Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Site, Treatments, and Crop Management
4.2. Statistical Analyses
5. Conclusions
- We achieved comparable yields during the spring period with grass–legume mixtures without spring N fertilization compared with N-fertilized pure stands of Italian ryegrass in spring.
- The grass–legume mixture is more suitable for ensilage compared with clovers (higher WSCs and lower BC), but high-quality silage can also be prepared from legumes.
- We achieved a comparable net energy value with the grass–legume mixture relative to that of Italian ryegrass and better than that of the legume mixture.
- Contrary to expectations, we did not succeed in increasing the protein content in the silage comprising the grass–legume mixture without N fertilization in spring compared with pure stands of Italian ryegrass fertilized with N in spring.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Acetic acid |
ADF | Acid detergent fiber |
BA | Butyric acid |
BC | Buffering capacity |
CFA | Crude fat |
CP | Crude protein |
CRC | Crimson clover |
DM | Dry matter |
DMY | Dry matter yield |
IR | Italian ryegrass |
LA | Lactic acid |
LSD | Least significant difference |
ME | Metabolizable energy |
N | Nitrogen |
Nmin | Soil mineral nitrogen |
NDF | Neutral detergent fiber |
NEL | Net energy of lactation |
NIRS | Near-infrared reflectance spectroscopy |
RC | Red clover |
WCCs | Winter cover crops |
WSC | Water-soluble carbohydrate |
References
- Stevens, C.J. Nitrogen in the environment. Science 2019, 363, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review. Int. J. Environ. Res. Public Health 2023, 20, 2318. [Google Scholar] [CrossRef]
- Kharel, M.; Dahal, B.M.; Raut, N. Good agriculture practices for safe food and sustainable agriculture in Nepal: A review. J. Agric. Food Res. 2022, 10, 100447. [Google Scholar] [CrossRef]
- Galloway, J.N.; Leach, A.M.; Erisman, J.W.; Bleeker, A. Nitrogen: The historical progression from ignorance to knowledge, with a view to future solutions. Soil Res. 2017, 55, 417–424. [Google Scholar] [CrossRef]
- Takele, E.; Mekonnen, Z.; Tsegaye, D.; Abebe, A. Effect of intercropping of Legumes and Rates of Nitrogen Fertilizer on Yield and Yield Components of Maize (Zea mays L.) at Arba Minch. Am. J. Plant Sci. 2017, 8, 2159–2179. [Google Scholar] [CrossRef]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Ashraful Alam, M.; Syed, M.A.; Hossain, J.; Sarkar, S.; Saha, S.; Bhadra, P.; et al. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 2021, 11, 241. [Google Scholar] [CrossRef]
- Gupta, G.S. Land degradation and challenges of food security. Rev. Eur. Stud. 2019, 11, 63–72. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex. Chall. Sustain. 2016, 8, 281. [Google Scholar] [CrossRef]
- Leip, A.; Bodirsky, B.L.; Kugelberg, S. The role of nitrogen in achieving sustainable food systems for healthy diets. Glob. Food Sec. 2021, 28, 100408. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- White, C.M.; DuPont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; LaChance, J.C.; Kaye, J.P. Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosys. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef]
- Wedin, D.A.; Russelle, M.P. Nutrient cycling in forage production systems. In Forages: The Science of Grassland Agriculture, 7th ed.; Moore, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; John Wiley & Sons Limited: Chichester, UK, 2020; Volume II, pp. 215–225. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.L.; Lassaletta, L.; Patra, P.K.; Wilson, C.; Wells, K.C.; Gressent, A.; Koffi, E.N.; Chipperfield, M.P.; Winiwarter, W.; Davidson, E.A.; et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 2019, 9, 993–998. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Wendling, M.; Büchi, L.; Amossé, C.; Jeangros, B.; Walter, A.; Charles, R. Specific interactions leading to transgressive overyielding in cover crop mixtures. Agric. Ecosys. Environ. 2017, 241, 88–99. [Google Scholar] [CrossRef]
- Viguier, L.; Bedoussac, L.; Journet, E.P.; Justes, E. Correction to: Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agron. Sustain. Dev. 2018, 38, 39. [Google Scholar] [CrossRef]
