Microgreens: Functional Food for Nutrition and Dietary Diversification
Abstract
:1. Introduction
2. Historical Evolution of Microgreens
3. Market Trends for Microgreens
4. Popular Crops Used for Growing Microgreens
5. Nutritional Importance
Nutritional Components | Microgreens | References |
---|---|---|
Macro- and micro-minerals (Ca, Mg, K, Fe, Zn, Mn, Cu, Se, and Mo) | Lettuce | [11] |
Arugula, Broccoli, Brussel Sprouts, Chinese Cabbage, Cabbage Green, Cabbage Red, Cabbage Savoy, Cauliflower, Collard, Kale Chinese, Kale Red, Kale Tuscan, Kohlrabi Purple, Komatsuna Red, Mizuna, Mustard Dijon, Mustard Red, Pak Choi, Peppercress, Radish China Rose, Radish Daikon, Radish Red, Radish Ruby, Rapini, Rutabaga, Tatsoi, Turnip, Upland Cress, Wasabi, Watercress | [81] | |
Kale | [82] | |
Broccoli | [83,84] | |
Basil, Swiss Chard, Rocket | [77] | |
Chicory, Lettuce, Broccoli | [85] | |
Bottle Gourd, Cucumber, Pumpkin, Amaranthus, Poi, Jute, Water Spinach, Radish, Palak | [65] | |
Broccoli, Curly Kale, Red Mustard, Radish | [62] | |
Coriander, Kohlrabi, Pak Choi, Cress, Komatsuna, Mibuna, Mustard, Radish, Tatsoi, Green and Purple Basil, Jute, Swiss Chard | [78,86] | |
Lettuce | [79] | |
Arugula, Broccoli, Red Cabbage, Red Beet, Red Amaranth, Pea | [63] | |
Dill, Fenugreek, Red Amaranth, Green Amaranth, Spinach | [87] | |
Celery | [88] | |
Anise, Chervil, Caraway, Dill | [89] | |
Black Gram, Mung bean, Chickpea | [64] | |
Green Gram, Horse Gram, Mustard, Amaranthus, Ragi, Wheat | [7] | |
Pea, Sunflower | [90] | |
Vitamins (C, K, E) | Arugula, Beet, Celery, China Rose Radish, Opal Radish, Green Daikon Radish, Cilantro/Coriander, Garnet Amaranth, Pea, Green Basil, Magenta Spinach, Mizuna, Opal Basil, Peppercress, Popcorn Shoots/Maize, Purple Kohlrabi, Purple Mustard, Red Mustard, Red Cabbage, Red Orach, Red Sorrel, Sorrel, Wasabi | [4] |
Bottle Gourd, Cucumber, Pumpkin, Amaranthus, Poi, Jute, Water Spinach, Radish, Palak | [65] | |
Coriander, Kohlrabi, Pak Choi, Cress, Komatsuna, Mibuna, Mustard, Radish, Tatsoi, Green and Purple Basil, Jute, Swiss Chard | [78,86] | |
Spinach, Carrot, Mustard, Radish, Roselle, Onion, Fenugreek, Sunflower, French Basil, Fennel | [67] | |
Lettuce | [79] | |
Broccoli | [84,91] | |
Broccoli, Daikon, Mustard, Arugula, Watercress | [92] | |
Alfalfa, Red Cabbage, Yellow Beet, Fennel | [93] | |
Green Gram, Horse Gram, Mustard, Amaranthus, Ragi, Wheat | [7] | |
Mung bean, Lentil, Red Radish, Pearl Millet, Mustard, Red Cabbage | [17] | |
Lutein | Basil, Parsley, Mustard, Kohlrabi, Mizuna | [94,95] |
Amaranth, Cress, Mizuna, Purslane | [96] | |
Cabbage, Radish | [41] | |
Neoxanthin, violaxanthin | Cabbage, Radish | [41] |
Caffeic acid and rosmarinic acid | Red Basil | [97] |
Plant pigments (chlorophyll, carotenoids, anthocyanins) | Buckwheat | [98] |
Arugula, Beet, Celery, China Rose Radish, Opal Radish, Green Daikon Radish, Cilantro/Coriander, Garnet Amaranth, Pea, Green Basil, Magenta Spinach, Mizuna, Opal Basil, Peppercress, Popcorn Shoots/Maize, Purple Kohlrabi, Purple Mustard, Red Mustard, Red Cabbage, Red Orach, Red Sorrel, Sorrel, Wasabi | [4] | |
Red Cabbage, Purple Kohlrabi, Red and Purple Mustard, Mizuna | [99,100] | |
Chicory, Lettuce, Broccoli | [85] | |
Wheat, Barley | [101] | |
Coriander, Kohlrabi, Pak Choi, Cress, Komatsuna, Mibuna, Mustard, Radish, Tatsoi, Green and Purple Basil, Jute, Swiss Chard | [78,86] | |
Spinach, Carrot, Mustard, Radish, Roselle, Onion, Fenugreek, Sunflower, French Basil, Fennel | [67] | |
Lettuce | [79] | |
Broccoli | [84,91,102] | |
Broccoli, Daikon, Mustard, Arugula, Watercress | [92] | |
Dill, Fenugreek, Red Amaranth, Green Amaranth, Spinach | [87] | |
Green Basil, Red Basil, Rocket | [103] | |
Flaxseed | [32] | |
Celery | [88] | |
Anise, Chervil, Caraway, Dill | [89] | |
Kale, Swiss Chard, Arugula, Pak Choi | [104] | |
Black Gram, Mung bean, Chickpea | [64] | |
Alfalfa, Red Cabbage, Yellow Beet, Fennel | [93] | |
Green Gram, Horse Gram, Mustard, Amaranthus, Ragi, Wheat | [7] | |
Radish, Savoy Cabbage | [105] | |
Pea, Sunflower | [90] | |
Mung bean, Lentil, Red Radish, Pearl Millet, Mustard, Red Cabbage | [17] | |
Flaxseed, Radish, Broccoli, Cabbage, Pak Choi, Beetroot, Red Amaranthus | [33] | |
Phytochemicals (polyphenols, flavonoids, antioxidant activity) | Buckwheat | [98] |
Red Cabbage, Purple Kohlrabi, Red and Purple Mustard, Mizuna | [99,100] | |
Chicory, Lettuce, Broccoli | [99] | |
Coriander, Kohlrabi, Pak Choi, Cress, Komatsuna, Mibuna, Mustard, Radish, Tatsoi, Green and Purple Basil, Jute, Swiss Chard | [78,86] | |
Bottle Gourd, Cucumber, Pumpkin, Amaranthus, Poi, Jute, Water Spinach, Radish, Palak | [65] | |
Finger Millet, Green peas, Sesame | [42] | |
Soybean | [106] | |
Chickpea, Mung bean | [15] | |
Broccoli | [91] | |
Beet, Amaranthus | [107] | |
Broccoli, Daikon, Mustard, Arugula, Watercress | [92] | |
Green Basil, Red Basil, Rocket | [103] | |
Flaxseed | [32] | |
Kale, Swiss Chard, Arugula, Pak Choi | [104] | |
Anise, Chervil, Caraway, Dill | [89] | |
Black Gram, Mung bean, Chickpea | [64] | |
Alfalfa, Red Cabbage, Yellow Beet, Fennel | [93] | |
Radish, Savoy Cabbage | [105] | |
Mung bean, Lentil, Red Radish, Pearl Millet, Mustard, Red Cabbage | [17] | |
Mustard | [108] | |
Flaxseed, Radish, Broccoli, Cabbage, Pak Choi, Beetroot, Red Amaranthus | [33] |
6. Growing Medium for Microgreens Cultivation
Substrates | Microgreens | References |
---|---|---|
Soil | Arugula, Beet, Celery, Opal Radish, Cilantro/Coriander, Garnet Amaranth, Pea, Green Basil, Magenta Spinach, Mizuna, Opal Basil, Peppercress, Popcorn Shoots/Maize, Purple Kohlrabi, Purple Mustard, Red Mustard, Red Cabbage, Red Orach, Red Sorrel, Sorrel, Wasabi | [4] |
Cabbage | [99] | |
Cauliflower | [125] | |
Chinese Spinach, Joseph’s Coat | [126] | |
Lettuce | [11] | |
Chinese Cabbage | [127] | |
Wheat, Barley | [101] | |
Red Amaranthus | [114] | |
Tartary Buckwheat | [46] | |
Barnyard Millet | [80] | |
Potting soil consisting of peat moss, vermiculite, perlite, and bark (4.5:1.5:1.5:2.5) | Buckwheat | [128] |
Soil and cocopeat | Beetroot, Red Amaranthus, Flax, Cabbage, Broccoli, Pak Choi, Radish | [33] |
Mung bean, Adzuki Bean, Chickpea, Coriander, Fenugreek, Spinach, Mustard | [129] | |
Soil, water, and cocopeat | Fenugreek, Amaranth, Fennel, Spinach, Mint | [116] |
Black Gram, Mung bean, Chickpea | [117] | |
Fenugreek, Mung bean, Cowpea, Horse Gram, Wheat, Sorghum | [130] | |
Water | Radish | [120] |
Soil, sphagnum moss, cocopeat, vermiculite, perlite | Cabbage, Radish, Beetroot, Fenugreek, Palak, Basil, Green Gram, Peas, Lettuce, Wheat, Sunflower, Cucumber, Amaranthus | [131] |
Sterile sand, cocopeat, coir mat, tissue paper, newspaper | Wheat, Ragi, Green Gram, Horse Gram, Amaranthus, Mustard | [7] |
Coconut fiber and cellulose sponge | Radish, Savoy Cabbage | [105] |
