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Abstract: Cartridge delivery systems are commonly employed in aerospace engineering for the
transportation of cylindrical projectiles. The coordination mechanism plays a pivotal role in ensuring
reliable cartridge conveying, with its positioning accuracy being of utmost importance. However,
accurately depicting the nonlinear relationship between input parameters and output response is
challenging due to the involvement of numerous complex, uncertain factors during the movement
process of the coordination mechanism. To address this issue, this study proposes a dynamics
model that incorporates hinged gaps to represent rigid–flexible coupling within the coordination
mechanism. Experimental validation confirms its effectiveness, while computational efficiency is
enhanced through the utilization of a deep learning neural network surrogate model. Furthermore, an
improved method for the uncertainty analysis of directional subintervals is introduced and applied to
analyze uncertainty in coordination mechanisms, yielding results that demonstrate superior efficiency
compared to other approaches.

Keywords: coordinating arm; rigid–flexible coupling; agent model; uncertainty analysis; directional
subinterval prediction

1. Introduction

Cartridge delivery systems are often used in aerospace engineering to transport
cylindrical projectiles. The coordination mechanism is a crucial component of a cartridge
conveying system, primarily responsible for receiving paper cartridges from external
sources, storing and aligning them to the desired angle, and subsequently propelling
them into the pipeline. Its primary function involves the reciprocating movement of
the load between the drug receiving position and drug delivery position. In addition to
ensuring its normal operation, it must also possess the ability to swiftly and accurately
coordinate in place while maintaining a lightweight design under high loads. Based
on actual test records, various uncertain factors, such as flexible vibrations within the
mechanism and clearances between components, can significantly impact the stability and
reliability of the coordination mechanism. Therefore, conducting an uncertainty analysis
of this coordination mechanism holds immense significance in advancing research on
cartridge conveying systems.

There are various quantitative analysis methods for uncertainty in mechanism dy-
namics systems. The central idea behind these methods is to clarify different sources of
uncertainty in order to fully capture the stochastic behavior of dynamics systems so as to
quantify the uncertainty consequences through numerical or experimental methods [1].
At present, mainstream uncertainty propagation methods mainly include Monte Carlo
simulation (MCS), the local expansion method, the orthogonal function expansion method,
the numerical integration method, etc. The Monte Carlo method is also known as the
random sampling method or statistical test method. With an increase in simulation times,
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its calculation results will gradually approach an accurate solution. Thanks to the develop-
ment of computer technology, the Monte Carlo simulation method has been widely used in
many engineering fields, and it is usually used as a quasi-accurate calculation method to
verify the accuracy of other approximate methods [2]. However, as this method requires
a large number of simulation tests to ensure the accuracy of the calculation results, it has
low calculation efficiency and high calculation costs, which make it difficult to apply to
many practical engineering problems, especially complex large-scale problems. By improv-
ing sampling technology, several variants of the direct Monte Carlo method, such as the
important sampling method [3,4], the subset simulation method [5–7], and the direction
sampling method [8], have been proposed and developed, which can greatly improve the
solving efficiency of the Monte Carlo method under certain conditions.

The above methods were all developed based on probability theory. There are two
main problems in applying probabilistic methods to uncertainty analysis. First, obtaining
an accurate trend of the probability distribution of uncertain variables depends on an
extensive statistical analysis of a large number of test samples. This method involves huge
computational complexity and may not be feasible or cost-effective for many practical engi-
neering problems. Second, because it is difficult to obtain accurate parameter distributions,
subjective assumptions are often made when using probabilistic methods for uncertainty
analysis. However, even if there is only a small deviation in the parameter distribution,
the results of an uncertainty analysis will produce significant errors [9]. Non-probabilistic
methods can effectively solve these shortcomings. Non-probabilistic models do not require
a detailed understanding of the sample characteristics of uncertain variables but focus on
determining the size or boundary of variable uncertainty, which is relatively easy. Second,
even if the data are limited, the size or upper and lower boundaries of variable uncertainty
can be more accurately determined, thus improving the accuracy of uncertainty analysis.

Since the middle and late 1980s, in order to overcome the dependence of classical
probability methods on large sample sizes, the interval model has been introduced into
the field of structural engineering to describe the fluctuation range of uncertain param-
eters. In the classical interval model [10], a single uncertain parameter is described as a
fluctuation-bounded interval variable, while the uncertain domain of multiple independent
parameters constitutes a “multi-dimensional box”. At present, in the uncertain analysis
problem, commonly used interval analysis methods can be divided into the vertex method
(VM) [11,12], the configuration method [13–16], the Taylor expansion method [17–19], etc.
The vertex method assumes that the structural response obtains its response boundary at
the vertex of the uncertain domain. However, the calculation speed of the vertex method
increases exponentially with an increase in the interval parameters, which is unacceptable
for large structures. The configuration method constructs a reasonable surrogate model by
setting a certain number of sample points in the uncertain parameter space so as to obtain
a range of structural responses. In order to meet certain accuracy requirements, a large
number of sample points are usually required. Especially when there are many interval
parameters, the calculation cost increases exponentially and then gets into a dimension dis-
aster. The Taylor expansion method is used to solve the uncertain static response problem.
This method involves carrying out the first- or second-order Taylor series expansion of the
structural response function at the midpoint of the interval to obtain the value range or
interval boundary of the structural response. The biggest advantage of this method is that it
has high solving efficiency, and the calculation cost increases linearly with an increase in the
interval parameters. The Taylor expansion method only considers the lower-order terms of
the Taylor series expansion, ignoring the higher-order terms. When the interval parameters
are largely uncertain, it is difficult to use the first-order Taylor expansion method to obtain
high-precision response results, and it even leads to a distortion of the results due to linear
approximation [20].