- Wang, G.Z.; Li, H.G.; Christie, P.; Zhang, F.S.; Zhang, J.L.; Bever, J.D. Plant–soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil 2017, 415, 1–12. [Google Scholar] [CrossRef]
- Sturludóttir, E.; Brophy, C.; Bélanger, G.; Gustavsson, A.M.; Jørgensen, M.; Lunnan, T.; Helgadóttir, Á. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 2014, 69, 229–240. [Google Scholar] [CrossRef]
- Bélanger, G.; Castonguay, Y.; Lajeunesse, J. Benefits of mixing timothy with alfalfa for forage yield, nutritive value, and weed suppression in northern environments. Can. J. Plant Sci. 2014, 94, 51–60. [Google Scholar] [CrossRef]
- Al-Mabruk, R.M.; Beck, N.F.G.; Dewhurst, R.J. Effects of Silage Species and Supplemental vitamin E on the oxidative Stability of milk. J. Dairy Sci. 2004, 87, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-García, J.; Carrillo, J.M.; Ruiz, M.; Alonso-Ayuso, M.; Quemada, M. Multicriteria decision analysis applied to cover crop species and cultivars selection. Field Crops Res. 2015, 175, 106–115. [Google Scholar] [CrossRef]
- Li, F.; Sørensen, P.; Li, X.; Olesen, J.E. Carbon and nitrogen mineralization differ between incorporated shoots and roots of legume versus non-legume based cover crops. Plant Soil 2020, 446, 243–257. [Google Scholar] [CrossRef]
- Blesh, J. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 2018, 55, 38–48. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–3543. [Google Scholar] [CrossRef] [PubMed]
- Florence, A.M.; Higley, L.G.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Cover crop mixture diversity, biomass productivity, weed suppression, and stability. PLoS ONE 2019, 14, e0206195. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and Ecosystem Services: Insights from studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Gfeller, A.; Herrera, J.M.; Tschuy, F.; Wirth, J. Explanations for Amaranthus retroflexus growth suppression by cover crops. Crop Prot. 2018, 104, 11–20. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Li, X.; Rengel, Z.; Yang, S. Wheat/maize or wheat/soybean strip intercropping. Field Crops Res. 2001, 71, 173–181. [Google Scholar] [CrossRef]
- Wendling, M.; Charles, R.; Herrera, J.; Amosse, C.; Jeangros, B.; Walter, A.; Büchi, L. Effect of species identity and diversity on biomass production and its stability in cover crop mixtures. Agric. Ecosyst. Environ. 2019, 281, 81–91. [Google Scholar] [CrossRef]
- Elhakeem, A.; van der Werf, W.; Ajal, J.; Lucà, D.; Claus, S.; Vico, R.A.; Bastiaans, L. Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Agric. Ecosyst. Environ. 2019, 285, 106627. [Google Scholar] [CrossRef]
- Bijelić, Z.; Tomić, Z.; Ružić-Muslić, D.; Krnjaja, V.; Mandić, V.; Petričević, M.; Caro-Petrović, V. Silage fermentation characteristics of grass-legume mixtures harvested at two different maturity stages. Biotehnol. Anim. Husb. 2015, 31, 303–311. [Google Scholar] [CrossRef]
- Hayden, Z.D.; Ngouajio, M.; Brainard, D.C. Rye–vetch mixture proportion tradeoffs: Cover crop productivity, nitrogen accumulation, and weed suppression. Agron. J. 2014, 106, 904–914. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Quemada, M.; Vanclooster, M.; Ruiz-Ramos, M.; Rodriguez, A.; Gabriel, J.L. Assessing cover crop management under actual and climate change conditions. Sci. Total Environ. 2018, 621, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Moorby, J.M.; Lee, M.R.F.; Davies, D.R.; Kim, E.J.; Nute, G.R.; Ellis, N.M.; Scollan, N.D. Assessment of dietary ratios of red clover and grass silages on milk production and milk quality in dairy cows. J. Dairy Sci. 2009, 92, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Vanhatalo, A.; Toivonen, V.; Heikkilä, T.; Lee, M.R.F.; Shingfield, K.J. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 2014, 97, 3761–3776. [Google Scholar] [CrossRef] [PubMed]
- Nicol, A.M.; Edwards, G.R. Why is clover better than ryegrass? Proc. N. Z. Soc. Anim. Prod. 2011, 71, 71–78. [Google Scholar]
- Moloney, T.; Sheridan, H.; Grant, J.; O’Riordan, E.G.; O’Kiely, P.O. Conservation efficiency and nutritive value of silages made from grass-red clover and multi-species swards compared with grass monocultures. Ir. J. Agric. Food Res. 2021, 59, 150–166. [Google Scholar] [CrossRef]
