Effects of Complete Submergence on Growth, Survival and Recovery Growth of Alisma orientale (Samuel.) Juz.
Abstract
:1. Introduction
2. Results
2.1. Growth Response During Complete Submergence
2.2. Biomass Loss During Complete Submergence
2.3. Survial Rate at the End of the Submergence and Recovery Periods
2.4. Recovery Growth During Post-Submergence
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experiments of Complete Submergence
4.3. Experiments of Post-Submergence Recovery
4.4. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alifu, H.; Hirabayashi, Y.; Imada, Y.; Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 2022, 12, 20687. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023; pp. 67–90. [Google Scholar]
- Kotz, M.; Lange, S.; Wenz, L.; Levermann, A. Constraining the pattern and magnitude of projected extreme precipitation change in a multimodel ensemble. J. Clim. 2024, 37, 97–111. [Google Scholar] [CrossRef]
- Jackson, M.B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Biol. 1985, 36, 145–174. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Rijnders, J.H.G.M.; Peeters, A.J.M.; van de Steeg, H.M.; de Kroon, H. Plant hormones regulate fast shoot elongation under water: From genes to communities. Ecology 2004, 85, 16–27. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Colmer, T.D.; Pierik, R.; Millenaar, F.F.; Peeters, A.J. How plants cope with complete submergence. New Phytol. 2006, 170, 213–226. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.; Wang, X.; Li, L.; Ciais, P.; Zscheischler, J.; Wang, Y.; Tang, Y.; Müller, C.; Webber, H.; et al. Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nat. Food 2023, 4, 416–426. [Google Scholar] [CrossRef]
- Kim, W.; Iizumi, T.; Hosokawa, N.; Tanoue, M.; Hirabayashi, Y. Flood impacts on global crop production: Advances and limitations. Environ. Res. Lett. 2023, 18, 054007. [Google Scholar] [CrossRef]
- Yeung, E.; Bailey-Serres, J.; Sasidharan, R. After the deluge: Plant revival post-flooding. Trends Plant Sci. 2019, 24, 443–454. [Google Scholar] [CrossRef]
- Vervuren, P.J.A.; Blom, C.W.P.M.; de Kroon, H. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 2003, 91, 135–146. [Google Scholar] [CrossRef]
- Horiguchi, G.; Nemoto, K.; Yokoyama, T.; Hirotsu, N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis. AoB Plants 2019, 11, plz009. [Google Scholar] [CrossRef]
- Mommer, L.; Pedersen, O.; Visser, E.J.W. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell Environ. 2004, 27, 1281–1287. [Google Scholar] [CrossRef]
- Pezeshki, S.R. Wetland plant responses to soil flooding. Environ. Exp. Bot. 2001, 46, 299–312. [Google Scholar] [CrossRef]
- Gibbs, J.; Greenway, H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 2003, 30, 1–47. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef]
- He, J.B.; Bögemann, G.M.; van de Steeg, H.M.; Rijnders, J.G.H.M.; Voesenek, L.A.C.J.; Blom, C.W.P.M. Survival tactics of Ranunculus species in river floodplains. Oecologia 1999, 118, 1–8. [Google Scholar] [CrossRef]
- Das, K.K.; Sarkar, R.K.; Ismail, A.M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 2005, 168, 131–136. [Google Scholar] [CrossRef]
- Sauter, M. Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften 2000, 87, 289–303. [Google Scholar] [CrossRef]
- Striker, G.G. Time is on our side: The importance of considering a recovery period when assessing flooding tolerance in plants. Ecol. Res. 2012, 27, 983–987. [Google Scholar] [CrossRef]
