Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L.
Abstract
:1. Introduction
2. Results
2.1. Changes in Primary Metabolites in Tea Leaves Under Varying Levels of T. elongatus Infestation
2.2. Changes in Secondary Metabolites in Tea Leaves Under Varying Levels of T. elongatus Infestation
2.3. Gene Expression in the Phenylpropanoid Pathway Changed with Varying Levels of T. elongatus Infestation
2.4. Expression of Key Genes Related to Insect Resistance Hormones
3. Discussion
3.1. T. elongatus Infestation Suppresses Primary Metabolism but Enhances Antioxidant Defense
3.2. T. elongatus Infestation Preferentially Up-regulates the Expression of Genes Involved in Lignin Biosynthesis over Flavonoid Biosynthesis
3.3. Tea Plants Respond to T. elongatus Infestation by Activating SA and JA Signaling Pathways
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Determination of Total Flavonoid Content
4.3. Determination of Total Lignin Content
4.4. Quantitative Real-Time PCR Analysis
4.5. Untargeted and Targeted Flavonoid Metabolomics Analysis in Tea Leaves
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhyay, M.; Mondal, T.K.; Chand, P.K. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): A review. Plant Cell Rep. 2016, 35, 255–287. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Saha, S.; Dasgupta, N.; Kumar, R.; Sengupta, C.; Das, S. Ecophysiological traits differentially modulate secondary metabolite accumulation and antioxidant properties of tea plant [Camellia sinensis (L.) O. Kuntze]. Sci. Rep. 2021, 11, 2795. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, S.; Dai, J.G.; Wang, L.; Xu, Y.; Peng, X.Y.; Xie, X.F.; Peng, C. Molecular mechanisms and applications of tea polyphenols: A narrative review. J. Food Biochem. 2021, 45, e13910. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Z.; Zhou, Y.H.; Wu, Y.L.; Dai, X.L.; Liu, Y.J.; Qian, Y.M.; Li, M.Z.; Jiang, X.L.; Wang, Y.S.; Gao, L.P.; et al. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. J. Agric. Food Chem. 2018, 66, 4281–4293. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.T.; Du, W.K.; Qian, X.N.; Wang, K.; Luo, L.X.; Zhang, X.Y.; Deng, Y.N.; Li, B.; Gao, T.; Zhang, M.T.; et al. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. Plant Cell Environ. 2024, 47, 682–697. [Google Scholar] [CrossRef]
- Mu, D.; Pan, C.Y.; Qi, Z.H.; Qin, H.G.; Li, Q.; Liang, K.X.; Rao, Y.C.; Sun, T.Z. Multivariate analysis of volatile profiles in tea plant infested by tea green leafhopper Empoasca onukii Matsuda. Plant Growth Regul. 2021, 95, 111–120. [Google Scholar] [CrossRef]
- Wang, W.L.; Wang, Y.X.; Li, H.; Liu, Z.W.; Cui, X.; Zhuang, J. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biol. 2019, 19, 36. [Google Scholar] [CrossRef]
- Liu, N.N.; Wang, Y.Y.; Li, K.Y.; Li, C.Y.; Liu, B.; Zhao, L.; Zhang, X.F.; Qu, F.F.; Gao, L.P.; Xia, T.; et al. Transcriptional analysis of tea plants (Camellia sinensis) in response to salicylic acid treatment. J. Agric. Food Chem. 2023, 71, 2377–2389. [Google Scholar] [CrossRef]
- Chezem, W.R.; Memon, A.; Li, F.S.; Weng, J.K.; Clay, N.K. SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis. Plant Cell. 2017, 29, 1907–1926. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Sun, W.; Zhang, T. Plant cell walls: Emerging targets of stomata engineering to improve photosynthesis and water use efficiency. New Crops 2024, 1, 100021. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Yue, J.Q.; Yang, H.B.; Zhu, C.H.; Zhu, F.; Li, J.X.; Xu, R.W.; Gao, J.Y.; Zhou, D.G.; Deng, X.X.; et al. Integration of metabolome, histochemistry and transcriptome analysis provides insights into lignin accumulation in oleocellosis-damaged flavedo of citrus fruit. Postharvest Biol. Technol. 2021, 172, 111362. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Tian, C.; Wang, X.H.; Zhou, L.J.; Jiang, J.F.; Wang, L.K.; Chen, F.D.; Chen, S.M. Molecular module of CmMYB15-like-Cm4CL2 regulating lignin biosynthesis of chrysanthemum (Chrysanthemum morifolium) in response to aphid (Macrosiphoniella sanborni) feeding. New Phytol. 2023, 237, 1776–1793. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, V.V.; Haukioja, E.; Ossipova, S.; Hanhimäki, S.; Pihlaja, K. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Syst. Ecol. 2001, 29, 223–240. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.Q.; Yuan, D.Y.; Duan, M.J.; Liu, Y.L.; Shen, Z.J.; Yang, C.Y.; Qiu, Z.Y.; Liu, D.M.; Wen, P.Z.; et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc. Natl. Acad. Sci. USA 2020, 117, 271–277. [Google Scholar] [CrossRef]