- Holohan, C.; Grace, C.; Bock, M.; Lynch, M.B. An assessment of herbage mass, ryegrass cultivar and red clover inclusion on sward productivity, quality and morphology under a cutting protocol. J. Agric. Sci. 2022, 160, 55–65. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Fisher, W.J.; Tweed, J.K.S.; Wilkins, R.J. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 2003, 86, 2598–2611. [Google Scholar] [CrossRef]
- Baldinger, L.; Baumung, R.; Zollitsch, W.; Knaus, W.F. Italian ryegrass silage in winter feeding of organic dairy cows: Forage intake, milk yield and composition. J. Sci. Food Agric. 2011, 91, 435–442. [Google Scholar] [CrossRef]
- Kramberger, B.; Gselman, A.; Janzekovic, M.; Kaligaric, M.; Bracko, B. Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. Eur. J. Agron. 2009, 31, 103–109. [Google Scholar] [CrossRef]
- Kramberger, B.; Gselman, A.; Kristl, J.; Lešnik, M.; Šustar, V.; Muršec, M.; Podvršnik, M. Winter cover crop: The effects of grass–clover mixture proportion and biomass management on maize and the apparent residual N in the soil. Eur. J. Agron. 2014, 55, 63–71. [Google Scholar] [CrossRef]
- Sarunaite, L.; Kadziuliene, Z.; Deveikyte, I.; Kadziulis, L. Effect of legume biological nitrogen on cereals grain yield and soil nitrogen budget in double-cropping system. J. Food Agric. Environ. 2013, 11, 528–533. [Google Scholar]
- Brainard, D.; Henshaw, B.; Snapp, S. Hairy vetch varieties and bi-cultures influence cover crop services in strip-tilled sweet corn. Agron. J. 2012, 104, 629–638. [Google Scholar] [CrossRef]
- Jensen, E.S. Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol. Biochem. 1996, 28, 159–168. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S. Resource capture and use in intercropping: Solar radiation. Field Crops Res. 1993, 34, 273–301. [Google Scholar] [CrossRef]
- Ćupina, B.; Vujić, S.; Krstić, D.; Djurić, B.; Aliu, S.; Manojlović, M.; Čabilovski, R.; Lombnaes, P. Performance of legume–grass mixtures in the West Balkan region. Acta Agric. Scan. B Soil Plant Sci. 2017, 67, 1–11. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving diverse cover crop mixtures: Effects of planting date and seeding rate. Agron. J. 2017, 109, 259–271. [Google Scholar] [CrossRef]
- Seppälä, A.; Heikkilä, T.; Mäki, M.; Rinne, M. Effects of additives on the fermentation and aerobic stability of grass silages and total mixed rations. Grass Forage Sci. 2016, 71, 458–471. [Google Scholar] [CrossRef]
- Clark, E.A.; Crump, S.V.; Wijnheijmer, S. Morphological determinants of drying rate in forage legumes. In Proceedings of the American Forage and Grassland Conference, Hershey, PA, USA, 3–6 March 1985; pp. 137–141. [Google Scholar]
- Owen, I.G.; Wilman, D. Differences between grass species and varieties in rate of drying at 25 °C. J. Agric. Sci. 1983, 100, 629–636. [Google Scholar] [CrossRef]
- Rotz, C.A. Field curing of forages. In Post-Harvest Physiology and Preservation of Forages; Moore, K.J., Peterson, M.A., Eds.; Crop Science Society of America: Madison, WI, USA, 1995; pp. 39–66. [Google Scholar] [CrossRef]
- Morris, R.M. The rate of water loss from grass samples during hay-type conservation. Grass Forage Sci. 1972, 27, 99–106. [Google Scholar] [CrossRef]
- Dong, D.; Lin, Z.; Dai, T.; Dong, Z.; Li, J.; Shao, T. Dynamics associated with fermentation and aerobic deterioration of high-moisture Italian ryegrass silage made using Lactobacillus plantarum and caproic acid. J. Appl. Microbiol. 2023, 134, lxad188. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Dong Lee, K.; Choon Choi, K. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agric. Food 2021, 6, 216–234. [Google Scholar] [CrossRef]
