Šurlan-Momirović, G. Wheat seedlings growth response to water deficiency and how it correlates with adult plant tolerance to drought. JAS 2014, 153, 466–480. [Google Scholar] [CrossRef]
- Poudel, M.R.; Ghimire, S.; Pandey, M.P.; Dhakal, K.H.; Thapa, D.B.; Poudel, H.K. Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. J. Biol. Today’s World 2020, 9, 1–12. [Google Scholar]
- Prasad, P.; Pisipati, S.; Momčilović, I.; Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 2011, 197, 430–441. [Google Scholar] [CrossRef]
- Maccaferri, M.; Sanguineti, M.C.; Demontis, A.; El-Ahmed, A.; Garcia del Moral, L.; Maalouf, F.; Nachit, M.; Nserallah, N.; Ouabbou, H.; Rhouma, S. Association mapping in durum wheat grown across a broad range of water regimes. J. Exp. Bot. 2011, 62, 409–438. [Google Scholar] [CrossRef]
- Khan, M.A.; Waseem Akram, M.; Iqbal, M.; Ghulam Muhu-Din Ahmed, H.; Rehman, A.; Arslan Iqbal, H.S.M.; Alam, B. Multivariate and association analyses of quantitative attributes reveal drought tolerance potential of wheat (Triticum aestivum L.) genotypes. Commun. Soil Sci. Plant Anal. 2023, 54, 178–195. [Google Scholar] [CrossRef]
- Ning, D.; Zhang, Y.; Li, X.; Qin, A.; Huang, C.; Fu, Y.; Gao, Y.; Duan, A. The effects of foliar supplementation of silicon on physiological and biochemical responses of winter wheat to drought stress during different growth stages. Plants 2023, 12, 2386. [Google Scholar] [CrossRef]
- Gong, H.J.; Chen, K.M.; Zhao, Z.G.; Chen, G.C.; Zhou, W.J. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biologia. Plant. 2008, 52, 592–596. [Google Scholar] [CrossRef]
- Karim, M.R.; Rahman, M.A. Drought risk management for increased cereal production in Asian Least Developed Countries. Weather. Clim. Extremes 2015, 7, 24–35. [Google Scholar] [CrossRef]
- Abdel-Motagally, F.M.F.; El-Zohri, M. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soci. Agic. Sci. 2018, 17, 178–185. [Google Scholar] [CrossRef]
- Khan, M.B.; Muhammad Farooq, M.F.; Mubshar Hussain, M.H.; Shahnawaz, S.; Ghulam Shabir, G.S. Foliar application of micronutrients improves the wheat yield and net economic return. Int. J. Agric. Biol. 2010, 12, 953–956. [Google Scholar]
- Kulkarni, M.; Soolanayakanahally, R.; Ogawa, S.; Uga, Y.; Selvaraj, M.G.; Kagale, S. Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front. Chem. 2017, 5, 106. [Google Scholar] [CrossRef]
- Karim, M.R.; Zhang, Y.Q.; Zhao, R.R.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012, 175, 142–151. [Google Scholar] [CrossRef]
- Bagci, S.; Ekiz, H.; Yilmaz, A.; Cakmak, I. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J. Agron. Crop Sci. 2007, 193, 198–206. [Google Scholar] [CrossRef]
- Ullah, A.; Farooq, M.; Rehman, A.; Arshad, M.S.; Shoukat, H.; Nadeem, A.; Nawaz, A.; Wakeel, A.; Nadeem, F. Manganese nutrition improves the productivity and grain biofortification of bread wheat in alkaline calcareous soil. Exp. Agric. 2018, 54, 744–754. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Arshad, M.; Meraj, T.A.; Hefft, D.I.; Jan, B.L.; Ahmad, P. The impact of calcium, potassium, and boron application on the growth and yield characteristics of durum wheat under drought conditions. Agronomy 2022, 12, 1917. [Google Scholar] [CrossRef]