Commercial peat and perlite mix, coconut coir, spent mushroom compost, organic waste compost | Pea, Radish | [132] |
Sphagnum peat | Kale | [133] |
Hydroponic | Table Beet | [121] |
Green Daikon Radish, China Rose Radish | [4] | |
Broccoli | [82,134] | |
Radish | [135] | |
Basil, Swiss Chard, Rocket | [77] | |
Chicory, Lettuce | [76] | |
Wheat | [122] | |
Scallions, Basil, Cilantro | [136] | |
Wheat, Lentil | [112] | |
Hydroponic with pine tree fibers | Mustard, Radish, Kale, Broccoli | [62] |
Hydroponics system with polyethylene terephthalate fiber pads | Cauliflower, Broccoli | [123] |
Hydroponics system with growing pads | Broccoli | [84] |
Aquaponics | Arugula | [111] |
Rockwool | Arugula | [137] |
Mizuna, Arugula, Green Basil, Cress, Radish | [138] | |
Vermiculite | Red Cabbage, Broccoli | [139] |
Coir fiber | Arugula, Broccoli, Beet, Red Cabbage, Red Garnet Amaranth, Pea | [140] |
Cocopeat | Pearl Millet | [21] |
Commercially processed compost and coir dust (1:1/v:v) | Carrot, Kale, Fenugreek, Finger Millet, Green Peas, Green Radish, Lettuce, Mustard, Amaranthus, Sesame | [42] |
Coconut coir, sand, rice husk ash (1:1:1) | Chia | [43] |
Cocopeat and rice husk (1:1) | Carrot, Radish, Spinach | [141] |
Cocopeat, vermiculite, and perlite (2:1:1 w/w) | Bottle Gourd, Cucumber, Poi, Pumpkin, Jute, Amaranthus, Water Spinach, Radish, Palak | [52] |
Cocopeat, vermiculite, and perlite (5:2:1) | Radish White, Radish Pink, Cabbage, Red Cabbage, Mustard, Cauliflower, Turnip, Broccoli, Knolkhol, Garden Cress, Coriander | [72] |
Coconut coir dust and vermiculite (3:1) and white sphagnum peat and vermiculite (3:1) | Radish | [142] |
Coconut fiber, vermiculite, and jute | Green Basil, Red Basil, Rocket | [103] |
Cocopeat, vermiculite, and sand (2:1:1) | Mung bean, Lentil | [16] |
Cocopeat, vermiculite, and sand (1.5:1.5:1) | Mung bean, Lentil, Red Radish, Mustard, PearlMillet, Red Cabbage | [17] |
Peat and perlite mix (70/30) and cellulose mat | Pea, Red Radish, Sunflower, Red Basil | [143] |
Vermicompost | Broccoli | [82] |
Cocopeat, vermicompost, and soil (9:2:1) | Dill, Fenugreek, Red Amaranth, Green Amaranth, Spinach | [87] |
Cocopeat, vermicompost, and powdered leaves and fibers of Synedrellanodiflora (1:1:1) | Beet | [118] |
100% spent oyster mushroom substrate layered with 2 mm of potting soil on top | Arugula, Basil, Catnip, Cilantro, Peppermint | [119] |
Mixed media of vermicast, sawdust, perlite, and mushroom compost (3:2:2:3) | Kale, Swiss Chard, Arugula, Pak Choi | [104] |
Agave fiber, capillary mat, cellulose sponge, coconut fiber, peat moss | Kohlrabi, Pak Choi, Coriander | [86] |
Agro-industrial compost (54% vineyard pruning residues, 46% tomato residues, and 20% coffee as an additive) and peat @ 50:50 | Mizuna, Pak Choi | [144] |
7. Seed Priming and Seeding Density for Microgreens Cultivation
8. Growing Requirements for Microgreens
Microgreens | Growing Conditions | Temperature and Relative Humidity | Light | References |
---|---|---|---|---|
Radish | Controlled growth chamber | 25/18 °C (day/night) | White fluorescent light (150 µmol m−2 s−1, photoperiod 12 h) | [135] |
Chicory, Lettuce, Broccoli | Controlled | 20 °C RH: 85% | - | [85] |
Arugula, Basil, Catnip, Cilantro, Peppermint, Spinach | - | RH: 75% | LED light (1000 lux) 12 h/day | [119] |
Wheat, Barley | - | 19 °C (7–27 °C) RH: 66% (29–100%) | - | [101] |
Broccoli, Kale, Radish, Mustard | Unheated greenhouse | 18 °C RH: 90% | Natural light | [62] |
Bottle Gourd, Cucumber, Pumpkin, Amaranthus, Poi, Jute, Water Spinach, Palak, Radish | Greenhouse | 27 ± 2 °C | - | [65] |
Mizuna, Amaranth, Purslane, Cress | Growthchamber | 22/18 ± 2 °C (day/night) RH: 65–75% | LED light combination red:green:blue (45:10:45%) (300 ± 10 µmol m−2 s−1; photoperiod 12 h) | [96] |
Soybean | - | 25 °C; RH:80% | LED light (photoperiod 12/12 h; intensity 30 μmol m−2 s−1) | [106] |
Amaranth, Coriander, Cress, Green Basil, Purple Basil, Komatsuna, Mibuna, Mizuna, Pak Choi, Purslane, Swiss Chard, Tatsoi | Controlled walk-through climate chamber (phytotron) | 24/18 ± 1 °C (day/night) RH: 60–70% | High-pressure sodium lamps (intensity 420 µmol m−2 s−1; photoperiod 12/12 h) | [161] |
Spinach, Carrot, Mustard, Radish, Roselle, Onion, Fenugreek, Sunflower, French Basil, Fennel | - | 25 ± 5 °C RH: 65 ± 10% | Sunlight (photoperiod 11.5 h; light intensity 2500–4400 lux) | [67] |
Broccoli | Cold greenhouse | 15.4 ± 5.8 °C | Natural light (4.6 to 9.2 MJ·m−2·d−1) | [66] |
Wheat | Growth chamber by controlling light | 25/20 °C, (day/night), RH: 60% | White fluorescence lamp (12 h light/dark; intensity 150 µmol m−2 s−1) | [122] |
Kohlrabi Purple, Cabbage Red, Broccoli, Kale, Cabbage Green, Broccoli, Cauliflower, Kale, Turnip, Rutabaga, Brussel Sprouts, Mustard Red | Controlled growth chambers | RH: 70% | LED light combination red:green:blue (70:10:20) | [160] |
Lettuce | Controlled growth chambers | 24/18 ± 2 °C (day/night) RH: 70/80% ± 5% | LED light (12 h photoperiod; intensity 300 ± 15 μmol m−2 s−1) | [79] |
Arugula, Broccoli, Beet, Red Cabbage, Red Garnet Amaranth, Pea | - | - | LED light (17 h photoperiod; intensity 62 μmol m−2 s−1) | [140] |
Green Basil, Red Basil, Rocket | Controlled growth chambers | 20 °C RH: 60–70% | LED light (intensity 65 µmol m−2 s−1; photoperiod 12/12 h) | [103] |
Scallions, Basil, Cilantro | Growth chambers | 19.7/18.7 °C (day/night) RH: 57.3% | Photoperiod of 16/8 h light/dark, PPFD 210 µmol m−2 s−1 | [136] |
Broccoli | Controlled growth chambers | 22 ± 2 °C RH: 60 ± 5% | LED light (intensity of 50–70 μmol m−2 s−1) (12/12 h light/dark photoperiod) | [102] |
Soybean, Pea, Rocket, Radish | - | 18 °C | LED light (intensity of 270 μmol m−2 s−1) (16/8 h light/dark photoperiod) | [73] |
Basil | Controlled growth chambers | 21/17 ± 2 °C (day/night) RH: 65 ± 5% | HPS and LED light (15 h photoperiod) | [162] |
Lettuce | 20 ± 2 °C RH: 80 ± 5% | HPS and LED light (12 h photoperiod) | ||
Brussels Sprouts | 24/18 ± 2 °C (day/night) RH: 70/80 ± 5% | HPS and LED light (12 h photoperiod) | ||
Tartary Buckwheat | Growth chamber | 22 ± 1 °C | LED light (intensity of 50 μmol m−2 s−1) (16/8 h light/dark photoperiod) | [46] |
Kale, Swiss Chard, Arugula Pak Choi | Greenhouse | 24/22 °C (day/night) RH: 71% | 600 W high pressure sodium lamp (16/8 h day/night) | [104] |
Black Gram, Mung bean, Chickpea | Natural conditions | 31–35 °C and 12–17 °C (max and Min) RH: 71% | Average sunshine and daylight of 7.8 h and 10.6 h | [64] |
Mizuna, Arugula, Green Basil, Cress, Radish | Phytotron | 24/18 ± 1 °C (day/night) RH: 60/70% | Fluorescent lamps 12/12 h photoperiod | [138] |
Radish | Controlled growth chamber | 20 ± 2 °C | 16/8 h day/night | [120] |
Kale | Controlled growth chamber | 21/17 ± 2 °C (day/night) RH: 50–60% | LED light white, blue, and red (16/8 h day/night) | [133] |
Radish, Savoy Cabbage | - | 24/18 ± 2 °C (day/night) RH: 65 ± 5%. | LED light (400–700 nm and an intensity of 300 ± 10 μmol m−2 s−1); 12 h photoperiod | [105] |