- Aydın, S.S.; Denek, N.; Avcı, M.; Kırar, N.; Top, Ş. The effect of fermented natural lactic acid bacteria liquid and water-soluble carbohydrate admixture on alfalfa (Medicago sativa L.) silage fermentation quality, in vitro digestibility and methane production. Vet. J. Mehmet Akif Ersoy Univ. 2023, 8, 172–178. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Gou, W.; Cheng, Q.; Bai, S.; Cai, Y. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mixtures prepared with microbial inoculant and chemical additive. Anim. Feed Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Kragbæk Damborg, V.; Krogh Jensen, S.; Johansen, M.; Ambye-Jensen, M.; Weisbjerg, M.R. Ensiled pulp from biorefining increased milk production in dairy cows compared with grass–clover silage. J. Dairy Sci. 2019, 102, 8883–8897. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Skládanka, J.; Mikyska, F.; Doležal, P.; Šeda, J.; Havlíček, Z.; Mikel, O.; Hošková, Š. Effect of the technology of the additional sowing of drought-resistant clover-grass mixture and silage additives on fermentation process quality and nutritive value of baled grass silages. Afr. J. Agric. Res. 2012, 7, 325–333. [Google Scholar] [CrossRef]
- Hansen, N.P.; Kristensen, T.; Johansen, M.; Louise, A.; Hellwing, F.; Waldemar, P.; Weisbjerg, M.R. Shredding of grass-clover before ensiling: Effects on feed intake, digestibility, and methane production in dairy cows. Anim. Feed Sci. Technol. 2021, 282, 115124. [Google Scholar] [CrossRef]
- Zucali, M.; Bacenetti, J.; Tamburini, A.; Nonini, L.; Sandrucci, A.; Bava, L. Environmental impact assessment of different cropping systems of home-grown feed for milk production. J. Clean. Prod. 2018, 172, 3734–3746. [Google Scholar] [CrossRef]
- Homolka, P.; Koukolová, V.; Podsedníček, M.; Hlaváčková, A. Nutritive value of red clover and lucerne forages for ruminants estimated by in vitro and in vivo digestibility methods. Czech J. Anim. Sci. 2012, 57, 454–468. [Google Scholar] [CrossRef]
- Babnik, D. Some environmental effects on relationships between in sacco degradability of protein and dry matter and chemical composition of Italian ryegrass. Arch. Tierernahr. 1995, 48, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Wilman, D. The effect of nitrogenous fertilizer on rate of growth of Italian ryegrass. Grass Forage Sci. 1970, 25, 154–161. [Google Scholar] [CrossRef]
- Seydoşoğlu, S.; Kökten, K. Nitrogen requirement of Italian ryegrass (Lolium multiflorum): A review. Turk. J. Range Forage Sci. 2021, 2, 26–30. [Google Scholar] [CrossRef]
- Ertekin, I.; Atis, I.; Aygun, Y.Z.; Yilmaz, S.; Kizilsimsek, M. Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages. Anim. Biosci. 2022, 35, 39–46. [Google Scholar] [CrossRef]
- Merkevičiūtė-Venslovė, L.; Šlepetienė, A.; Cesevičienė, J.; Mankevičienė, A.; Venslovas, E. Peculiarities of chemical composition of main types of silage prepared from grasses, legumes, and small grain crop mixtures. Zemdirb. Agric. 2022, 109, 179–184. [Google Scholar] [CrossRef]
- Thers, H.; Jensen, J.L.; Rasmussen, J.; Eriksen, J. Grass-clover response to cattle slurry N-rates: Yield, clover proportion, protein concentration and estimated N2-fixation. Field Crops Res. 2022, 287, 108675. [Google Scholar] [CrossRef]
- Steinshamn, H. Effect of forage legumes on feed intake, milk production and milk quality—A review. Anim. Sci. Pap. Rep. 2010, 28, 195–206. [Google Scholar]
- Elgersma, A.; Søegaard, K. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. Eur. J. Agron. 2016, 78, 73–83. [Google Scholar] [CrossRef]
- Ammar, H.; López, S.; Bochi-Brum, O.; García, R.; Ranilla, M.J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 1999, 8, 599–610. [Google Scholar] [CrossRef]
- Yucel, C.; Inal, I.; Yucel, D.; Hatipoglu, R. Effects of mixture ratio and cutting time on forage yield and silage quality of intercropped berseem clover and Italian ryegrass. Leg. Res. 2018, 41, 846–853. [Google Scholar] [CrossRef]
- Egan, M.; Galvin, N.; Hennessy, D. Incorporating white clover (Trifolium repens L.) into perennial ryegrass (Lolium perenne L.) swards receiving varying levels of nitrogen fertiliser: Effects on milk and herbage production. J. Dairy Sci. 2018, 101, 3412–3427. [Google Scholar] [CrossRef] [PubMed]
- Plaster, E.J. Soil Science & Management, 6th ed.; Cengage Learning: New York, NY, USA, 2013; pp. 67–79. [Google Scholar]
- HRN ISO 11277:2009; Soil quality — Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. International Organization for Standardization: Geneva, Switzerland, 2009.