For the interval analysis problem with a high degree of uncertainty or nonlinearity, Qiu
and Elishakoff [21] proposed a subinterval prediction method, which divided the original
interval difference into several continuous subintervals, performed an interval analysis on
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these subintervals, respectively, and finally combined the interval analysis results. Zhou
et al. [22] used the subinterval prediction method to solve the structural analysis problem
with large uncertain parameters. Chen et al. [23] proposed a subinterval homogenization
method to identify the elasticity characteristics of periodic microstructure problems with
interval uncertainty and compared the results obtained with the MCS method to verify the
accuracy of the method. Fu et al. [24] proposed a dimension reduction subinterval predic-
tion method to combine the dimension reduction method and the subinterval prediction
method to deal with strong nonlinear and high-dimensional problems. The subinterval
prediction method has good calculation accuracy, but there are still problems in determin-
ing the number of subintervals and calculation efficiency, especially for high-dimensional
problems, in which the subinterval prediction method will produce a “dimensionality
explosion”, resulting in low calculation efficiency.

The proxy model is a response function approximation constructed through an exper-
imental design which serves as an approximate technique for addressing multivariable
problems. It significantly enhances computational efficiency while ensuring the fitting
accuracy of the proxy model and can be easily integrated with other methods, making it
widely employed in the field of engineering design at present. Currently, commonly used
proxy models primarily encompass machine learning [25,26] and deep learning neural net-
work models. Among them, the deep learning neural network model consists of multiple
hidden layers and exhibits exceptional fitting capability for complex, nonlinear relationships.
Henceforth, this paper employs the DNN proxy model as a substitute for the high-precision
dynamic model for simulation calculations in order to reduce computational costs.

The present paper establishes a rigid–flexible coupling dynamics model of the articu-
lated gap to investigate the coordination mechanism of an ammunition automatic loading
system. Experimental tests are conducted to validate the accuracy and effectiveness of
this dynamics model. Subsequently, in order to reduce computational complexity during
the uncertainty analysis of the coordination mechanism, a deep neural network surrogate
model is employed for simulation calculations as a substitute for the high-precision dy-
namics model. Furthermore, building upon the classical subinterval prediction method
based on Taylor expansion, we propose an improved directional subinterval prediction
approach that incorporates gradient information within specific intervals. An adaptive
convergence method is also designed to enhance calculation efficiency. Finally, we apply
this methodology to analyze positioning accuracy uncertainties in the coordination mecha-
nism and compare it with Monte Carlo simulations (MCSs) and other analysis methods,
demonstrating its superior efficiency and accuracy.

2. Dynamics Modeling of Coordinating Mechanism

A schematic diagram of the coordination mechanism structure of the coordination
drug delivery device is shown in Figure 1 below. The coordination mechanism is driven
by a hydraulic cylinder to rotate around the lug shaft, enabling the coordination function
of the flipping and drug delivery mechanisms at various angles of attack. This complex
and irregular mechanical structure primarily consists of rectangular tubular trusses welded
together. Prior to dynamic modeling, it is necessary to simplify its structure and make
reasonable assumptions. The rotary wheel hub serves as a pivotal component attached to
the lug shaft, connected through high-precision bearings. For dynamic modeling purposes,
it can be treated as a rigid body while disregarding any gaps between the lug shafts. The
flexible coordination arm acts as the main load-bearing component, linked to the flipping
mechanism via a rigid spline shaft and initially secured in position with pre-pressure.
The drug delivery mechanism and flipping mechanism are firmly connected using bolts
without any movement during coordination; thus, they can be simplified as concentrated
masses affixed at the end of the flexible coordination arm. Pin shafts hinge both the upper
fulcrums of the coordination cylinder and the flexible coordination arm, which are further
connected to the drug delivery device frame through fixed pin shafts. Considering that
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uncertainties in processing technology may result in unavoidable hinge gaps, these gaps
need thorough consideration during dynamics modeling.
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2.1. Mathematical Model of Flexible Cantilever Beam

According to the schematic diagram of the coordination mechanism in Figure 1, the
rigid–flexible coupling system of the coordination mechanism constitutes a typical class I
rigid–flexible coupling problem [27], in which the coordination arm can be regarded as a
flexible cantilever beam, and the overturning and dosing mechanisms can be regarded as
fixed loads. Based on this, the dynamic modeling of the coordination arm is conducted,
and its deformation model is shown in Figure 2. The coordinate system encompasses the
inertial coordinate system, O − XY, and the floating coordinate system, o − xy, established
based on the flexible beam.
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It can be seen from Figure 2 that the vector of the origin of the floating coordinate
system with respect to the inertial coordinate system is rO. Take any point, P, on the flexible
cantilever beam; its vector in the floating coordinate system before deformation is r, and
its coordinates in the floating coordinate system are [x, 0]T. After the deformation of the
flexible cantilever beam, the point reaches point P′, and then the vector of point P′ with
respect to the inertial coordinate system can be expressed as follows:

rp′ = rO + C(r + RR), (1)

where C is the coordinate transformation matrix of the floating coordinate system relative
to the inertial coordinate system, RR is the deformation displacement vector from point
P to point P′ before and after deformation, and its coordinates in the floating coordinate
system are as follows:

ru =

[
u(x, t)
v(x, t)

]
=

[
w1(x, t) + wc(x, t)

w2(x, t)

]
=

w1(x, t)− 1
2
∫ x

0 (
∂w2(ε, t)

∂ε
)

2

dε

w2(x, t)

, (2)

where w1(x, t) is the x-axis directional extension in the floating coordinate system, w2(x, t)

is the lateral bending deformation, and wc(x, t) = −1
2
∫ x

0 (
∂w2(ε, t)

∂ε
)

2

dε is the longitudinal
deformation caused by the bending deformation of the flexible cantilever beam, which is
called the nonlinear coupling deformation [1]. When the flexible cantilever beam works at
a relatively high speed, the influence of uc on its dynamic characteristics cannot be ignored.