- Chen, X.; Visser, E.J.W.; de Kroon, H.; Pierik, R.; Voesenek, L.A.C.J.; Huber, H. Fitness consequences of natural variation in flooding-induced shoot elongation in Rumex palustris. New Phytol. 2011, 190, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, D.; Hesselink, A.; Pierik, R.; Ammerlaan, J.M.H.; Bailey-Serres, J.; Visser, E.J.W.; Pedersen, O.; van Zanten, M.; Vreugdenhil, D.; Jamar, D.C.L.; et al. Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol. 2011, 190, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Nabben, R.H.M.; Blom, C.W.P.M.; Voesenek, L.C.J. Resistance to complete submergence in Rumex species with different life histories: The influence of plant size and light. New Phytol. 1999, 144, 313–321. [Google Scholar] [CrossRef]
- Akman, M.; Bhikharie, A.V.; Mclean, E.H.; Boonman, A.; Visser, E.J.W.; Schranz, M.E.; van Tienderen, P.H. Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Ann. Bot. 2012, 109, 1263–1276. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Zhang, X.; Niu, H.; Lin, F.; Ayi, Q.; Wan, B.; Ren, X.; Su, X.; Shi, S.; Liu, S.; et al. Differential growth responses of Alternanthera philoxeroides as affected by submergence depths. Front. Plant Sci. 2022, 13, 883800. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Ren, X.; Lin, F.; Niu, H.; Ayi, Q.; Wan, B.; Zeng, B.; Zhang, X. Stem elongation and gibberellin response to submergence depth in clonal plant Alternanthera philoxeroides. Front. Plant Sci. 2024, 15, 1348080. [Google Scholar] [CrossRef]
- Wang, H.F.; Zeng, B.; Li, Y.; Qiao, P.; Ye, X.; Luo, F. Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir, China. J. Plant Ecol. 2008, 32, 977–984. (In Chinese) [Google Scholar]
- Voesenek, L.A.C.J.; van Veen, H.; Sasidharan, R. Learning from nature: The use of non-model species to identify novel acclimations to flooding stress. AoB Plants 2014, 6, plu016. [Google Scholar] [CrossRef]
- Bercu, R. Structural aspects of Alisma plantago-aquatica L. (Alismataceae). Ann. West Univ. Timişoara Ser. Biol. 2017, 20, 179–184. [Google Scholar]
- Jung, J.; Lee, S.C.; Choi, H.K. Anatomical patterns of aerenchyma in aquatic and wetland plants. J. Plant Biol. 2008, 51, 428–439. [Google Scholar] [CrossRef]
- Ryser, P.; Gill, H.K.; Byrne, C.J. Constraints of root response to waterlogging in Alisma triviale. Plant Soil. 2011, 343, 247–260. [Google Scholar] [CrossRef]
- Săndulescu, E.; Oltenacu, N.; Stavrescu, B.M. Morphological characterization of Alisma plantago-aquatica L. (Alismataceae): A case study and literature review. Sci. Pap. Ser. A Agron. 2017, LX, 526–529. [Google Scholar]
- Wei, S.; Li, P.; Yuan, L.; Li, W.; Jiang, H. Leaf structure and inorganic carbon acquisition strategies of heteroblastic aquatic plants at different stages of development. Plant Sci. J. 2022, 40, 544–552. [Google Scholar]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1992; Volume 8, p. 140. [Google Scholar]
- Savinykh, N.P.; Shabalkina, S.V.; Lelekova, E.V. Biomorphological adaptations of helophytes. Contemp. Probl. Ecol. 2015, 8, 550–559. [Google Scholar] [CrossRef]
- Lin, W.; Sun, F.; Zhang, Y.; Xu, X.; Lu, X.; Li, L.; Xu, R. Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics. Sci. Rep. 2019, 9, 12310. [Google Scholar] [CrossRef]
- Shu, Z.; Pu, J.; Chen, L.; Zhang, Y.; Rahman, K.; Qin, L.; Zheng, C. Alisma orientale: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Am. J. Chin. Med. 2016, 44, 227–251. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Chen, H.; Zhao, Y. Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: A review. J. Ethnopharmacol. 2014, 158, 373–387. [Google Scholar] [CrossRef]
- Kordyum, Y.L.; Kozeko, L.Y.; Ovcharenko, Y.V. Phenotypic plasticity of aerial-aquatic plants Alisma plantago-aquatica L. and Sium latifolium L.: Structural and molecular aspects. Botanica 2012, 3, 11–16. [Google Scholar]
- Ovrutska, I.I. Callose content in cell walls of leaf epidermis and mesophyll in Alisma plantago-aquatica L. plants growing in different conditions of water supply. Cytol. Genet. 2014, 48, 92–98. [Google Scholar] [CrossRef]