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis; Page, A.L., Ed.; John Wiley & Sons: Chichester, UK, 1982; pp. 643–698. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W. Untersuchungen über die chemische bodenanalyse als grundlage für die beurteiling des nährstoffzustand es der Böden: II. Chemische extraktionsmethoden zur phosphor und kaliumbestimmung. K. Lantbr.-Shögskol Ann. 1960, 26, 199–215. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Holdemann, L.V.; Moore, W.E.C. Anaerobe Laboratory Manual; Virginia Polytechnik Institute: Blacksburg, VA, USA, 1975. [Google Scholar]
- Naumann, K.; Bassler, R. Die chemische Untersuchung von Futterrmitteln. In Metodenbuch Bond 3; Verlag: Neudamm, Germany, 1976. [Google Scholar]
- Žnidaršič, T.; Verbič, J.; Babnik, D. Prediction of chemical composition and energy value of grass silage by near-infrared reflectance spectroscopy. J. Cent. Eur. Agric. 2006, 7, 127–134. [Google Scholar]
- GfE (Gesellschaft für Ernährungsphysiologie). New equations for predicting metabolisable energy of grass and maize products for ruminants. Proc. Soc. Nutr. Physiol. 2008, 17, 191–198. [Google Scholar]
- Communications of the Committee for Requirement Standards of the Society of Nutrition Physiology. Equations for Predicting Metabolisable Energy and Digestibility of Organic Matter in Forage Legumes for Ruminants. 2024. Available online: https://gfe-frankfurt.de/wp-content/uploads/2018/08/equations_in_forage_legumes_ruminants.pdf (accessed on 25 August 2024).
- R: A Language and Environment for Statistical Computing. Available online: https://www.semanticscholar.org/paper/R%3A-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b/ (accessed on 20 September 2024).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
Parameter | Treatment | ||
---|---|---|---|
IR | CRC+RC | IR+CRC+RC | |
Nmin in November (kg ha−1) | 26.6 | 28.3 | 26.8 |
Nmin in May (kg ha−1) | 12.0 | 16.1 | 15.1 |
DMY (t ha−1) | 4.87 a | 4.25 b | 4.98 a |
Parameter | Treatment | ||
---|---|---|---|
IR | CRC+RC | IR+CRC+RC | |
DM (g kg−1) | 173 a | 128 b | 170 a |
CP (g kg−1 DM) | 113 a | 208 b | 117 a |
WSC (g kg−1 DM) | 271 a | 121 b | 275 a |
NO3-N (mg kg−1 DM) | 21.3 a | 116.7 b | 39.7 ab |
BC (mmol kg−1 DM) | 818 a | 1290 b | 917 a |
Parameter | Treatment | ||
---|---|---|---|
IR | CRC+RC | IR+CRC+RC | |
DM (g kg−1 silage) | 588 a | 476 b | 562 a |
pH (-) | 4.78 | 4.69 | 4.86 |
LA (g kg−1 DM) | 30.4 | 26.8 | 26.4 |
AA (g kg−1 DM) | 5.34 | 4.76 | 4.59 |
BA (g kg−1 DM) | 0.22 | 0.75 | 0 |
NH3-N (g kg−1 of TN) | 34.7 a | 66.5 b | 40.3 a |
Parameter | Treatment | ||
---|---|---|---|
IR | CRC+RC | IR+CRC+RC | |
ME (MJ kg−1 DM) | 10.4 a | 9.65 b | 10.4 a |