- Liu, F.; Xi, M.; Liu, T.; Wu, X.; Ju, L.; Wang, D. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 2024, 1, 100005. [Google Scholar] [CrossRef]
- Qiu, Z.B.; Guo, J.L.; Zhu, A.J.; Zhang, L.; Zhang, M.M. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 2014, 104, 202–208. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.P.; Zhang, L.; Yan, P.; Ahammed, G.J.; Han, W.Y. Methyl salicylate enhances flavonoid biosynthesis in tea leaves by stimulating the phenylpropanoid pathway. Molecules 2019, 24, 362. [Google Scholar] [CrossRef]
- Van Poecke, R.M.P.; Dicke, M. Indirect defence of plants against herbivores: Using Arabidopsis thaliana as a model plant. Plant Biol. 2004, 6, 387–401. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Chen, J.L.; Cheng, D.F.; Sun, J.R.; Liu, Y.; Tian, Z. Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot. 2009, 28, 435–442. [Google Scholar] [CrossRef]
- Sehr, E.M.; Agusti, J.; Lehner, R.; Farmer, E.E.; Schwarz, M.; Greb, T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010, 63, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Denness, L.; McKenna, J.F.; Segonzac, C.; Wormit, A.; Madhou, P.; Bennett, M.; Mansfield, J.; Zipfel, C.; Hamann, T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011, 156, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.C.; Horta, M.; Neves, D.; Cravador, A. Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2006, 69, 62–72. [Google Scholar] [CrossRef]
- Gális, I.; Simek, P.; Narisawa, T.; Sasaki, M.; Horiguchi, T.; Fukuda, H.; Matsuoka, K. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. Plant J. 2006, 46, 573–592. [Google Scholar] [CrossRef]
- Deng, W.W.; Zhang, M.; Wu, J.Q.; Jiang, Z.Z.; Tang, L.; Li, Y.Y.; Wei, C.L.; Jiang, C.J.; Wan, X.C. Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. J. Plant Physiol. 2013, 170, 272–282. [Google Scholar] [CrossRef]
- Bai, Y.C.; Yang, C.Q.; Halitschke, R.; Paetz, C.; Kessler, D.; Burkard, K.; Gaquerel, E.; Baldwin, I.T.; Li, D. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science 2022, 375, eabm2948. [Google Scholar] [CrossRef]
- Shah, B.; Zhang, Y.T. Leafhoppers and their morphology, biology, ecology and contribution in ecosystem: A review paper. Int. J. Entomol. Res. 2018, 3, 200–203. [Google Scholar]
- Li, S.; Yang, C.; Yang, W.; Zhou, Y.F.; Zhang, Y.B.; Meng, Z.H. Biological characteristics of the tea penthimine leafhopper, Chanohirata theae (Matsumura). Plant Prot. 2018, 44, 156–162. [Google Scholar]
- Bian, L.; Cai, X.M.; Luo, Z.X.; Li, Z.Q.; Xin, Z.J.; Chen, Z.M. Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves. J. Econ. Entomol. 2018, 111, 629–636. [Google Scholar] [CrossRef]
- Qin, D.Z.; Zhang, L.; Xiao, Q.; Dietrich, C.; Matsumura, M. Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese Specimens. PLoS ONE 2015, 10, e139202. [Google Scholar] [CrossRef]
- Zust, T.; Agrawal, A.A. Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annu. Rev. Plant Biol. 2017, 68, 513–534. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, G.J.; Li, Z.; Chen, J.Y.; Dong, Y.F.; Qu, K.H.; Guo, T.M.; Wang, F.H.; Liu, A.R.; Chen, S.C.; Li, X. Reactive oxygen species signaling in melatonin-mediated plant stress response. Plant Physiol. Biochem. 2024, 207, 108398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Chen, S.; Wang, S.S.; Shan, W.N.; Wang, X.X.; Lin, Y.Z.; Su, F.; Yang, Z.B.; Yu, X.M. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: A multi-omics study. Front. Plant Sci. 2020, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- He, Y.F.; Li, X.; Xie, Y.F. Research progress in sugar signal and its regulation of stress in plants. Plant Physiol. J. 2016, 52, 241–249. [Google Scholar]