- Šraj-Kržič, N.; Pongrac, P.; Klemenc, M.; Kladnik, A.; Regvar, M.; Gaberščik, A. Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat. Bot. 2006, 85, 331–336. [Google Scholar] [CrossRef]
- Sculthorpe, C.D. The Biology of Aquatic Vascular Plants; Edward Arnold: London, UK, 1967; pp. 67–68. [Google Scholar]
- Striker, G.G.; Casas, C.; Kuang, X.; Grimoldi, A.A. No escape? Costs and benefits of leaf de-submergence in the pasture grass Chloris gayana under different flooding regime. Funct. Plant Biol. 2017, 44, 899–906. [Google Scholar] [CrossRef]
- Voesenek, L.A.C.J.; Blom, C.W.P.M. Growth responses of Rumex species in relation to submergence and ethylene. Plant Cell Environ. 1989, 12, 433–439. [Google Scholar] [CrossRef]
- Mommer, L.; Visser, E.J.W. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. 2005, 96, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Setter, T.L.; Laureles, E.V. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J. Exp. Bot. 1996, 47, 1551–1559. [Google Scholar] [CrossRef]
- Nurrahma, A.H.; Yabuta, S.; Junaedi, A.; Sakagami, J. Analysis of non-structural carbohydrate in relation with shoot elongation of rice under complete submergence. Sustainability 2021, 13, 670. [Google Scholar] [CrossRef]
- Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef]
- van Eck, W.H.J.M.; van de Steeg, H.M.; Blom, C.W.P.M.; de Kroon, H. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 2004, 107, 393–405. [Google Scholar] [CrossRef]
- di Bella, C.E.; Kotula, L.; Striker, G.G.; Colmer, T.D. Submergence tolerance and recovery in Lotus: Variation among fifteen accessions in response to partial and complete submergence. J. Plant Physiol. 2020, 249, 153180. [Google Scholar] [CrossRef]
- Ridge, I. Ethylene and growth control in amphibious plants. In Plant Life in Aquatic and Amphibious Habitats; Crawford, R.M.M., Ed.; Blackwell Scientific Publications: Oxford, UK, 1987; pp. 53–76. [Google Scholar]
- Hilty, J.; Muller, B.; Pantin, F.; Leuzinger, S. Plant growth: The what, the how, and the why. New Phytol. 2021, 232, 25–41. [Google Scholar] [CrossRef]
- Sarkar, R.K.; Reddy, J.N.; Sharma, S.G.; Ismail, A.M. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr. Sci. 2006, 91, 899–906. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Gautam, P.; Lal, B.; Raja, R.; Tripathi, R.; Shahid, M.; Baig, M.J.; Puree, C.; Mohanty, S.; Nayak, A.K. Effect of simulated flash flooding on rice and its recovery after flooding with nutrient management strategies. Ecol. Eng. 2015, 77, 250–256. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ram, P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 2003, 91, 227–241. [Google Scholar] [CrossRef] [PubMed]
Periods | Duration of Submergence (ds) | ||||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |
At the end of submergence | 100% | 100% | 100% | 100% | 100% |
At the end of recovery | 100% | 100% | 100% | 100% | 87.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, J.; Lin, F.; Liao, L.; Hu, Q.; Xu, L.; Chen, L.; Cao, T.; Zhong, A. Effects of Complete Submergence on Growth, Survival and Recovery Growth of Alisma orientale (Samuel.) Juz. Plants 2024, 13, 3189. https://doi.org/10.3390/plants13223189
Liu S, Liu J, Lin F, Liao L, Hu Q, Xu L, Chen L, Cao T, Zhong A. Effects of Complete Submergence on Growth, Survival and Recovery Growth of Alisma orientale (Samuel.) Juz. Plants. 2024; 13(22):3189. https://doi.org/10.3390/plants13223189
Chicago/Turabian StyleLiu, Songping, Jingrui Liu, Feng Lin, Libing Liao, Qian Hu, Lei Xu, Ludan Chen, Te Cao, and Aiwen Zhong. 2024. "Effects of Complete Submergence on Growth, Survival and Recovery Growth of Alisma orientale (Samuel.) Juz." Plants 13, no. 22: 3189. https://doi.org/10.3390/plants13223189