The finite element method and the hypothetical mode method are usually adopted
to solve the vibration model of a flexible cantilever beam. Because the dynamics model
established by the finite element method has many degrees of freedom, which is not
conducive to active control design, the structural control of the whole system is actually
realized by controlling several major modes. Therefore, the discretization method of the
hypothetical mode method is more convenient for subsequent control research to establish
the dynamics model. The specific expression for the deformation of the flexible cantilever
beam is as follows: {

w1(x, t) = N1(x)q1(t)
w2(x, t) = N2(x)q2(t)

, (3)

where N1(x) and N2(x) are, respectively, the eigenfunction row vectors of longitudinal
and transverse vibrations and q1(t) and q2(t) are, respectively, the eigenfunction column
vectors of longitudinal and transverse vibrations, which can be expressed as follows:{

Ni(x) = (N(i)
1 (x), N(i)

2 (x), · · · N(i)
n (x))

qi = (q(i)1 , q(i)2 , · · · q(i)n )
T , (4)

where, for i = 1, 2, n is the number of hypothetical modes. The eigenfunction can be
expressed as follows:

N(1)
n (x) = sin (2j−1)

2L x, j = 1, 2 · · · n
N(2)

n (x) = cos β jx − cosh β jx + γj(sin β jx − sinhβ jx), j = 1, 2 · · · n
γi =

(cos βix+cosh βix)
(sin βix+sinhβix)

(5)
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Then, the deformation displacement vector, RR, from point P to point P′ before and
after deformation can be expressed as follows:

RR =

w1 −
1
2
∫ x

0 (
∂w2(ε, t)

∂ε
)

2

dε

w2

 =

[
N1(x)q1(t)−

1
2

qT
2 S(x)q2(t)

N2(x)q2(t)

]
(6)

In summary, the generalized coordinates of a flexible cantilever beam can be expressed
as follows:

Q f =
[
rO, θ, qT

1 , qT
2

]T
, (7)

where rO and θ are the reference coordinates of the floating coordinate system. According
to the second type of Lagrange equations, the rigid–flexible coupling dynamic equation of
the flexible cantilever beam can be derived as follows:

M
..
Q f + C

.
Q f + KQ f = F, (8)

where M is the generalized mass matrix, C is the generalized damping matrix, K is the
generalized stiffness matrix, and F is the generalized force matrix.

2.2. Mathematical Model of Contact Force in Clearance of Shaft–Hole Joint

When the two bodies represented by the shaft and hub undergo a curved surface
contact collision, the contact collision force, FC, can be expressed by the combined force of
the normal contact force, FN , and the tangential contact force, FT :

FC = FN + FT (9)

In the classical dynamic modeling of contact collision force, the Hertz contact model is
usually used to represent the contact of shaft–hole articulated clearance, but this model
assumes that the contact collision between the shaft and the hub is completely elastic,
ignoring the energy loss in the process. However, in practical engineering problems, more
factors should be considered in the contact collision force, such as the relative contact
velocity, the geometric parameters of the shaft and hub, material properties, etc. In this
paper, a mixed contact force model is adopted to construct the normal contact collision
force of shaft–hole articulated clearance [27], which can be expressed as follows:

FN = Knδn + Dmod
.
δ, (10)

where Dmod = 3Kn(1−c2
r )e2(1−cr)δn

4
.
δ
− is the improved nonlinear damping coefficient.

Kn = 1
8 πE∗

√
2δ(3(Rh−Ra)+2δ)2

(Rh−Ra+δ)3 is the improved nonlinear stiffness coefficient in the mixed

contact force model, where E∗ =
Ea(1−v2

h)+Eh(1−v2
a)

EhEa
is the composite elastic modulus, Ea

and Eh are the elastic moduli of the shaft and hub, va and vh are the Poisson’s ratios of the
shaft and hub, δ is the initial collision velocity, cr is the recovery coefficient, and n is the
exponential coefficient.

The tangential contact force of shaft–hole articulated clearance is usually replaced
by a tangential friction force. In this paper, the Ambrosio coulomb friction model is
adopted, which is a continuous function of the tangential relative velocity and can guarantee
the stability and continuity of numerical integration [27]. Its expression form is shown
as follows:

FT = − fkcdFNsgn(Vt), (11)



Aerospace 2024, 11, 419 7 of 20

where fk is the friction coefficient and cd is the dynamic correction coefficient related to
tangential velocity, which can be expressed as follows:

cd =


0 Vt ≤ v0
Vt−v0
v1−v0

v0 ≤ Vt ≤ v1

1 Vt ≥ v1

, (12)

where v0 and v1 are the boundary values of the given tangential velocity interval.