NEL (MJ kg−1 DM) | 6.26 a | 5.77 b | 6.27 a |
CP (g kg−1 DM) | 112 a | 158 b | 113 a |
NDF (g kg−1 DM) | 463 a | 375 b | 429 a |
ADF (g kg−1 DM) | 246 ab | 279 a | 241 b |
CFA (g kg−1 DM) | 19 | 15.7 | 16.6 |
Treatment | Percentage of Seed in the Mixture (%) | Seeding Rate (kg ha−1) | ||||
---|---|---|---|---|---|---|
IR | CRC | RC | IR | CRC | RC | |
1. IR | 100 | 40 | ||||
2. CRC+RC | 50 | 50 | 15 | 12.5 | ||
3. IR+CRC+RC | 50 | 25 | 25 | 20 | 7.5 | 6.25 |
Site Characteristics | 2019–20 2020–21 | |||||
---|---|---|---|---|---|---|
Rogoza | Fala | Brežice | Rogoza | Fala | Brežice | |
Sand (%) | 33.8 | 53.4 | 23.5 | 31.2 | 28.8 | 21.4 |
Silt (%) | 47.5 | 30.4 | 55.8 | 42.4 | 45.6 | 57.5 |
Clay (%) | 18.7 | 16.2 | 20.7 | 26.4 | 25.6 | 21.1 |
Soil texture | clay | sandy clay | silty clay | clay | cay | silty clay |
Soil organic matter (%) | 1.8 | 1.7 | 2.2 | 1.5 | 2.2 | 2.8 |
Soil pH (CaCl2) | 6.2 | 6.3 | 5.3 | 5.3 | 6.4 | 5.8 |
P2O5 (mg/100 g soil) | 16.1 | 14.7 | 9.2 | 13.0 | 15.2 | 10.2 |
K2O (mg/100 g soil) | 20.6 | 16.9 | 20.2 | 18.7 | 14.5 | 19.4 |
Previous crop | oilseed rape | barley | barley | barley | wheat | wheat |
Sowing date | 27 August | 28 August | 29 August | 26 August | 28 August | 29 August |
Fertilizer before sowing WCCs (50 kg N; 70 kg P2O5; 120 kg K2O ha−1) | the entire experimental area | the entire experimental area | ||||
Nitrogen application in spring (kg N ha−1) | 70 * | 70 * | 70 * | 70 * | 70 * | 70 * |
Harvesting date | 6 May | 3 May | 2 May | 10 May | 8 May | 9 May |
Plot size (m2) | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 |
Sum of precipitation during the growth period (from the end of August to the beginning of May) (mm) | 470 | 498 | 648 | 562 | 569 | 680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zupanič, M.; Žnidaršič, T.; Podvršnik, M.; Sem, V.; Kristan, B.; Rihter, L.; Kramberger, B. Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring. Plants 2025, 14, 726. https://doi.org/10.3390/plants14050726
Zupanič M, Žnidaršič T, Podvršnik M, Sem V, Kristan B, Rihter L, Kramberger B. Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring. Plants. 2025; 14(5):726. https://doi.org/10.3390/plants14050726
Chicago/Turabian StyleZupanič, Marko, Tomaž Žnidaršič, Miran Podvršnik, Vilma Sem, Boštjan Kristan, Ludvik Rihter, and Branko Kramberger. 2025. "Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring" Plants 14, no. 5: 726. https://doi.org/10.3390/plants14050726
APA StyleZupanič, M., Žnidaršič, T., Podvršnik, M., Sem, V., Kristan, B., Rihter, L., & Kramberger, B. (2025). Yield and Silage Quality of Winter Legume Cover Crop Mixtures Without Nitrogen Fertilization in Spring. Plants, 14(5), 726. https://doi.org/10.3390/plants14050726