Mung bean, Lentil, Red Radish, PearlMillet, Mustard, Red Cabbage | - | 20–30 °C RH: 65–75% | 20 watts LED lamps (16/8 h light/dark) | [17] |
Wheat, Ragi, Green Gram, Horse Gram, Amaranthus, Mustard | Room condition | 29.1 °C RH: 73.23% | - | [7] |
Rain shelter | 32.2 °C RH: 65.03% | |||
Cabbage, Radish | Growth chamber | 24 ± 1 °C/18 ± 2 °C (day/night) | LED light (400–700 nm; intensity: 150–300 μmol m−2 s−1 PPFD); 12 h photoperiod | [46] |
Pearl Millet | - | - | LED (8–10 h) | [21] |
Mizuna, Pak Choi | Controlled growth chamber | 23 °C RH: 75% | Blue/red LED light (14/10 h light/darkness) | [144] |
Beetroot, Red Amaranthus, Cabbage, Flax, Broccoli, Pak Choi, Radish | Growing chamber | 20 ± 2 °C RH: 65 ± 2% | Light intensity 55 μmol m−2 s−1; photoperiod 12/12 h (light/dark) | [33] |
9. Harvesting Time of Various Microgreens Species
Microgreens | Harvesting (DAS) | Reference |
---|---|---|
Amaranthus (Green/Red), Arugula, Basil (Red), Beetroot, Broccoli, Cabbage (Chinese/Green), Carrot, Cauliflower, Chia, Cress, Cucumber, Fenugreek, Flax, Garden Cress, Indian Mustard, Jute, Kale, Kohlrabi, Lentil, Mizuna, Mung bean, Mustard, Pak Choi, Pea, Radish (White/Red), Roselle, Rutabaga, Spinach, Sunflower, Turnip, Water Spinach, Wheat | 6–9 | [6,16,17,33,43,65,67,72,82,90,101,132,137,138,141,143,160,171,172] |
Amaranth, Barley, Barnyard Millet, Basella, Bottle Gourd, Broccoli, Brussels Sprouts, Cabbage (Red/Green), Carrot, Cauliflower, Fenugreek, Knolkhol, Mizuna, Mung bean, Mustard (Green/Red), Onion, Pak Choi, Palak, Pea, Pearl Millet, Pumpkin, Radish (Pink/White), Rocket, Safflower, Soybean, Spinach, Tartary Buckwheat, Turnip | 10–12 | [17,46,65,67,72,73,80,90,101,117,120,122,140,141,144,157,171,173,174] |
Amaranth (green/red), Arugula, Cabbage, Dill, Fennel, Fenugreek, Finger Millet, Basil (French/Green), Kale, Lettuce, Mizuna, Mustard, Pak Choi, Radish, Sesame, Spinach, Swiss Chard, Table Beet | 13–15 | [42,67,87,104,105,121,138,163,170,172] |
Coriander, Mizuna, Savoy Cabbage | 16–18 | [72,105] |
Amaranth, Anise, Arugula, Beet, Broccoli, Caraway, Chervil, Chinese Basil/Perilla, Dill, Lettuce, Peppercress, Purslane, Red Cabbage | 19–21 | [79,89,96,140,169] |
10. Sensory Attributes of Microgreens
11. Food Safety of Microgreens
12. Food Applications of Microgreens
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burlingame, B. Grand challenges in nutrition and environmental sustainability. Front. Nutr. 2014, 1, 4–5. [Google Scholar] [CrossRef]
- Ridgway, E.M.; Lawrence, M.A.; Woods, J. Integrating environmental sustainability considerations into food and nutrition policies: Insights from Australia’s National Food Plan. Front. Nutr. 2015, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Abaajeh, A.R.; Kingston, C.E.; Harty, M. Environmental factors influencing the growth and pathogenicity of microgreens bound for the market: A review. Renew. Agric. Food Syst. 2023, 38, 1–12. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Riggio, G.; Wang, Q.; Kniel, K.; Gibson, K. Microgreens-a review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Priti Sangwan, S.; Kukreja, B.; Mishra, G.P.; Dikshit, H.K.; Singh, A.; Aski, M.; Kumar, A.; Taak, Y.; Stobdan, T.; Das, S. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS ONE 2022, 17, e0268085. [Google Scholar]
- Arya, K.S.; Kutty, M.S.; Pradeepkumar, T. Microgreens of tropical edible-seed species, an economical source of phytonutrients-insights into nutrient content, growth environment and shelf life. Future Foods 2023, 8, 100262. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Srividya, N. Micro-farming of greens: A viable enterprise for enhancing economic, food and nutritional security of farmers. Int. J. Nutr. Agric. Res. 2018, 5, 10–16. [Google Scholar]
- Ebert, A.W. Sprouts and microgreens-novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- Lee, J.; Pill, W.; Cobb, B.; Olszewski, M. Seed treatments to advance greenhouse establishment of beet and chard microgreens. J. Hortic. Sci. Biotechnol. 2004, 79, 565–570. [Google Scholar] [CrossRef]
- Puente, L.; Char, C.; Patel, D.; Thilakarathna, M.S.; Roopesh, M.S. Research trends and development patterns in microgreens publications: A bibliometric study from 2004 to 2023. Sustainability 2024, 16, 6645. [Google Scholar] [CrossRef]
- Wadhawan, S.; Tripathi, J.; Gautam, S. In vitro regulation of enzymatic release of glucose and its uptake by fenugreek microgreen and mint leaf extract. Int. J. Food Sci. Technol. 2017, 53, 320–326. [Google Scholar] [CrossRef]
- Kurian, M.S.; Megha, P.R. Assessment of variation in nutrient concentration and antioxidant activity of raw seeds, sprouts and microgreens of Vigna radiata (L.) Wilczek and Cicer arietinum L. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2020; Volume 2263. [Google Scholar]
- Priti Mishra, G.P.; Dikshit, H.K.; Vinutha, T.; Tontang, M.T.; Stobdan, T.; Sangwan, S.; Aski, M.; Singh, A.; Kumar, R.R.; Tripathi, K.; et al. Diversity in phytochemical composition, antioxidant capacities, and nutrient contents among mungbean and lentil microgreens when grown at plain-altitude region (Delhi) and high-altitude region (Leh-Ladakh), India. Front. Plant Sci. 2021, 12, 1–21. [Google Scholar]
- Dhaka, A.S.; Dikshit, H.K.; Mishra, G.P.; Tontang, M.T.; Meena, N.L.; Kumar, R.R.; Ramesh, S.V.; Narwal, S.; Aski, M.; Thimmegowda, V.; et al. Evaluation of growth conditions, antioxidant potential, and sensory attributes of six diverse microgreens species. Agriculture 2023, 13, 676. [Google Scholar] [CrossRef]
- Sobhanan, A.; Meena, R.; Meena, B.R.; Mishra, G.P. Aloe vera gel coating of Brassica juncea and Lactuca sativa microgreens to reduce microbial rotting and extend postharvest shelf life. J. Mycol. Plant Pathol. 2024, 53, 303–312. [Google Scholar]
- Klopsch, R.; Baldermann, S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Bread enriched with legume microgreens and leaves-ontogenetic and baking-driven changes in the profile of secondary plant metabolites. Front. Chem. 2018, 6, 322. [Google Scholar] [CrossRef]
- Sharma, A.; Rasane, P.; Dey, A.; Singh, J.; Kaur, S.; Dhawan, K.; Kumar, A.; Joshi, H.S. Optimization of a process for a microgreen and fruit based ready to serve beverage. Int. J. Food Stud. 2021, 10, 141–156. [Google Scholar] [CrossRef]
- Yadav, S.; Awasthi, M. Sensory acceptability and nutritional attributes of hummus developed from pearl millet (Bajra) microgreens. Bhartiya Krishi Anusandhan Patrika 2023, 38, 423–425. [Google Scholar] [CrossRef]
- Globe Newswire Europe. Available online: https://www.globenewswire.com/news-release/2023/07/27/2712305/0/en/Microgreens-Market-Revenues-to-Reach-USD-315-billion-by-2028-Market-Size-Share-Forecasts-Trends-Analysis-Report-by-Mordor-Intelligence.html (accessed on 20 September 2024).