2.3. Experimental Study and Model Verification of Coordination Mechanism

In order to verify the accuracy and effectiveness of the dynamics model of the coordi-
nating mechanism, this section will conduct a comparative verification of the dynamics
model based on a principle prototype platform built in the laboratory. The principle pro-
totype platform is shown in Figure 3. The test process of the coordination mechanism is
simplified as follows: the hydraulic oil source provides power to the coordination driving
cylinder, while the PLC control box regulates the opening degree of the hydraulic servo
valve based on instructions, thereby enabling the completion of coordinated actions by
driving the coordination cylinder. During this process, pressure sensors installed on the
coordination driving cylinder measure and record data regarding both rodless cavity and
rod cavity pressures. These measured values serve as inputs for a dynamic simulation
model of the coordination mechanism. Additionally, an angle encoder is positioned at
the hinge connecting the coordination arm and ear shaft to monitor real-time changes in
angle relative to their initial positions. This information serves as output for evaluating
the actual conditions within the coordination mechanism. All aforementioned data are
recorded in real time using a data acquisition instrument for subsequent model comparison
and verification.

This paper mainly conducts tests and records for the condition that the coordination
mechanism is fully charged and the coordination arm is coordinated from the 3◦ drug
contact position on the horizontal surface to the 60◦ angle position below the horizontal
surface, namely a complete coordination angle of 63◦. As shown in Figures 4–6 below,
Figures 4 and 5 are the pressure smooth curves of the rodless cavity and the rod-loaded
cavity of the coordination driving cylinder measured by the pressure sensor in real time
during the coordination mechanism’s coordination to the 60◦ angle action, respectively,
and Figure 6 is the cylinder force curve obtained by converting the pressure data of the
rodless cavity and the rod-loaded cavity of the coordination driving cylinder.

In order to verify the validity of the dynamics simulation model, Test Data 1 were
selected as the dynamic input into the dynamics simulation model of the coordinating
mechanism, and the angular displacement of the coordinating mechanism coordinated to a
60◦ incident angle under the full charge state was compared with the real-time measured
results of the angle encoder when the coordinating mechanism was coordinated to a
60◦ incident angle under the actual working conditions, as shown in Figure 7. Through
comparative analysis, the simulation results were found to be close to the test results,
indicating the rationality and validity of the dynamics simulation model of the coordinating
mechanism, and it can be considered that the simulation model can be applied to the
subsequent dynamics characteristic analysis, uncertainty analysis, and optimization.
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3. Construction of Coordination Agency Agent Model

The structure of the ammunition automatic loading system is complex and has obvious
structural characteristics. The structural dynamics model takes into account a variety of
factors, resulting in a strong nonlinear relationship between input and output. In the
process of the uncertainty analysis and optimization of the coordination mechanism, the
dynamics model needs to be called upon for calculation many times. With an improvement
in the accuracy of the dynamics model, the cost of a single calculation increases significantly.
Directly calling upon the original dynamics model will lead to unbearable calculation costs.
Therefore, it is a common solution to use a high-precision surrogate model instead of
the dynamics simulation model. The main advantage of the surrogate model method
is the ability to use an implicit approximation function to approximately replace the
original dynamics model so as to carry out calculation analysis or optimization and reduce
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calculation costs. In this section, a surrogate model of the coordination mechanism is
constructed based on a deep neural network (DNN).

3.1. Deep Neural Network Architecture

The neural network method is widely used in surrogate model research due to its excel-
lent nonlinear fitting ability. It is usually composed of a multilayer system, consisting of an
input layer, an output layer, and a hidden layer, which can transform input information into
useful output information. In research on multi-hidden neural network algorithms, many
scholars have found that with an increase in the number of hidden layers, the ability of
neural network models to analyze complex patterns is also improved. Multi-hidden neural
networks are actually deep versions of shallow neural networks which attempt to express
features by using more neurons, which is typical of deep neural networks (DNNs). Com-
pared with the classical structure of artificial neural network models, the main difference
between these and DNNs is that they have more hidden layers. As long as there are more
than three hidden layers, it can be defined as a DNN, and its basic architecture is shown
in Figure 8. DNNs can be described as having a layout consisting of multilayer neurons,
which are interconnected by weights and adjusted iteratively through an optimization
process. The initial data are input into the input layer, and then the input layer distributes
the data to each neuron in the first hidden layer. The output of the first hidden layer is then
passed to the next hidden layer until it reaches the output layer, where data are distributed
to the output neurons, which are equal in number to the number of categories. During
training, the DNN uses a backpropagation algorithm. It compares the network output
with the expected output to calculate the error and propagates the error back. The random
gradient descent method, combined with a loss function, is used to update the weights.
This process is iterated and repeated, updating all training data on the entire network in a
training round. The single-neuron model of a DNN is shown in Figure 9.
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The construction of a deep neural network (DNN) agent model typically involves two
stages: forward propagation and backward propagation. During the forward propagation
stage, the distance from the input layer to the output layer is computed using training
samples in order to estimate the output result of the test samples. Subsequently, network
parameters are adjusted to minimize the discrepancy between the calculated outputs for
training samples and their target values. In the backward propagation stage, the gradient
descent algorithm is employed to optimize the loss function and determine weight matrices
and bias terms that yield minimal loss values as optimal parameters. The mean-squared
error function (MSE) serves as the utilized loss function in this study:

J(W, B, x, y) =
1
n

n

∑
i=1

∥yi − f (xi)∥2 (13)

In this equation, W and B represent the input weight matrix and bias matrix, respec-
tively, while yi and f (xi) represent the theoretical value and predicted value of the output
of layer i, respectively. ∥•∥ represents the Euclidean norm. For each layer, W and B satisfy
the following relationship:

f (xi) = σ(zi) = σ(Wi f (xi−1) + Bi) (14)

where zi is the input of layer i, and σ(•) is the activation function, which is adopted as
the ReLU activation function, whose nonlinear ability can make the DNN perform better
in nonlinear regression, not only accelerating the convergence speed but also improving
the model’s predictive ability. Then, the loss function in Equation (13) can be rewritten
as follows:

J(W, B, x, y) =
1
n

n

∑
i=1

∥yi − σ(Wi f (xi−1) + Bi)∥2 (15)

From the above equation, we can obtain the gradients of W and B as follows:

∂J(W, B, x, y)
∂Wi

= [(yi − f (xi))⊙ σ(zi)][ f (xi−1)]
T (16)

∂J(W, B, x, y)
∂Bi

= (yi − f (xi))⊙ σ(zi) (17)

Then, the gradient for any layer j is as follows:

δj =
∂J(W, B, x, y)

∂zj
=

(
∂zi

∂zi−1
•∂zi−1

∂zi−2
. . . •

∂zj+1

∂zj

)
∂J(W, B, x, y)

∂zi
(18)
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According to the forward propagation algorithm, Wj and Bj satisfy the following
relationship:

zj = Wj f
(
xj−1

)
+ Bj (19)

Then, the gradients of Wj and Bj in layer j are as follows:

∂J(W, B, x, y)
∂Wj

= δj
[

f
(
xj−1

)]T (20)

∂J(W, B, x, y)
∂Bj

= δj (21)

From the recursive formula above, we can derive the following:

δj =
(
Wj+1

)T
δj+1 ⊙ σ

(
zj
)

(22)

If the hidden layer j contains m neurons, then the updates for Wj and Bj of layer j are
represented as follows:

Wj = Wj − α
m

∑
p=1

δp,j
[

f
(
xp,j−1

)]T
(23)

Bj = Bj − α
m

∑
p=1

δp,j (24)

In this formula, α represents the learning efficiency.
During the forward propagation process of constructing a DNN, the weights and

biases of each layer’s neuron nodes are initialized randomly, resulting in a stochastic
prediction, f (xi). Subsequently, employing the backpropagation algorithm, the neural
network parameters undergo fine-tuning based on the loss function, Equation (13), to
progressively converge towards their theoretical values. After multiple iterations of weight
and bias updates, the trained DNN surrogate model is obtained.

3.2. Construction of Proxy Model for Coordination Mechanism Based on DNN

According to the construction method of the DNN surrogate model, training samples
for training the DNN surrogate model are first obtained, and multiple values are extracted
and combined in the subintervals of each uncertain input parameter interval to form the
input samples for training the DNN surrogate model. The input samples are taken into
the coordination mechanism dynamics model for solving to obtain corresponding output
responses to form the training set, validation set, and test set of the surrogate model, and
then the input samples and output responses are used for training the DNN surrogate
model. Among them, 1000 groups of input samples are selected, and the sampling intervals
of uncertain input parameters of the input samples are shown in Table 1.

Table 1. Input parameter training set sampling interval.

Symbol Uncertain Parameters Value Range Theoretical Design Value

MXT
Loading (without drug) mass of

drug-coordinating arm/kg [101.14, 105.73] 102.06

my Module drug weight (6 blocks)/kg [20.2, 20.4] 20.24
R1 Upper cylinder fulcrum pin radius/mm [12.4, 12.5] 12.5
R2 Upper cylinder fulcrum hole radius/mm [12.5, 12.6] 12.5
R3 Radius of coordinator fulcrum hole/mm [12.5, 12.6] 12.5
R4 Lower fulcrum shaft radius of cylinder/mm [14.9, 15] 15
R5 Lower fulcrum hole radius of cylinder/mm [15, 15.1] 15
µ Coefficient of friction [0.25, 0.35] 0.3



Aerospace 2024, 11, 419 13 of 20

The regression performance of the coordinating agency DNN surrogate model on
the training set, validation set, and test set is shown in Figure 10. As can be seen from
the training results, the complex correlation coefficients, R, of the training set, validation
set, and test set are all above 0.9, indicating the accuracy and effectiveness of the trained
coordinating agency DNN surrogate model, which can be used for subsequent uncertainty
analysis and interval parameter optimization.
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4. Uncertainty Propagation Analysis Method Based on Subinterval Prediction

In this section, a subinterval prediction-based uncertainty propagation analysis method
is proposed and applied to the uncertainty analysis of the coordinating mechanism. This
method can accurately predict the upper and lower boundaries of the uncertainty output,
providing a theoretical basis for subsequent parameter optimization.

4.1. Directional Subinterval Prediction Method

Taking the two-dimensional uncertain input vector, X = (X1, X2), interval analysis
problem as an example, for convenience, assume that both input parameter intervals are
divided into m subintervals and stipulate that m is 2j, where j is a non-negative integer.
One of the difficulties of the classical subinterval prediction method is that it needs to
perform a first-order Taylor approximation on all the subinterval combinations, and in the
two-dimensional problem, it needs to perform a first-order Taylor approximation on the
midpoint of all the subinterval combinations. To solve this problem, this paper proposes a
directional subinterval prediction method, which can reduce the number of points to be
calculated. Firstly, select any subinterval, XI

0, in the subinterval domain of the input vector
X, and according to the classical subinterval prediction method, conduct a first-order Taylor
expansion at the midpoint, Xc

0, of the subinterval with an amplitude of ∆X/m:

f
(

XI
0

)
= f (Xc

0) +
∂ f (X)

∂X

∣∣∣X=Xc
0

∆X
m

, (25)

where XI
0 = [Xc

0 − Xr/m, Xc
0 + Xr/m]. The upper and lower bounds of f

(
XI

0

)
can be

expressed as follows:

f l
(

XI
0

)
= f (Xc

0)−
∣∣∣∣∂ f (X)