- Dutta, T.; Neelapu, N.R.; Wani, S.H.; Challa, S. Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2018; pp. 221–254. [Google Scholar]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the roles of osmolytes for acclimatizing plants to changing environment: A review of potential mechanism. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef]
- Khan, M.I.; Poor, P.; Janda, T. Salicylic Acid: A versatile signaling molecule in plants. J. Plant Growth Regul. 2022, 41, 1887–1890. [Google Scholar] [CrossRef]
- Torun, H.; Novák, O.; Mikulík, J.; Pěnčík, A.; Strnad, M.; Ayaz, F.A. Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.). Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.; El-Hendawy, S.; Alsamin, B.; Mubushar, M.; Dewir, Y.H. Integrating application methods and concentrations of salicylic acid as an avenue to enhance growth, production, and water use efficiency of wheat under full and deficit irrigation in arid countries. Plants 2023, 12, 1019. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.; Al-Qurainy, F.; Foolad, M.R. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 111, pp. 249–296. [Google Scholar]
- Alotaibi, M.; El-Hendawy, S.; Mohammed, N.; Alsamin, B.; Refay, Y. Appropriate application methods for salicylic acid and plant nutrients combinations to promote morpho-physiological traits, production, and water use efficiency of wheat under normal and deficit irrigation in an arid climate. Plants 2023, 12, 1368. [Google Scholar] [CrossRef] [PubMed]
- Sarto, M.V.M.; Sarto, J.R.W.; Rampim, L.; Bassegio, D.; da Costa, P.F.; Inagaki, A.M. Wheat phenology and yield under drought: A review. Aust. J. Crop Sci. 2017, 11, 941–946. [Google Scholar] [CrossRef]
- Ding, J.; Huang, Z.; Zhu, M.; Li, C.; Zhu, X.; Guo, W. Does cyclic water stress damage wheat yield more than a single stress? PLoS ONE 2018, 13, e0195535. [Google Scholar] [CrossRef] [PubMed]
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-morphological trait-based approach for breeding drought tolerant wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Panhwar, N.A.; Mierzwa-Hersztek, M.; Baloch, G.M.; Soomro, Z.A.; Sial, M.A.; Demiraj, E.; Panhwar, S.A.; Afzal, A.; Lahori, A.H. Water stress affects the some morpho-physiological traits of twenty wheat (Triticum aestivum L.) genotypes under field condition. Sustainability 2021, 13, 13736. [Google Scholar] [CrossRef]
- Frantová, N.; Rábek, M.; Elzner, P.; Stˇreda, T.; Jovanović, I.; Holková, L.; Martinek, P.; Smutná, P.; Prášil, I.T. Different drought tolerance strategy of wheat varieties in spike architecture. Agronomy 2022, 12, 2328. [Google Scholar] [CrossRef]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant. Sci. 2017, 8, 672. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.; Liang, Z.; Zhang, W.; Zou, C.; Chen, X. Tiller development affected by nitrogen fertilisation in a high-yielding wheat productive system. Crop Sci. 2020, 60, 1034–1047. [Google Scholar] [CrossRef]