- Microgreens Market Share Analysis, Demand, Trends, Growth, Industry, Market Forecast (2024–2031). Available online: https://www.datamintelligence.com (accessed on 15 December 2024).
- Microgreens Market Size. Available online: https://www.knowledge-sourcing.com/report/global-microgreens-market (accessed on 20 December 2024).
- Market Research Report. Available online: https://straitsresearch.com/report/microgreens-market/north-america (accessed on 20 September 2024).
- Treadwell, D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A new specialty crop: HS1164, rev. 9/2020. Edis 2020, 5, 1–3. [Google Scholar]
- Stein, E.W. The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air Soil Water Res. 2021, 14. [Google Scholar] [CrossRef]
- Paraschivu, M.; Cotuna, O.; Sărățeanu, V.; Durău, C.C.; Păunescu, R.A. Microgreens-current status, global market trends and forward statements. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2021, 21, 633–640. [Google Scholar]
- Mishra, G.P.; Priti Dikshit, H.K.; Aski, M.; Sangwan, S.; Stobdan, T.; Singh, A.; Kumar, R.R.; Praveen, S. Microgreens: A novel food for nutritional security. In Conceptualizing Plant-Based Nutrition; Ramesh, S.V., Praveen, S., Eds.; Springer Nature: Singapore, 2022; pp. 123–156. [Google Scholar]
- Microgreens Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). Available online: https://www.mordorintelligence.com/industry-reports/microgreens-market (accessed on 20 September 2024).
- IMARC India Microgreens Market Report (2024–2032). Available online: https://www.imarcgroup.com/india-microgreens-market (accessed on 20 September 2024).
- Puccinelli, M.; Maggini, R.; Angelini, L.G.; Santin, M.; Landi, M.; Tavarini, S.; Castagna, A.; Incrocci, L. Can light spectrum composition increase growth and nutritional quality of Linum usitatissimum L. sprouts and microgreens? Horticulturae 2022, 8, 98. [Google Scholar] [CrossRef]
- Gunjal, M.; Singh, J.; Kaur, J.; Kaur, S.; Nanda, V.; Mehta, C.M.; Bhadariya, V.; Rasane, P. Comparative analysis of morphological, nutritional, and bioactive properties of selected microgreens in alternative growing medium. S. Afr. J. Bot. 2024, 165, 188–201. [Google Scholar] [CrossRef]
- Sanlier, N.; Guler, S.M. The benefits of Brassica vegetables on human health. J. Hum. Health Res. 2018, 1, 1–13. [Google Scholar]
- Di Gioia, F.; Mininni, C.; Santamaria, P. How to grow microgreens? In Microgreens: Novel Fresh and Functional Food to Explore all the Value of Biodiversity; Di Gioia, F., Santamaria, P., Eds.; ECO-Logica: Bari, Italy, 2015; pp. 51–79. [Google Scholar]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Food Engineering Series; Yildiz, F., Wiley, R., Eds.; Springer: Boston, MA, USA, 2017. [Google Scholar]
- Perchonok, M.H.; Cooper, M.R.; Catauro, P.M. Mission to mars: Food production and processing for the final frontier. Ann. Rev. Food Sci. Technol. 2012, 3, 311–330. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Pearlstein, D.J.; Wheeler, R.M.; Johnson, C.M.; Wang, Q.; Fonseca, J.M. Microgreens for home, commercial, and space farming: A comprehensive update of the most recent developments. Annu. Rev. Food Sci. Technol. 2023, 14, 539–562. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; De Pascale, S.; Kyratzis, A.; Rouphael, Y. Microgreens as a component of space life support systems: A cornucopia of functional food. Front. Plant Sci. 2017, 8, 1587. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M. Microgreens for human nutrition in spaceflight. In Annual Meeting of the American Society for Gravitational and Space Research; No. KSC-E-DAA-TN75341; Kennedy Space Center: Denver, CO, USA, 2019. [Google Scholar]
- Amitrano, C.; Paglialunga, G.; Battistelli, A.; De Micco, V.; Del Bianco, M.; Liuzzi, G.; Moscatello, S.; Paradiso, R.; Proietti, S.; Rouphael, Y.; et al. Defining growth requirements of microgreens in space cultivation via biomass production, morpho-anatomical and nutritional traits analysis. Front. Plant Sci. 2023, 14, 1190945. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, G.I.; Gama-Arachchige, N.S.; Karunaratne, A.M. Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon J. Sci. 2019, 48, 91–96. [Google Scholar] [CrossRef]
- Junpatiw, A.; Sangpituk, A. Effects of seed preparation, sowing media, seed sowing rate and harvesting period on the production of chia microgreens. Int. J. GEOMATE 2019, 17, 80–85. [Google Scholar] [CrossRef]
- Corrado, G.; Pannico, A.; Zarrelli, A.; Kyriacou, M.C.; Pascale, S.D.; Rouphael, Y. Macro and trace element mineral composition of six hemp varieties grown as microgreens. J. Food Compos. Anal. 2022, 114, 104750. [Google Scholar] [CrossRef]
- Pannico, A.; Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Carillo, P.; Corrado, G.; Ritieni, A.; Rouphael, Y.; Pascale, S.D. Hemp microgreens as an innovative functional food: Variation in the organic acids, amino acids, polyphenols, and cannabinoids composition of six hemp cultivars. Food Res. Int. 2022, 161, 111863. [Google Scholar] [CrossRef]
- Yan, H.; Li, W.; Chen, H.; Liao, Q.; Xia, M.; Wu, D.; Liu, C.; Chen, J.; Zou, L.; Peng, L.; et al. Effects of storage temperature, packaging material and wash treatment on quality and shelf life of tartary buckwheat microgreens. Foods 2022, 11, 3630. [Google Scholar] [CrossRef]
- Azzouzi, S.; Stratton, C.; Muñoz-Velasco, L.P.; Wang, K.; Fourtassi, M.; Hong, B.Y.; Cooper, R.; Balikuddembe, J.K.; Palomba, A.; Peterson, M.; et al. The impact of the COVID-19 pandemic on healthy lifestyle behaviors and perceived mental and physical health of people living with non-communicable diseases: An international cross-sectional survey. Int. J. Environ. Res. Public Health 2022, 19, 8023. [Google Scholar] [CrossRef] [PubMed]
- Mougeot, L.J.A. Urban agriculture: Definition, presence, potentials and risks. In Growing Cities, Growing Food. Urban Agriculture on the Policy Agenda; Bakker Bakker, N., Dubbeling, M., Gundel, S., Sabel-Koschella, U., de Zeeuw, H., Eds.; Zentralstelle für Ernahrung und Landwirtschaft (ZEL), Food and Agriculture Development Centre: Feldafing, Germany, 2000; pp. 1–42. [Google Scholar]
- Chinnakali, P.; Upadhyay, R.P.; Shokeen, D.; Singh, K.; Kaur, M.; Singh, A.K.; Goswami, A.; Yadav, K.; Pandav, C.S. Prevalence of household-level food insecurity and its determinants in an urban resettlement colony in north India. J. Health Popul. Nutr. 2014, 32, 227–236. [Google Scholar] [PubMed]
- De, K.; Kakar, V. Effects of Monetary Policy on Food Inequality in India. J. Dev. Stud. 2021, 57, 1852–1870. [Google Scholar] [CrossRef]
- Gupta, S.; Seth, P.; Abraham, M.; Pingali, P. COVID-19 and women’s nutrition security: Panel data evidence from rural India. Econ. Politica 2022, 39, 157–184. [Google Scholar] [CrossRef]
- Chaudhary, A.; Krishna, V. Region-specific nutritious, environmentally friendly, and affordable diets in India. One Earth 2021, 4, 531–544. [Google Scholar] [CrossRef]
- Sundarakumar, J.S.; Shahul Hameed, S.K.; SANSCOG Study Team; Ravindranath, V. Burden of vitamin D, vitamin B12 and folic acid deficiencies in an aging, rural Indian community. Front. Public Health 2021, 9, 707036. [Google Scholar] [CrossRef]
- Venkatesh, U.; Sharma, A.; Ananthan, V.A.; Subbiah, P.; Durga, R. Micronutrient’s deficiency in India: A systematic review and meta-analysis. J. Nutr. Sci. 2021, 10, e110. [Google Scholar] [CrossRef]
- Agte, V.; Jahagirdar, M.; Chiplonkar, S. Apparent absorption of eight micronutrients and phytic acid from vegetarian meals in ileostomized human volunteers. Nutrition 2005, 21, 678–685. [Google Scholar] [CrossRef]