∂X

∣∣∣X=Xc
0

∣∣∣∣Xr

m
(26)

f u
(

XI
0

)
= f (Xc

0) +

∣∣∣∣∂ f (X)
∂X

∣∣∣X=Xc
0

∣∣∣∣Xr

m
(27)

To avoid performing first-order Taylor expansions at each central point of the subin-
terval domain, a reasonable approach is to find an expansion path and predict the upper
bound of f (X) by applying first-order Taylor expansions at multiple points on the path.
When predicting the upper bound of f (X), the expansion path of extension points should
move in the direction of the increasing output response function. Therefore, according to
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the gradient of f (X) relative to X at Xc
0, the next expansion point, Xc

u1, required to predict
the upper bound can be expressed as follows:

Xc
u1 = Xc

0 + sign
(

∂ f (X)
∂X

∣∣∣X=Xc
0

)
Xr

m
(28)

The first-order Taylor expansion of f (X) with an amplitude of ∆X/m at Xc
u1 is

as follows:

f
(

XI
u1

)
= f (Xc

u1) +
∂ f (X)

∂X

∣∣∣X=Xc
u1

∆X
m

(29)

where the subinterval XI
u1 = [Xc

u1 − Xr/m, Xc
u1 + Xr/m]. The upper and lower bounds of

f (Xu1) obtained from (26) and (27) can be expressed as follows:

f l
(

XI
u1

)
= f (Xc

u1)−
∣∣∣∣∂ f (X)

∂X

∣∣∣X=Xc
u1

∣∣∣∣Xr

m
(30)

f u
(

XI
u1

)
= f (Xc

u1) +

∣∣∣∣∂ f (X)
∂X

∣∣∣X=Xc
u1

∣∣∣∣Xr

m
(31)

When the above steps are performed n− 1 times in the same way, all the expansion points,
Xc

ui, used to predict the upper bound can be uniformly expressed by the following equation:

Xc
ui = Xc

u(i−1) + sign
(

∂ f (X)
∂X

∣∣∣X=Xc
u(i−1)

)
Xr

m
, i = 1, 2, . . . , m − 1 (32)

At the above point, the output response is a first-order Taylor expansion with an
amplitude of ∆X/m, and the upper and lower bounds of all the expansion points’ output
responses are obtained as follows:

f l
(

XI
ui

)
= f (Xc

ui)−
∣∣∣∣∂ f (X)

∂X

∣∣∣X=Xc
ui

∣∣∣∣Xr

m
, i = 1, 2, . . . , m − 1 (33)

f u
(

XI
ui

)
= f (Xc

ui) +

∣∣∣∣∂ f (X)
∂X

∣∣∣X=Xc
ui

∣∣∣∣Xr

m
, i = 1, 2, . . . , m − 1 (34)

where the subinterval XI
ui = [Xc

ui − Xr/m, Xc
ui + Xr/m], and the upper bound of

f
(

XI
u1, XI

u2, . . . , XI
ui

)
can be obtained by interval fusion:

f u
(

XI
u1, XI

u2, . . . , XI
ui

)
= ∪

i=1,2,...,m−1
f u
(

XI
ui

)
= max

i=1,2,...,m−1
f u
(

XI
ui

)
(35)

Similar to the method used for calculating the upper bound of the output response
value interval, when predicting the lower bound of f (X), the expansion path of the exten-
sion point should move along the direction of the decreasing output response function.
Therefore, according to the gradient of f (X) relative to X at Xc

0, all the expansion points, Xc
li,

required for predicting the lower bound can be uniformly expressed as follows:

Xc
li = Xc

l(i−1) − sign
(

∂ f (X)
∂X

∣∣∣X=Xc
l(i−1)

)
Xr

m
, i = 1, 2, . . . , m − 1 (36)

According to (33) and (34), the upper and lower bounds of the output responses of all
the expansion points are as follows:

f l
(

XI
li

)
= f (Xc

li)−
∣∣∣∣∂ f (X)

∂X

∣∣∣X=Xc
li

∣∣∣∣Xr

m
, i = 1, 2, . . . , m − 1 (37)

f u
(

XI
li

)
= f (Xc

li) +

∣∣∣∣∂ f (X)
∂X

∣∣∣X=Xc
li

∣∣∣∣Xr

m
, i = 1, 2, . . . , m − 1 (38)
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where the subinterval XI
li = [Xc

li − Xr/m, Xc
li + Xr/m]. According to Equation (35), the

lower bound of f
(

XI
l1, XI

l2, . . . , XI
li

)
can be obtained by interval fusion:

f l
(

XI
l1, XI

l2, . . . , XI
li

)
= ∪

i=1,2,...,m−1
f l
(

XI
li

)
= min

i=1,2,...,m−1
f l
(

XI
li

)
(39)

The directional subinterval prediction is based on gradient analysis by constructing
two expansion paths from X0 to Xc

ui and Xc
li and selecting two subinterval sets along different

expansion paths. Therefore, when predicting the response interval, only a small number of
points on the paths with increasing or decreasing gradients are selected for the first-order
Taylor expansion. Compared with the classical subinterval analysis method, this method
can greatly reduce the amount of calculation needed. In order to simplify the analysis
process, in the above description of the two-dimensional problem, each input parameter is
divided into the same number of subintervals, while different input parameters can be set
to different numbers of subintervals according to the needs of the actual problem.

4.2. Adaptive Strategy for Subinterval Partitioning

In the subinterval prediction analysis method, the accuracy of the prediction results is
closely related to the number of subintervals. When the input parameter interval is divided
into a sufficient number of subintervals, both classical subinterval prediction and improved
directional subinterval prediction can achieve sufficient accuracy. However, an increase in
the number of subintervals means an increase in the number of calculations and a decrease
in calculation efficiency. Therefore, on the premise of ensuring accuracy, it is an important
measure to reduce the number of subintervals divided by the input parameter interval as
much as possible to improve the calculation efficiency.