- Abid, M.; Ali, S.; Qi, L.K.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.L.; Dai, T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef] [PubMed]
- Slafer, G.; Araus, J.; Richards, R. Physiological traits that increase the yield potential of wheat. In Wheat: Ecology and Physiology of Yield Determination; Satorre, E.H., Slafer, G.A., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 379–415. [Google Scholar]
- Lizana, X.; Calderini, D. Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. JAS 2013, 151, 209–221. [Google Scholar] [CrossRef]
- Monteleone, B.; Borzí, I.; Arosio, M.; Cesarini, L.; Bonaccorso, B.; Martina, M. Modelling the response of wheat yield to stage-specific water stress in the Po Plain. Agric. Water Manage. 2023, 287, 108444. [Google Scholar] [CrossRef]
- Kareem, F.; Rihan, H.; Fuller, M.P. The effect of exogenous applications of salicylic acid on drought tolerance and up-regulation of the drought response regulon of Iraqi wheat. J. Crop Sci. Biotechnol. 2019, 22, 37–45. [Google Scholar] [CrossRef]
- Hera, M.H.R.; Hossain, M.; Paul, A.K. Effect of foliar zinc spray on growth and yield of heat tolerant wheat under water stress. Int. J. Biol. Environ. Eng. 2018, 1, 10–16. [Google Scholar]
- Fan, Y.; Lv, Z.; Li, Y.; Qin, B.; Song, Q.; Ma, L.; Wu, Q.; Zhang, W.; Ma, S.; Ma, C. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves. Agronomy 2022, 12, 1386. [Google Scholar] [CrossRef]
- Jatana, B.S.; Ram, H.; Gupta, N.; Kaur, H. Wheat response to foliar application of salicylic acid at different sowing dates. J. Crop Improv. 2022, 36, 369–388. [Google Scholar] [CrossRef]
- Tanin, M.J.; Sharma, A.; Ram, H.; Singh, S.; Srivastava, P.; Mavi, G.; Saini, D.K.; Gudi, S.; Kumar, P.; Goyal, P. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. Front. Plant Sci. 2023, 14, 1107705. [Google Scholar] [CrossRef]
- Silviya, R.A.; Stalin, P. Rice crop response to applied copper under varying soil available copper status at tamilnadu, India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1400–1408. [Google Scholar] [CrossRef]
- Chaudry, E.; Timmer, V.; Javed, A.; Siddique, M. Wheat response to micronutrients in rainfed areas of Punjab. Soil Environ. 2007, 26, 97–101. [Google Scholar]
- Xiao-li, W.; Miao, L.; Chao-su, L.; Mchugh, A.D.J.; Ming, L.; Tao, X.; Yu-bin, L.; Yong-lu, T. Source–sink relations and responses to sink–source manipulations during grain filling in wheat. J. Integ. Agric. 2022, 21, 1593–1605. [Google Scholar] [CrossRef]
- Klessig, D.F.; Choi, H.W.; Dempsey, D.M.A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant. Microbe Interact. 2018, 31, 871–888. [Google Scholar] [CrossRef] [PubMed]
- Saheri, F.; Barzin, G.; Pishkar, L.; Boojar, M.M.A.; Babaeekhou, L. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia 2020, 75, 2189–2200. [Google Scholar] [CrossRef]