- Shankar, B.; Agrawal, S.; Beaudreault, A.R.; Avula, L.; Martorell, R.; Osendarp, S.; Prabhakaran, D.; Mclean, M.S. Dietary and nutritional change in India: Implications for strategies, policies, and interventions. Ann. N. Y. Acad. Sci. 2017, 1395, 49–59. [Google Scholar] [CrossRef]
- Indian Council of Medical Research (ICMR). National Institute of Nutrition Dietary Guidelines for Indians; Indian Council of Medical Research (ICMR): New Delhi, India, 2024; pp. 1–149. [Google Scholar]
- Prithishkumar, I.J.; Sappani, M.; Ranjan, V.; Garg, C.; Mani, T.; Babu, M.; Joy, M.; Rao, B.; Asirvatham, E.S.; Lakshmanan, J. Double burden of malnutrition among women of reproductive age: Trends and determinants over the last 15 years in India. PLoS ONE 2024, 19, e0304776. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- De la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef]
- Johnson, S.A.; Prenni, J.E.; Heuberger, A.L.; Isweiri, H.; Chaparro, J.M.; Newman, S.E.; Uchanski, M.E.; Omerigic, H.M.; Michell, K.A.; Bunning, M.; et al. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Curr. Dev. Nutr. 2021, 5, nzaa180-112. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, B.; Kaur, A.; Yadav, M.P. Impact of growing conditions on proximate, mineral, phenolic composition, amino acid profile, and antioxidant properties of black gram, mung bean, and chickpea microgreens. J. Food Process. Preserv. 2022, 46, e16655. [Google Scholar] [CrossRef]
- Yadav, L.P.; Koley, T.K.; Tripathi, A.; Singh, S. Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agric Res. 2019, 8, 165–175. [Google Scholar] [CrossRef]
- Di Bella, M.C.; Niklas, A.; Toscano, S.; Picchi, V.; Romano, D.; Lo Scalzo, R.; Branca, F. Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy 2020, 10, 782. [Google Scholar] [CrossRef]
- Ghoora, M.D.; Babu, D.R.; Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal. 2020, 91, 103495. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and microgreens: Trends, opportunities, and horizons for novel research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- Lone, J.K.; Pandey, R.; Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon 2024, 10, e25870. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Kaur, S.; Gunjal, M.; Kaur, J.; Nanda, V.; Ullah, R.; Ercisli, S.; Rasane, P. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: A review. Food Chem. X 2024, 23, 101527. [Google Scholar] [CrossRef]
- Singh, N.; Aditika Rani, S.; Chaurasia, O.P. Vegetable microgreens farming in high-altitude region of trans-Himalayas to maintain nutritional diet of Indian troops. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 743–752. [Google Scholar] [CrossRef]
- Truzzi, F.; Whittaker, A.; Roncuzzi, C.; Saltari, A.; Levesque, M.P.; Dinelli, G. Microgreens: Functional food with antiproliferative cancer properties influenced by light. Foods 2021, 10, 1690. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Abdel-Rahim, E.A.; Aly, T.A.; Naguib, A.M.; Khattab, M.S. Barley microgreen incorporation in diet-controlled diabetes and counteracted aflatoxicosis in rats. Exp. Biol. Med. 2022, 247, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Tian, S.; Sun, J.; Pang, X.; Hu, Q.; Li, X.; Lu, Y. Broccoli microgreens have hypoglycemic effect by improving blood lipid and inflammatory factors while modulating gut microbiota in mice with type 2 diabetes. J. Food Biochem. 2022, 46, e14145. [Google Scholar] [CrossRef]
- Renna, M.; Castellino, M.; Leoni, B.; Paradiso, V.M.; Santamaria, P. Microgreens production with low potassium content for patients with impaired kidney function. Nutrients 2018, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritienic, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Pannico, A.; Graziani, G.; El-Nakhel, C.; Giordano, M.; Ritieni, A.; Kyriacou, M.C.; Rouphael, Y. Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus 2020, 27, 41–52. [Google Scholar] [CrossRef]
- Durairajan, M.B.; Sundararajan, V.V.; Kannan, G.; Paul, B.M.; Muniyandi, K.; Thangaraj, P. Elicitation of nutritional, antioxidant, and antidiabetic potential of barnyard millet (Echinochloa esculenta (A. Braun) H. Scholz) sprouts and microgreens through in vitro bio-accessibility assessment. Food Chem. 2024, 441, 138282. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Weber, C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kim, M.J.; Pena-Yewtukhiw, E.M.; Park, S. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. Hortscience 2017, 52, 566–571. [Google Scholar] [CrossRef]
- Kathi, S.; Laza, H.; Singh, S.; Thompson, L.; Li, W.; Simpson, C. Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition. Front. Plant Sci. 2023, 14, 1145992. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Kusumitha, V.N.; Rajasree, V.; Swarnapriya, R.; Uma, D.; Meenakshi, P. Nutrient availability of selected leafy vegetables at micro green stage grown in vertical gardening. J. Pharmacogn. Phytochem. 2021, 10, 2226–2228. [Google Scholar]
- Gharu, H.S.; Sangha, M.K.; Gupta, S.; Pathak, D.; Nara, U. Biochemical evaluation of micro-greens and seeds of Punjab Celery 1 (Apium graveolens L.). Agric. Res. J. 2022, 59, 738–745. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Kyriacou, M.C.; Graziani, G.; Zarrelli, A.; Rouphael, Y.; El-Nakhel, C. Nutritive and phytochemical composition of aromatic microgreen herbs and spices belonging to the Apiaceae family. Plants 2022, 11, 3057. [Google Scholar] [CrossRef] [PubMed]
- Poudel, P.; Di Gioia, F.; Lambert, J.D.; Connolly, E.L. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. Front. Plant Sci. 2023, 14, 1177844. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Nuffer, H.; Feng, J.; Kwan, S.H.; Chen, H.; Tong, X.; Kong, L. Antioxidant properties and sensory evaluation of microgreens from commercial and local farms. Food Sci. Hum. Wellness 2020, 9, 45–51. [Google Scholar] [CrossRef]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small functional foods: Comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods 2021, 10, 427. [Google Scholar] [CrossRef]
- Fabek Uher, S.; Radman, S.; Opačić, N.; Dujmović, M.; Benko, B.; Lagundžija, D.; Mijić, V.; Prša, L.; Babac, S.; Šic Žlabur, J. Alfalfa, cabbage, beet and fennel microgreens in floating hydroponics—Perspective nutritious food? Plants 2023, 12, 2098. [Google Scholar] [CrossRef] [PubMed]
- Samuolienė, G.; Brazaitytė, A.; Viršilė, A.; Jankauskienė, J.; Sakalauskienė, S.; Duchovskis, P. Red light-dose or wavelength dependent photoresponse of antioxidants in herb microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef] [PubMed]
- Craver JK, Gerovac JR, Lopez RG Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within brassica microgreens. J. Am. Soc. Hort. Sci. 2017, 142, 3–12. [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens. Front. Plant Sci. 2019, 10, 1501. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [PubMed]
- Janovská, D.; Štočková, L.; Stehno, Z. Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slov. 2010, 95, 157–162. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, X.; Xiao, Z.; Yu, L.; Pham, Q.; Sun, J.; Chen, P.; Yokoyama, W.; Yu, L.L.; Luo, Y.S.; et al. Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J. Agric. Food Chem. 2016, 64, 9161–9171. [Google Scholar] [CrossRef] [PubMed]
- Niroula, A.; Khatri, S.; Timilsina, R.; Khadka, D.; Khadka, A.; Ojha, P. Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. J. Food Sci. Technol. 2019, 56, 2758–2763. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; He, R.; Shi, R.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 2021, 11, 537. [Google Scholar] [CrossRef]