According to the directional subinterval prediction method in the previous section,
the output response is first expanded by the first-order Taylor series at the midpoint of the
input parameter interval, and the upper and lower bounds of the initial interval, f l

0

(
XI
)

and f u
0

(
XI
)

, can be obtained by Equations (30) and (31). If the initial interval cannot
meet the prediction accuracy of the output response, a subinterval division of the input
parameter interval is needed. Therefore, after obtaining the initial interval, f (X), the
parameter interval is divided into two equal subintervals by the midpoint of the interval,
where the first-order Taylor series is first expanded. Then, the first-order Taylor series is,
respectively, expanded at the midpoints of the two subintervals, and the new upper and
lower bounds of the interval f (X) can be obtained by Equations (35) and (39). The adaptive
strategy for subinterval division is shown in Figure 11 below.
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Global convergence is guaranteed on the premise of ensuring accuracy. The conver-
gence index is defined as follows:∣∣∣∣ f u

q (XI)− f u
q−1(XI)

f u
q (XI)

∣∣∣∣ ≤ ε1∣∣∣∣ f l
q(XI)− f l

q−1(XI)
f l
q(XI)

∣∣∣∣ ≤ ε2

, (40)

where q is the number of adaptive iterations for subinterval division; f l
q

(
XI
)

and f u
q

(
XI
)

are the upper and lower bounds of the output response value interval calculated from q
iterations; f l

q−1

(
XI
)

and f u
q−1

(
XI
)

are the upper and lower bounds calculated through
(q − 1) iterations; and ε1 and ε2 are the defined convergence indexes, namely, the accuracy
indexes representing the output response prediction.

4.3. Computing Process

To sum up, the main flow chart of the directional subinterval prediction method is
shown in Figure 12, and the specific implementation steps are as follows:
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Step 1: Summarize the main influencing factors according to the mechanism failure
mode, list the uncertain input parameters, and determine the uncertain input parameters by
referring to the previous structural design, specified indicators, and existing experimental
data.

Step 2: Determine the uncertain output response according to the mechanism’s uncer-
tainty problem and construct the output response function, f

(
XI
)

. Let q = 0.
Step 3: Find the appropriate expansion path for predicting the upper and lower bounds

of the output response according to the gradient analysis of f
(

XI
)

.

Step 4: Calculate the upper and lower bounds of the value interval of f
(

XI
ui

)
and

f
(

XI
li

)
, respectively, according to Equations (33) and (34) and Equations (37) and (38). Pre-

dict the upper and lower bounds of the interval f
(

XI
)

according to Equations (35) and (39)
through interval fusion.

Step 5: Test whether the upper and lower bounds of f
(

XI
)

obtained through the q
iterations meet the specified convergence index. If they do meet it, the output response
prediction interval is obtained; if not, proceed to Step 6.

Step 6: Divide the value interval of the input parameters into two equal subintervals
with the midpoint of the interval as the dividing line, take the midpoints of the two new
subintervals as the expansion point, and return to Step 3, with q = q + 1.

5. Analysis of Uncertainty Propagation in Coordination Mechanism Based on
Subinterval Prediction

Based on the DNN surrogate model of the coordinating mechanism established in the
previous section, the uncertainty of the positioning accuracy of the coordinating mecha-
nism is quantitatively analyzed by using the directional subinterval prediction method
and the subinterval division and convergence strategy. According to the theoretical design
and engineering practice of the coordinating mechanism, the value interval and uncer-
tainty level of the uncertainty input parameters of the coordinating mechanism are shown
in Table 2.

Table 2. Uncertainty input parameter interval and uncertainty level.

Index Uncertain Parameters Value Range Theoretical Design Value

1 Loading (without drug) mass of
drug-coordinating arm/kg [101.14, 105.73] 0.0222

2 Module drug weight (6 blocks)/kg [20.2, 20.4] 0.0049
3 Upper cylinder fulcrum pin radius/mm [12.4, 12.5] 0.004
4 Upper cylinder fulcrum hole radius/mm [12.5, 12.6] 0.004
5 Radius of coordinator fulcrum hole/mm [12.5, 12.6] 0.004
6 Lower fulcrum shaft radius of cylinder/mm [14.9, 15] 0.0033
7 Lower fulcrum hole radius of cylinder/mm [15, 15.1] 0.0033
8 Coefficient of friction [0.25, 0.35] 0.1667

The uncertain input parameter interval is brought into the DNN surrogate model of
the coordinating mechanism, and the directional subinterval prediction method is used
to calculate the interval boundary of the output response of the coordinating mechanism,
where the convergence index is set to ε1 = ε2 = 0.01. In addition, in order to determine the
accuracy of the proposed method, the results of the MCS method are used as the accurate
solution, where the number of iterations in the MCS method is 106, and the results of the
first-order Taylor expansion method and the classical subinterval prediction method are
used as the reference solution. The results are shown in Figure 13 and Table 3.



Aerospace 2024, 11, 419 18 of 20

Aerospace 2024, 11, x FOR PEER REVIEW 19 of 21 
 

 

  
(a) Output response boundary contrast (b) Error contrast 

Figure 13. Output response boundary and error comparison of coordination mechanisms obtained 

by directional subinterval prediction method and MCS method. 

Table 3. Upper and lower boundaries of output responses of coordination mechanisms obtained by 

different analytical methods. 