- Zafar, Z.; Rasheed, F.; Atif, R.M.; Javed, M.A.; Maqsood, M.; Gailing, O. Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoides L. saplings: Evidence from morphological, physiological, and biochemical changes. Plants 2021, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Bakry, B.; El-Hariri, D.; Sadak, M.; El-Bassiouny, H. Drought stress mitigation by foliar application of salicylic acid in two linseed varieties grown under newly reclaimed sandy soil. J. Appl. Sci. Res. 2012, 8, 3503–3514. [Google Scholar]
- Jini, D.; Joseph, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 24, 97–108. [Google Scholar] [CrossRef]
- Hafez, E.M. Influence of salicylic acid on ion distribution, enzymatic activity and some agromorphological characteristics of wheat under salt-affected soil. Egypt. J. Agron. 2016, 38, 455–469. [Google Scholar] [CrossRef]
- Dass, A.; Rajanna, G.A.; Babu, S.; Lal, S.K.; Choudhary, A.K.; Singh, R.; Rathore, S.S.; Kaur, R.; Dhar, S.; Singh, T. Foliar application of macro-and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability 2022, 14, 5825. [Google Scholar] [CrossRef]
- Chakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Pavia, I.; Roque, J.; Rocha, L.; Ferreira, H.; Castro, C.; Carvalho, A.; Silva, E.; Brito, C.; Goncalves, A.; Lima-Brito, J. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. Plant Physiol. Biochem. 2019, 140, 27–42. [Google Scholar] [CrossRef]
- Amanullah; Ilyas, M.; Nabi, H.; Khalid, S.; Ahmad, M.; Muhammad, A.; Ullah, S.; Ali, I.; Fahad, S.; Adnan, M. Integrated foliar nutrients application improve wheat (Triticum aestivum L.) productivity under calcareous soils in drylands. Commun. Soil Sci. Plant Anal. 2021, 52, 2748–2766. [Google Scholar] [CrossRef]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci. Rep. 2021, 11, 3864. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Xiong, Y.-C.; Li, F.-M.; Siddique, K.H.; Turner, N.C. Effects of drought stress on morphophysiological traits, biochemical characteristics, yield, and yield components in different ploidy wheat: A meta-analysis. Adv. Agron. 2017, 143, 139–173. [Google Scholar]
- Prasertsak, A.; Fukai, S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res. 1997, 52, 249–260. [Google Scholar] [CrossRef]
- Aksu, G.; Altay, H. The effects of potassium applications on drought stress in sugar beet. Sugar Tech. 2020, 22, 1092–1102. [Google Scholar] [CrossRef]
- Sohail, M.A.; Nawaz, F.; Aziz, M.; Ahmad, W. Effect of supplemental potassium and chitosan on growth and yield of sunflower (Helianthus annuus L.) under drought stress. J. Agric. Sci. 2021, 3, 56–71. [Google Scholar]
- Ibrahim, M.F.; Abd El-Samad, G.; Ashour, H.; El-Sawy, A.M.; Hikal, M.; Elkelish, A.; El-Gawad, H.A.; El-Yazied, A.A.; Hozzein, W.N.; Farag, R. Regulation of agronomic traits, nutrient uptake, osmolytes and antioxidants of maize as influenced by exogenous potassium silicate under deficit irrigation and semiarid conditions. Agronomy 2020, 10, 1212. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
Studied Factor | Growth Parameters at 95 Days from Sowing | Growth Parameters At 115 Days From Sowing | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | TN | GLN | GLA | SFW | SDW | PH | TN | GLN | GLA | SFW | SDW | ||