- Bulgari, R.; Negri, M.; Santoro, P.; Ferrante, A. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Horticulturae 2021, 7, 96. [Google Scholar] [CrossRef]
- Saleh, R.; Gunupuru, L.R.; Lada, R.; Nams, V.; Thomas, R.H.; Abbey, L. Growth and biochemical composition of microgreens grown in different formulated soilless media. Plants 2022, 11, 3546. [Google Scholar] [CrossRef]
- Paglialunga, G.; El Nakhel, C.; Proietti, S.; Moscatello, S.; Battistelli, A.; Formisano, L.; Ciriello, M.; Del Bianco, M.; De Pascale, S.; Rouphael, Y. Substrate and fertigation management modulate microgreens production, quality and resource efficiency. Front. Sustain. Food Syst. 2023, 7, 1222914. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Li, S.; Chen, X.; Lu, C. Comparative analysis of phenolic compound profiles, antioxidant capacities, and expressions of phenolic biosynthesis-related genes in soybean microgreens grown under different light spectra. J. Agric. Food Chem. 2019, 67, 13577–13588. [Google Scholar] [CrossRef]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef] [PubMed]
- Dayarathna, N.N.; Gama-Arachchige, N.S.; Damunupola, J.W.; Xiao, Z.; Gamage, A.; Merah, O.; Madhujith, T. Effect of storage temperature on storage life and sensory attributes of packaged mustard microgreens. Life 2023, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Microgreens: Production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 2017, 57, 2730–2736. [Google Scholar] [CrossRef]
- Kizak, V.; Kapaligoz, S. Water quality changes and goldfish growth (Carassius auratus) in microgreen aquaponic and recirculating systems. Fresenius Environ. Bull. 2019, 28, 6460–6466. [Google Scholar]
- Grishin, A.; Grishin, A.; Semenova, N.; Grishin, V.; Knyazeva, I.; Dorochov, A. The effect of dissolved oxygen on microgreen productivity. BIO Web Conf. 2021, 30, 05002. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Acad. Sci. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Lau, T.Q.; Tang, V.T.H.; Kansedo, J. Influence of soil and light condition on the growth and antioxidants content of Amaranthus cruentus (red amaranth) microgreen. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 495, p. 012051. [Google Scholar]
- Islam, M.Z.; Park, B.J.; Lee, Y.T. Effects of seed pre-soaking on bioactive phytochemical levels of wheat and barley microgreens grown under hydroponics versus organic soil conditions. Ital. J. Agron. 2023, 18, 2183. [Google Scholar] [CrossRef]
- Sinha, M.; Thilakavathy, S. Comparative study on nutrients of microgreens cultivated in soil, water and coco pith. J. Adv. Appl. Sci. Res. 2021, 3, 72–77. [Google Scholar]
- Kaur, N.; Singh, B.; Kaur, A. Influence of wheatgrass and mung bean microgreens incorporation on physicochemical, textural, sensory, antioxidant properties and phenolic profile of gluten-free eggless rice muffins. Int. J. Food Sci. Technol. 2022, 57, 3012–3020. [Google Scholar] [CrossRef]
- Bayineni, V.K.; Herur, K.N. Natural Synedrella residues as a growing substrate ingredient: An eco-friendly way to improve yield and quality of beet (Beta vulgaris) microgreens. Eur. J. Agric. Food Sci. 2022, 4, 1–5. [Google Scholar] [CrossRef]
- Derek, D.S. Expanding herbal microgreen-mushroom permaculture can be an efficient way to recycle agricultural waste while treating and feeding the world. J. Complement Med. Alt. Healthcare 2018, 5, 555672. [Google Scholar]
- Tilahun, S.; Baek, M.W.; An, K.-S.; Choi, H.R.; Lee, J.H.; Hong, J.S.; Jeong, C.S. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. Front. Plant Sci. 2023, 14, 1236055. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Islam, M.Z.; Park, B.J.; Kang, H.M.; Lee, Y.T. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chem. 2020, 309, 6. [Google Scholar] [CrossRef]
- Renna, M.; Stellacci, A.M.; Corbo, F.; Santamaria, P. The use of a nutrient quality score is effective to assess the overall nutritional value of three Brassica microgreens. Foods 2020, 9, 1226. [Google Scholar] [CrossRef] [PubMed]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibaraki, Y. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef]
- Guo, L.; Yang, R.; Wang, Z.; Guo, Q.; Gu, Z. Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. J. Funct. Foods 2014, 9, 70–77. [Google Scholar] [CrossRef]
- Ebert, A.W.; Wu, T.H.; Yang, R.Y. Amaranth sprouts and microgreens—A homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security (SEAVEG 2014), Bangkok, Thailand, 25–27 February 2014; pp. 233–244. Available online: https://www.fao.org/fileadmin/templates/rap/files/meetings/2014/140225_report.pdf (accessed on 20 September 2024).
- Hu, L.; Yu, J.; Liao, W.; Zhang, G.; Xie, J.; Lv, J.; Xiao, X.; Yang, B.; Zhou, R.; Bu, R. Moderate ammonium: Nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Sci. Hortic. 2015, 186, 143–153. [Google Scholar] [CrossRef]
- Kou, L.; Luo, Y.; Yang, T.; Xiao, Z.; Turner, E.R.; Lester, G.E.; Wang, Q.; Camp, M.J. Post harvest biology, quality and shelf life of buckwheat MG. LWT Food Sci. Technol. 2013, 51, 73–78. [Google Scholar] [CrossRef]
- Archana, P.J.; Navya, L.S. Different culture media used for low scale production of some common microgreens. J. Adv. Biol. Sci. 2021, 8, 63–71. [Google Scholar]
- Uma, E.; Murugesan, P.; Karuppiah, P. Assess the impact of cultivation substrates for growing sprouts and microgreens of selected four legumes and two grains and evaluation of its nutritional properties. Plant Sci. Today 2023, 10, 160–169. [Google Scholar]
- Ramya, S.; Sood, M.; Lingaiah, H.B.; Rajesh, A.M. Microgreens: A nourishment bootstrapper. Pharma Innov. J. 2022, 11, 2601–2607. [Google Scholar]
- Poudel, P.; Duenas, A.E.K.; Di Gioia, F. Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. Front. Plant Sci. 2023, 14, 1229157. [Google Scholar] [CrossRef] [PubMed]
- Frąszczak, B.; Kula-Maximenko, M.; Podsędek, A.; Sosnowska, D.; Unegbu, K.C.; Spiżewski, T. Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants 2023, 12, 3800. [Google Scholar] [CrossRef]
- Kou, L.; Yang, T.; Luo, Y.; Liu, X.; Huang, L.; Codling, E. Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biol. Technol. 2014, 87, 70–78. [Google Scholar] [CrossRef]
- Xiao, Z.; Bauchan, G.; Nichols-Russell, L.; Luo, Y.; Wang, Q.; Nou, X. Proliferation of Escherichia coli 0157: H7 in soil-substitute and hydroponic microgreen production systems. J. Food Prot. 2015, 78, 1785–1790. [Google Scholar] [CrossRef]
- Newman, R.G.; Moon, Y.; Sams, C.E.; Tou, J.C.; Waterland, N.L. Biofortification of sodium selenate improves dietary mineral contents and antioxidant capacity of culinary herb microgreens. Front. Plant Sci. 2021, 12, 716437. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.J.; Pill, W.G. Cultural practices to speed the growth of microgreen arugula (Roquette; Eruca vesicaria subsp. sativa). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Mezeyová, I.; Hegedűsová, A.; Golian, M.; Andrejiová, A.; Šlosár, M.; Mezey, J. Influence of Microgreens Biofortification with Selenium on Their Quantitative and Qualitative Parameters. Agronomy 2022, 12, 1096. [Google Scholar] [CrossRef]
- Madar, Á.K.; Vargas-Rubóczki, T.; Hájos, M.T. Microgreen leaf vegetable production by different wavelengths. Acta Agrar. Debreceniensis 2022, 1, 79–84. [Google Scholar] [CrossRef]
- Michell, K.A.; Isweiri, H.; Newman, S.E.; Bunning, M.; Bellows, L.L.; Dinges, M.M.; Grabos, L.E.; Rao, S.; Foster, M.T.; Heuberger, A.L.; et al. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Dalal, D.; Mainani, R.; Thakker, R.; Solanki, H. A study of selected microgreens in soil-less media. Int. Assoc. Hydrol. Sci. Comput. Dig. 2022, 1, 228–230. [Google Scholar] [CrossRef]