- Asim, M.; Zhang, Y.; Sun, Y.G.; Guo, M.; Khan, R.; Wang, X.L.; Hussain, Q.; Shi, Y. Leaf senescence attributes: The novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormones signaling nodes. Crit. Rev. Biotechnol. 2023, 43, 1092–1110. [Google Scholar] [CrossRef]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Zhang, R.R.; Tian, Y.Y.; Lun, X.Y.; Cao, Y.; Zhang, X.Z.; Jin, M.N.; Guan, F.Y.; Wang, L.P.; Zhao, Y.H.; Zhang, Z.Q. iTRAQ-based quantitative proteomic analysis of defense responses of two tea cultivars to Empoasca onukii Matsuda feeding. Beverage Plant Res. 2023, 3, e006. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Jin, J.Y.; Gao, T.; Zhang, N.; Jing, T.T.; Wang, J.M.; Ban, Q.Y.; Schwab, W.; Song, C.K. Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Front. Plant Sci. 2019, 10, 1675. [Google Scholar] [CrossRef]
- Santino, A.; Taurino, M.; De Domenico, S.; Bonsegna, S.; Poltronieri, P.; Pastor, V.; Flors, V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 2013, 32, 1085–1098. [Google Scholar] [CrossRef]
- Fonseca, S.; Chico, J.M.; Solano, R. The jasmonate pathway: The ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 2009, 12, 539–547. [Google Scholar] [CrossRef]
- Grinberg-Yaari, M.; Alagarmalai, J.; Lewinsohn, E.; Perl-Treves, R.; Soroker, V. Role of jasmonic acid signaling in tomato defense against broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae). Arthropod -Plant Interact. 2015, 9, 361–372. [Google Scholar] [CrossRef]
- Xiao, Y.Y.; Tan, H.B.; Huang, H.T.; Yu, J.Z.; Zeng, L.T.; Liao, Y.Y.; Wu, P.; Yang, Z.Y. Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chem. 2022, 394, 133460. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.T.; Du, W.K.; Gao, T.; Wu, Y.; Zhang, N.; Zhao, M.Y.; Jin, J.Y.; Wang, J.M.; Schwab, W.; Wan, X.C.; et al. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell Environ. 2021, 44, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Ye, M.; Li, X.W.; Lin, S.B.; Sun, X.L. The jasmonic acid pathway positively regulates the polyphenol oxidase-based defense against tea geometrid caterpillars in the tea plant (Camellia sinensis). J. Chem. Ecol. 2020, 46, 308–316. [Google Scholar] [CrossRef]
- Doostkam, M.; Sohrabi, F.; Modarresi, M.; Kohanmoo, M.A.; Bayram, A. Genetic variation of cucumber (Cucumis sativus L.) cultivars to exogenously applied jasmonic acid to induce resistance to Liriomyza sativae. Arthropod-Plant Interact. 2023, 17, 289–299. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C.M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef]
- Shigenaga, A.M.; Argueso, C.T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 2016, 56, 174–189. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ge, S.B.; Ahammed, G.J.; Gao, H.N.; Shen, K.Y.; Wang, Q.Y.; Wang, W.L.; Chen, S.C.; Li, X. Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots. Plant Physiol. Biochem. 2024, 208, 108468. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, Y.; Yamamoto, N.; Hattori, T.; Sakamoto, M.; Umezawa, T. High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol. 2009, 26, 337–340. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhu, L.; Jia, W.; Wang, Q.; Zhuang, P.; Wan, X.; Ren, Y.; Zhang, Y. Nontargeted metabolomics-based mapping urinary metabolic fingerprints after exposure to acrylamide. Ecotoxicol. Environ. Saf. 2021, 224, 112625. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhou, X.; Hu, Q.; Wang, Q.; Zhou, Y.; Yu, J.; Ge, S.; Zhang, L.; Guo, H.; Tang, M.; et al. Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. Plants 2025, 14, 260. https://doi.org/10.3390/plants14020260
Wang W, Zhou X, Hu Q, Wang Q, Zhou Y, Yu J, Ge S, Zhang L, Guo H, Tang M, et al. Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. Plants. 2025; 14(2):260. https://doi.org/10.3390/plants14020260
Chicago/Turabian StyleWang, Wenli, Xiaogui Zhou, Qiang Hu, Qiuhong Wang, Yanjun Zhou, Jingbo Yu, Shibei Ge, Lan Zhang, Huawei Guo, Meijun Tang, and et al. 2025. "Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L." Plants 14, no. 2: 260. https://doi.org/10.3390/plants14020260
APA StyleWang, W., Zhou, X., Hu, Q., Wang, Q., Zhou, Y., Yu, J., Ge, S., Zhang, L., Guo, H., Tang, M., & Li, X. (2025). Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. Plants, 14(2), 260. https://doi.org/10.3390/plants14020260