Application timing (AT) | |||||||||||||
T | 64.50 ns | 3.28 ns | 7.12 b | 96.63 b | 11.93 b | 3.86 b | 67.06 ns | 3.36 b | 2.74 b | 38.35 b | 10.38 b | 4.74 b | |
T + H | 65.39 ns | 3.40 ns | 8.22 a | 111.17 a | 13.54 a | 4.58 a | 67.71 ns | 3.65 a | 3.25 a | 44.96 a | 11.18 a | 5.58 a | |
T + H + G | 65.10 ns | 3.50 ns | 8.40 a | 113.40 a | 13.45 a | 4.60 a | 68.33 ns | 3.67 a | 3.34 a | 45.86 a | 11.46 a | 5.84 a | |
Foliar treatments (F) | |||||||||||||
Control | 63.97 b | 3.26 ns | 7.07 b | 88.29 c | 11.43 c | 3.72 c | 65.69 b | 3.24 b | 2.56 b | 33.09 c | 9.07 c | 3.92 c | |
SA | 64.73 ab | 3.37 ns | 8.07 a | 113.54 ab | 13.44 ab | 4.57 ab | 68.00 a | 3.61 a | 3.36 a | 46.10 ab | 11.63 b | 5.91 a | |
SA + Mic | 65.70 a | 3.41 ns | 8.15 a | 116.41 a | 14.04 a | 4.76 a | 68.39 a | 3.67 a | 3.31a | 48.08 a | 12.03 a | 6.06 a | |
SA + Mic + Mac | 65.58 a | 3.54 ns | 8.35 a | 110.03 b | 12.97 b | 4.31 b | 68.72 a | 3.72 a | 3.22 a | 44.96 b | 11.31 b | 5.64 b | |
ANOVA | df | ||||||||||||
S | 1 | 0.109 ns | 0.421 ns | 0.502 ns | 0.336 ns | 0.723 ns | 0.053 ns | 0.333 ns | 0.185 ns | 0.103 ns | 0.601 ns | 0.526 ns | 0.063 ns |
AT | 2 | 0.126 ns | 0.192 ns | <0.001 *** | <0.001 *** | 0.001 ** | <0.001 *** | 0.421 ns | 0.029 * | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
AT × S | 2 | 0.372 ns | 0.491 ns | 0.031 * | 0.468 ns | 0.582 ns | 0.682 ns | 0.692 ns | 0.009 ** | 0.594 ns | 0.974 ns | 0.187 ns | 0.058 ns |
F | 3 | 0.006 ** | 0.259 ns | <0.001 *** | <0.001 *** | <0.00 *** | <0.001 *** | 0.001 ** | 0.001 ** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
F × S | 3 | 0.533 ns | 0.644 ns | 0.537 ns | 0.150 ns | 0.999 ns | 0.704 ns | 0.367 ns | 0.775 ns | 0.624 ns | 0.870 ns | 0.276 ns | 0.119 ns |
F × AT | 6 | 0.339 ns | 0.987 ns | 0.022 * | <0.001 *** | 0.004 ** | 0.010 * | 0.698 ns | 0.933 ns | 0.009 ** | <0.001 *** | <0.001 *** | <0.001 *** |
F × AT × S | 6 | 0.333 ns | 0.528 ns | 0.563 ns | 0.506 ns | 0.991 ns | 0.899 ns | 0.463 ns | 0.750 ns | 0.580 ns | 0.231 ns | 0.701 ns | 0.236 ns |
Physiological Parameters at 95 Days from Sowing | Physiological Parameters at 115 Days from Sowing | ||||||||
---|---|---|---|---|---|---|---|---|---|
RWC | Cha | Chb | Cht | RWC | Cha | Chb | Cht | ||
Application timing (AT) | |||||||||
T | 67.11 b | 1.92 b | 0.79 b | 2.77 b | 57.72 b | 1.00 c | 0.44 c | 1.50 c | |
T + H | 75.26 a | 2.26 a | 0.93 a | 3.23 a | 62.72 a | 1.19 b | 0.51 b | 1.75 b | |
T + H + G | 76.50 a | 2.27 a | 0.91 a | 3.24 a | 63.85 a | 1.24 a | 0.53 a | 1.83 a | |
Foliar treatments (F) | |||||||||
Control | 64.61 b | 1.47 b | 0.71 b | 2.22 b | 50.32 b | 0.74 c | 0.32 b | 1.10 c | |
SA | 75.86 a | 2.36 a | 0.93 a | 3.34 a | 64.53 a | 1.28 ab | 0.56 a | 1.90 ab | |
SA + Mic | 76.45 a | 2.40 a | 0.94 a | 3.39 a | 66.67 a | 1.32 a | 0.57 a | 1.94 a | |
SA + Mic + Mac | 74.90 a | 2.38 a | 0.93 a | 3.35 a | 64.20 a | 1.25 b | 0.54 a | 1.84 b | |
ANOVA | df | ||||||||
S | 1 | 0.087 ns | 0.736 ns | 0.311 ns | 0.376 ns | 0.273 ns | 0.079 ns | 0.097 ns | 0.032 * |