- Thuong, V.T.; Minh, H.G. Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Res. Crops 2020, 21, 579–586. [Google Scholar]
- Ciuta, F.; Arghir, L.D.; Tudor, C.A.; Lagunovschi-Luchian, V. Research on microgreens farming in vertical hydroponic system. J. Hortic. For. Biotechnol. 2020, 24, 27–34. [Google Scholar]
- N’ajera, C.; Ros, M.; Moreno, D.A.; Hern’andez-Lara, A.; Pascual, J.A. Combined effect of an agro-industrial compost and light spectra composition on yield and phytochemical profile in mizuna and pakchoi microgreens. Heliyon 2024, 10, e26390. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.W.; Chang, C.H.; Yan, M.R.; Yang, R.Y. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage. Food Chem. 2017, 237, 15–22. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, S.; Hasan, W.; Ul-Allah, S.; Tanveer, M.; Farooq, M.; Nawaz, A. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric. Water Manag. 2018, 201, 152–166. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Rosellini, I.; Pezzarossa, B. Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J. Sci. Food Agric. 2019, 99, 5601–5605. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lalk, G.T.; Bi, G. Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae 2021, 7, 14. [Google Scholar] [CrossRef]
- Signore, A.; Somma, A.; Leoni, B.; Santamaria, P. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae 2024, 10, 274. [Google Scholar] [CrossRef]
- Iwai, M.; Mari Ohta, M.; Tsuchiya, H.; Suzuki, T. Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J. Funct. Foods. 2010, 2, 66–70. [Google Scholar] [CrossRef]
- Chen, H.; Tong, X.; Tan, L.; Kong, L. Consumers’ acceptability and perceptions toward the consumption of hydroponically and soil grown broccoli microgreens. J. Agric. Food Res. 2020, 2, 100051. [Google Scholar] [CrossRef]
- Negri, M.; Bulgari, R.; Santoro, P.; Ferrante, A. Evaluation of different growing substrates for microgreens production. Acta Hortic 2021, 1305, 109–114. [Google Scholar] [CrossRef]
- Delian, E.; Chira, A.; Bădulescu, L.; Chira, L. Insight into microgreens physiology. Scientific papers, Series B. Horticulture 2015, LIX, 447–454. [Google Scholar]
- Santin, M.; Sciampagna, M.C.; Mannucci, A.; Puccinelli, M.; Angelini, L.G.; Tavarini, S.; Castagna, A. Supplemental UV-B exposure influences the biomass and the content of bioactive compounds in Linum usitatissimum L. sprouts and microgreens. Horticulturae. 2022, 8, 213. [Google Scholar] [CrossRef]
- Frąszczak, B.; Kula-Maximenko, M. The biometric parameters of microgreen crops grown under various light conditions. Agriculture 2022, 12, 576. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Ohashi-Kaneko, K.; Takase, M.; Kon, N.; Fujiwara, K.; Kurata, K. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Cont. Biol. 2007, 45, 189–198. [Google Scholar] [CrossRef]
- Qi, L.D.; Liu, S.H.Q.; Xu, L.; Yu, W.Y.; Lang, Q.L.; Hao, S.H.Q. Effects of light qualities on accumulation of oxalate, tannin and nitrate in spinach. Trans. Chin. Soc. Agric. Eng. 2007, 4, 201–205. [Google Scholar]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-shormillesy, S.M.; Attia, A.; Ali, M.A.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant 2020, 169, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Moraru, P.I.; Rusu, T.; Mintas, O.S. Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods 2022, 11, 1327. [Google Scholar] [CrossRef]
- Flores, M.; Hernández-Adasme, C.; Guevara, M.J.; Escalona, V.H. Effect of different light intensities on agronomic characteristics and antioxidant compounds of Brassicaceae microgreens in a vertical farm system. Front. Sustain. Food Syst. 2024, 8, 1349423. [Google Scholar] [CrossRef]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Goble, C.C. Effects of Calcium Fertilization on Growth Yield Nutrient Content of Hydroponically Grown Radish Microgreens MSUGraduate Theses 3328 2018. Available online: https://bearworks.missouristate.edu/cgi/viewcontent.cgi?article=4353&context=theses (accessed on 20 September 2024).
- Hewage, S.C.N.; Makawita, A.; Chandran, S.; Gibson, K.E.; Fraser, A.M. Evaluating the alignment and quality of microgreens training materials available on the internet: A content analysis. J. Food Prot. 2023, 86, 100021. [Google Scholar] [CrossRef]
- Boles, H.O.; Poulet, L.; Johnson, C.M.; Torres, J.J.; Koss, L.L.; Spencer, L.E.; Massa, G.D. Design, build and testing of hardware to safely harvest microgreens in microgravity. Gravitational Space Res. 2023, 11, 1–14. [Google Scholar] [CrossRef]
- Dimita, R.; Min Allah, S.; Luvisi, A.; Greco, D.; De Bellis, L.; Accogli, R.; Negro, C. Volatile compounds and total phenolic content of perilla frutescens at microgreens and mature stages. Horticulturae 2022, 8, 71. [Google Scholar] [CrossRef]
- Keerthana, P.G.; Subaratinam, R. Anethum graveolens L. microgreen incorporated pulse-based gluten-free crackers: A potential functional snack. Biosci. Biotechnol. Res. Asia 2023, 20, 329–339. [Google Scholar]
- Berba, K.J.; Uchanski, M.E. Postharvest physiology of microgreens. J. Young Investig. 2012, 24, 1–5. [Google Scholar]
- Agarwal, A.; Dutta Gupta, S. Impact of light emitting-diodes (LEDs) and its potential on plant growth and development in controlled-environment plant production system. Curr. Biotechnol. 2016, 5, 28–43. [Google Scholar] [CrossRef]
- Devi, R.; Devi, T.S.; Kuna, A.; Reddy, M.V.; Chary, D.S.; Babu, K.M. Formulation and sensory evaluation of fenugreek microgreens incorporated instant chutney powders. Environ. Ecol. 2023, 41, 486–491. [Google Scholar]
- Devi, R.; Devi, T.S.; Kuna, A.; Reddy, M.V.; Chary, D.S.; Babu, K.M. Organoleptic and consumer evaluation studies of microgreens enriched instant chutney mixes/powders. Environ. Ecol. 2023, 41, 557–564. [Google Scholar]
- Muchjajib, U.; Muchjajib, S.; Suknikom, S.; Butsai, J. Evaluation of organic media alternatives for the production of microgreens in Thailand. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Promoting the Future of Indigenous Vegetables Worldwide, Brisbane, Australia, 6 December 2015. [Google Scholar]
- Rawat, K.; Pahuja, A.; Sharma, R.; Jain, M. Microgreens: Acceptance and perception of consumers. Ann. Arid. Zone 2024, 63, 145–152. [Google Scholar] [CrossRef]
- Warriner, K.; Ibrahim, F.; Dickinson, M.; Wright, C.; Waites, W.M. Internalization of human pathogens within growing salad vegetables. Biotechnol. Genet. Eng. Rev. 2003, 20, 117–136. [Google Scholar] [CrossRef]
- Xiao, Z.; Nou, X.; Luo, Y.; Wang, Q. Comparison of the growth of Escherichia coli O157:H7 and O104:H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiol. 2014, 44, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Holden, N.J. Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreen species and plant growth substrates. Int. J. Food Microbiol. 2018, 273, 1–10. [Google Scholar] [CrossRef]
- Reed, E.; Ferreira, C.M.; Bell, R.; Brown, E.W.; Zheng, J. Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and Swiss chard microgreens. Appl. Environ. Microbiol. 2018, 84, e02814-17. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, Y.; Nou, X. Proliferation of Listeria monocytogenes during microgreen production. In Proceedings of the Poster session, International Association for Food Protection Annual Meeting, Portland, OR, USA, 25–29 July 2015; Available online: https://iafp.confex.com/iafp/2015/webprogram/Paper9430.html (accessed on 20 September 2024).