AT | 2 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.001 ** | <0.001 *** | <0.001 *** | <0.001 *** |
AT × S | 2 | 0.027 * | 0.051 ns | 0.811 ns | 0.078 ns | 0.373 ns | 0.014 * | 0.001 ** | 0.005 ** |
F | 3 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
F × S | 3 | <0.001 *** | <0.001 *** | 0.011 * | <0.001 *** | 0.837 ns | 0.073 ns | 0.010 * | 0.078 ns |
F × AT | 6 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001*** | <0.001 *** |
F × AT × S | 6 | 0.160 ns | 0.137 ns | 0.614 ns | 0.248 ns | 0.794 ns | 0.098 ns | 0.104 ns | 0.127 ns |
SL | GWPS | GNPS | TGW | GY | BY | HI | IWUE | ||
---|---|---|---|---|---|---|---|---|---|
Application timing (AT) | |||||||||
T | 8.33 b | 1.05 c | 34.87 c | 30.23 b | 3.26 b | 11.08 b | 29.44 b | 9.86 b | |
T + H | 8.45 ab | 1.19 b | 36.86 b | 32.12 a | 3.74 a | 11.97 a | 31.16 a | 11.32 a | |
T + H + G | 8.62 a | 1.27 a | 38.90 a | 32.41 a | 3.87 a | 12.19 a | 31.65 a | 11.73 a | |
Foliar treatments (F) | |||||||||
Control | 8.33 ns | 0.94 d | 33.92 c | 27.96 d | 3.01 c | 10.67 b | 28.32 c | 9.14 c | |
SA | 8.44 ns | 1.25 b | 37.97 ab | 32.84 b | 3.88 a | 12.07 a | 32.06 a | 11.75 a | |
SA + Mic | 8.53 ns | 1.29 a | 38.37 a | 33.57 a | 4.01 a | 12.14 a | 32.98 a | 12.16 a | |
SA + Mic+ Mac | 8.58 ns | 1.19 c | 37.22 b | 31.99 c | 3.58 b | 12.09 a | 29.64 b | 10.83 b | |
ANOVA | df | ||||||||
S | 1 | 0.383 ns | 0.802 ns | 0.704 ns | 0.913 ns | 0.051 ns | 0.007 ** | 0.306 ns | 0.051 ns |
AT | 2 | 0.040 * | <0.001 *** | <0.001 *** | 0.004 ** | <0.001 *** | <0.001 *** | <0.003 ** | <0.001 *** |
AT × S | 2 | 0.2.37 ns | 0.885 ns | 0.829 ns | 0.843 ns | 0.767 ns | 0.181 ns | 0.422 ns | 0.769 ns |
F | 3 | 0.149 ns | <0.001 *** | <0.001*** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
F × S | 3 | 0.489 ns | 0.182 ns | 0.589 ns | 0.334 ns | 0.216 ns | 0.683 ns | 0.118 ns | 0.214 ns |
F × AT | 6 | 0.748 ns | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.070 ns | <0.001 *** | <0.001 *** |
F × AT × S | 6 | 0.051 ns | 0.982 ns | 0.697 ns | 0.731 ns | 0.980 ns | 0.985 ns | 0.799 ns | 0.980 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hendawy, S.; Mohammed, N.; Al-Suhaibani, N. Enhancing Wheat Growth, Physiology, Yield, and Water Use Efficiency under Deficit Irrigation by Integrating Foliar Application of Salicylic Acid and Nutrients at Critical Growth Stages. Plants 2024, 13, 1490. https://doi.org/10.3390/plants13111490
El-Hendawy S, Mohammed N, Al-Suhaibani N. Enhancing Wheat Growth, Physiology, Yield, and Water Use Efficiency under Deficit Irrigation by Integrating Foliar Application of Salicylic Acid and Nutrients at Critical Growth Stages. Plants. 2024; 13(11):1490. https://doi.org/10.3390/plants13111490
Chicago/Turabian StyleEl-Hendawy, Salah, Nabil Mohammed, and Nasser Al-Suhaibani. 2024. "Enhancing Wheat Growth, Physiology, Yield, and Water Use Efficiency under Deficit Irrigation by Integrating Foliar Application of Salicylic Acid and Nutrients at Critical Growth Stages" Plants 13, no. 11: 1490. https://doi.org/10.3390/plants13111490