- Wang, Q.; Kniel, K.E. Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Appl. Environ. Microbiol. 2016, 82, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Kushad, M.M.; Feng, H. Survival of Escherichia coli O157:H7 strain 87-23 on arugula, kale, lettuce and mizuna microgreens, and comparison of leaf surface morphology for mature greens and microgreens. In Proceedings of the Poster session, IAFP Annual Meeting, Charlotte, NC, USA, 27–30 July 2013. [Google Scholar]
- Pill, W.G.; Collins, C.M.; Gregory, N.; Evans, T.A. Application method and rate of Trichoderma species as a biological control against Pythium aphanidermatum (Edson) Fitzp. in the production of microgreen table beets (Beta vulgaris L.). Sci. Hortic. 2011, 129, 914–918. [Google Scholar] [CrossRef]
- Kim, M.J.; Mikš-Krajnik, M.; Kumar, A.; Yuk, H.G. Inactivation by 405 ± 5 nm light emitting diode on Escherichia coli O157:H7, Salmonella typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control 2016, 59, 99–107. [Google Scholar] [CrossRef]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef]
- McKenzie, K.; Maclean, M.; Timoshkin, I.V.; MacGregor, S.J.; Anderson, J.G. Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int. J. Food Microbiol. 2014, 170, 91–98. [Google Scholar] [CrossRef]
- Yeargin, T.A.; Lin, Z.; do Prado, I.; Sirsat, S.A.; Gibson, K.E. Consumer practices and perceptions regarding the purchasing and handling of microgreens in the United States. Food Control 2023, 145, 109470. [Google Scholar] [CrossRef]
- Chandra, D.; Kim, J.G.; Kim, Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef]
- Sreenivasa, R.J.; Sri, T.S.D.; Shivudu, G.; Kumari, V. Micro greens: A new initiative and harmonizing approach for promoting livelihood and nutritional security-India. Int. J. Food Biosci. 2019, 2, 1–5. [Google Scholar]
- Sharma, P.; Sharma, A.; Rasane, P.; Dey, A.; Choudhury, A.; Singh, J.; Kaur, S.; Dhawan, K.; Kaur, D. Optimization of a process for microgreen and fruit-based functional beverage. Anais da Academia Brasileira de Ciências (Ann. Braz. Acad. Sci.) 2020, 92, e20190596. [Google Scholar] [CrossRef] [PubMed]
- Senthilnathan, K.; Muthusamy, S. Process optimization and kinetic modeling study for fresh microgreen (Alternanthera sessilis) juice treated under thermosonication. Prep. Biochem. Biotechnol. 2022, 52, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Belošević, S.D.; Milinčić, D.D.; Gašić, U.M.; Kostić, A.Ž.; Salević-Jelić, A.S.; Marković, J.M.; Đorđević, V.B.; Lević, S.M.; Pešić, M.B.; Nedović, V.A. Broccoli, amaranth, and red beet microgreen juices: The influence of cold-pressing on the phytochemical composition and the antioxidant and sensory properties. Foods 2024, 13, 757. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Family | Microgreens Color |
---|---|---|---|
Radish | Raphanus sativus | Brassicaceae | Green/purplish green |
Cabbage | Brassica oleracea var. capitata | ||
Knolkhol | B. oleracea var. gongylodes | ||
Mustard | B. juncea | ||
Broccoli | B. oleracea var. italica | ||
Chinese cabbage | B. rapa var. pekinensis | ||
Kale | B. oleracea var. acephala | ||
Cauliflower | B. oleracea var. botrytis | ||
Arugula | Eruca sativa | ||
Vegetable Amaranthus | Amaranthus tricolor | Amaranthaceae | Green/red |
Red Amaranthus | A. cruentus | ||
Quinoa | Chenopodium quinoa | ||
Palak | Beta vulgaris var. bengalensis | Chenopodiaceae | Green |
Spinach | Spinacia oleracea | ||
Beet | B. vulgaris | Reddish green | |
Swiss chard | B. vulgaris var. vulgaris | ||
Carrot | Daucus carota | Apiaceae | Yellow |
Coriander | Coriandrum sativum | Green | |
Celery | Apium graveolens | ||
Parsley | Petroselinum crispum | ||
Fenugreek | Trigonella foenumgraecum | Fabaceae | Green |
Pea | Pisum sativum | ||
Chickpea | Cicer arietinum | ||
Mungbean/green gram | Vigna radiata | ||
Horse gram | Macrotyloma uniflorum | ||
Lentil | Lens culinaris | ||
Alfalfa | Medicago sativa | Light green | |
Flaxseed | Linum usitatissimum | Linaceae | Green |
Buckwheat | Fagopyrum esculentum | Polygonaceae | Green |
Basil | Ocimum basilicum | Lamiaceae | Green/reddish green |
Chia | Salvia hispanica | Green/reddish green | |
Maize | Zea mays | Poaceae | Yellow |
Wheat | Triticum aestivum | Green | |
Pearl millet | Cenchrus americanus/ Pennisetumglaucum | ||
Finger millet | Eleusine coracana | ||
Little millet | Panicum sumatrense | ||
Barnyard millet | Echinochloa esculenta | ||
Onion | Allium cepa | Amaryllidaceae | Green |
Bottle gourd | Lagenaria siceraria | Cucurbitaceae | Green |
Cucumber | Cucumis sativus | ||
Pumpkin | Cucurbita moschata | ||
Sesame | Sesamum indicum | Pedaliaceae | Green |
Sunflower | Helianthus annuus | Asteraceae | Green |
Lettuce | Lactuca sativa |
Microgreens | Seed Rate/Density Per m2 | Reference |
---|---|---|
Arugula | ~50–100 g/m2 | [137] |
Beetroot | ~200–250 g/m2 | [121] |
Kale | ~30,000–40,000 seeds/m2 | [62,83] |
Basil, Green Basil | ~50–55 g/m2; ~190 g/m2 | [77,138,148] |
Swiss Chard | ~240 g/m2 | |
Rocket | ~45 g/m2 | |
Cilantro, Spinach | ~30,000–46,000 seeds/m2 | [119,136] |
Chicory, Lettuce, Cabbage, Savoy Cabbage | ~30,000–40,000 seeds/m2, ~80–100 g/m2 | [17,33,85,105,131] |
Cauliflower, Broccoli | ~30,000–40,000 seeds/m2, 100–120 g/m2 | [33,76,85,102,123,148] |
Mustard, Radish | ~30,000 seeds/m2, ~50–60 g/m2 | [17,62,148] |
Mizuna | ~70,000 seeds/m2 | [7,33,96,138] |
Amaranth | ~80,000 seeds/m2, ~50–100 g/m2 | |
Cress | ~50,000 seeds/m2, ~190 g/m2 | |
Chia | ~200 g/m2 | [43] |
Roselle, Sunflower | ~350 g/m2 | [67] |
Carrot | ~180 g/m2 | |
Fennel | ~430 g/m2 | |
Onion | ~240 g/m2 | |
Scallion | ~3,4000 34,000 seeds/m2 | [136] |
White Knolkhol | ~75 g/m2 | [33,90,132,138,148] |
Daikon Radish | ~170–190 g/m2 | |
Pea | ~1300 g/m2, ~10,000 seeds/m2 | |
Fenugreek, Wheat | ~200 g/m2 | [131] |
Mung bean, Lentil | ~30,000 seeds/m2 | [6] |
Chervil, Caraway, Dill | ~60,000 seeds/m2 | [89] |
Anise | ~70,000 seeds/m2 | |
Mung bean, Lentil | ~220 g/m2 | [17] |
Pearl Millet | ~140 g/m2 | |
Wheat | ~700 g/m2 | [7,33] |
Ragi | ~500 g/m2 | |
Green Gram | ~850 g/m2 | |
Horse Gram | ~620 g/m2 | |
Pak Choi | ~80 g/m2 | [33] |
Flax | ~200 g/m2 | |
Rapini | ~50,000 seeds/m2 | [149] |
Microgreens | Microbial Contamination | Inoculation/Storage | Reference |
---|---|---|---|
Radish | E. coli (O157:H7 & O104:H4) | - | [178] |
Eight different species | Shiga-toxin-producing E. coli | Inoculated under hydroponics | [179] |
Swiss Chard | Salmonella enterica | Contaminated water irrigation | [180] |
Radish | E. coli (O157:H7) | Soil substitute and hydroponics | [135] |
Rapini | Lower microbial populations | Recycled fiber mats | [181] |
Radish | Listeria monocytogenes | Soil substitute and hydroponics | [182] |
Kale, Mustard | Murine norovirus (MNV) | Hydroponics | [183] |
Arugula, Kale, Lettuce, Mizuna | E. coli (O157:H7) | Stored in a refrigerator | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seth, T.; Mishra, G.P.; Chattopadhyay, A.; Deb Roy, P.; Devi, M.; Sahu, A.; Sarangi, S.K.; Mhatre, C.S.; Lyngdoh, Y.A.; Chandra, V.; et al. Microgreens: Functional Food for Nutrition and Dietary Diversification. Plants 2025, 14, 526. https://doi.org/10.3390/plants14040526
Seth T, Mishra GP, Chattopadhyay A, Deb Roy P, Devi M, Sahu A, Sarangi SK, Mhatre CS, Lyngdoh YA, Chandra V, et al. Microgreens: Functional Food for Nutrition and Dietary Diversification. Plants. 2025; 14(4):526. https://doi.org/10.3390/plants14040526
Chicago/Turabian StyleSeth, Tania, Gyan Prakash Mishra, Arup Chattopadhyay, Partha Deb Roy, Mridula Devi, Ankita Sahu, Sukanta Kumar Sarangi, Chaitrali Shashank Mhatre, Yvonne Angel Lyngdoh, Visalakshi Chandra, and et al. 2025. "Microgreens: Functional Food for Nutrition and Dietary Diversification" Plants 14, no. 4: 526. https://doi.org/10.3390/plants14040526
APA StyleSeth, T., Mishra, G. P., Chattopadhyay, A., Deb Roy, P., Devi, M., Sahu, A., Sarangi, S. K., Mhatre, C. S., Lyngdoh, Y. A., Chandra, V., Dikshit, H. K., & Nair, R. M. (2025). Microgreens: Functional Food for Nutrition and Dietary Diversification. Plants, 14(4), 526. https://doi.org/10.3390/plants14040526