Methods 

Lower Bound of Output Re-

sponse 

Upper Bound of Output Re-

sponse Number of Calls 

Value Error Value Error 

MCS 26.2917 — 27.2592 — 610  
First-order Taylor expansion 26.2649 10.19‱ 27.3089 18.23‱ 9 

Classical subinterval prediction 26.2737 6.85‱ 27.2749 5.76‱ 2304 

Directional subinterval prediction 26.2898 0.72‱ 27.2562 1.10‱ 27 

The output response boundary results of the coordinating mechanisms using the di-

rectional subinterval prediction are shown in Figure 13a. As can be seen from the figure, 

the convergence results of the output response boundary are obtained only through two 

adaptive iterations, in which each uncertain input parameter interval is divided into two 

subintervals. The upper and lower boundaries of the output response of the coordinating 

mechanism are very close to the exact solution calculated by the MCS method, with rela-

tive errors of only 0.72‱ and 1.10‱, and the accuracy can be improved again by increasing 

the number of subintervals. The results of the first-order Taylor expansion method and 

the classical subinterval prediction method are shown in Table 3. From the table, the rela-

tive errors of the lower boundary of the output response obtained by the first-order Taylor 

expansion method and the classical subinterval prediction method are 10.19‱ and 6.85‱, 

respectively. The results of the directional subinterval prediction method and the classical 

subinterval prediction method are in good agreement with the exact solution. However, 

the directional subinterval prediction method only needs 27 iterations of the surrogate 

model, while the classical subinterval prediction method needs a subinterval analysis of 

all the possible subinterval combinations, so it needs 2304 iterations. Therefore, the direc-

tional subinterval prediction method proposed in this paper can greatly reduce the calcu-

lation cost and improve the calculation efficiency under the premise of ensuring accuracy, 

indicating that this method can be used in uncertainty analysis and follow-up research on 

coordinating mechanisms. 

6. Conclusions 

This paper investigates the coordination mechanism of a cartridge conveying system 

by constructing a rigid–flexible coupling dynamics model of the coordination mechanism 

with a hinged gap, based on models of shaft–hole hinged gaps and flexible cantilever 

21
26.2

26.4

26.6

26.8

27.0

27.2

27.4

O
ut

pu
t 

re
sp

on
se

Number of subinterval

 Upper bound of the proposed method
 Lower bound of the proposed method
 Upper bound of MCS
 Lower bound of MCS

21

0.0000

0.0005

0.0010

0.0015

0.0020

E
rr

or

Number of subinterval

 Error of the lower bound
 Error of the upper bound

Figure 13. Output response boundary and error comparison of coordination mechanisms obtained
by directional subinterval prediction method and MCS method.

Table 3. Upper and lower boundaries of output responses of coordination mechanisms obtained by
different analytical methods.

Methods
Lower Bound of Output Response Upper Bound of Output Response

Number of Calls
Value Error Value Error

MCS 26.2917 — 27.2592 — 106

First-order Taylor expansion 26.2649 10.19‱ 27.3089 18.23‱ 9
Classical subinterval prediction 26.2737 6.85‱ 27.2749 5.76‱ 2304

Directional subinterval prediction 26.2898 0.72‱ 27.2562 1.10‱ 27

The output response boundary results of the coordinating mechanisms using the
directional subinterval prediction are shown in Figure 13a. As can be seen from the figure,
the convergence results of the output response boundary are obtained only through two
adaptive iterations, in which each uncertain input parameter interval is divided into two
subintervals. The upper and lower boundaries of the output response of the coordinating
mechanism are very close to the exact solution calculated by the MCS method, with relative
errors of only 0.72‱ and 1.10‱, and the accuracy can be improved again by increasing
the number of subintervals. The results of the first-order Taylor expansion method and
the classical subinterval prediction method are shown in Table 3. From the table, the
relative errors of the lower boundary of the output response obtained by the first-order
Taylor expansion method and the classical subinterval prediction method are 10.19‱
and 6.85‱, respectively. The results of the directional subinterval prediction method and
the classical subinterval prediction method are in good agreement with the exact solution.
However, the directional subinterval prediction method only needs 27 iterations of the
surrogate model, while the classical subinterval prediction method needs a subinterval
analysis of all the possible subinterval combinations, so it needs 2304 iterations. Therefore,
the directional subinterval prediction method proposed in this paper can greatly reduce
the calculation cost and improve the calculation efficiency under the premise of ensuring
accuracy, indicating that this method can be used in uncertainty analysis and follow-up
research on coordinating mechanisms.

6. Conclusions

This paper investigates the coordination mechanism of a cartridge conveying system
by constructing a rigid–flexible coupling dynamics model of the coordination mechanism
with a hinged gap, based on models of shaft–hole hinged gaps and flexible cantilever
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beams. Through conducting experiments on the principle prototype platform and ana-
lyzing recorded data, we compare the output response under actual conditions with that
obtained from simulation using the dynamics model to verify its accuracy and effective-
ness. However, due to the numerous calculation models required in uncertainty analysis,
employing a high-precision dynamics model would result in significant computational
costs. Therefore, we utilize a deep neural network surrogate model as an alternative for the
simulation calculations instead. Subsequently, we propose a directional subinterval predic-
tion method based on classical subinterval prediction methods and employ an adaptive
subinterval partition method to accurately approximate output response interval bound-
aries while reducing the use of the model. This approach is then applied to predict the
positioning accuracy of the coordination mechanism under uncertain input parameters,
obtaining an output response interval influenced by these uncertainties. The results are
compared with those obtained from Monte Carlo simulations (MCS), the first-order Taylor
expansion method, and classical subinterval prediction methods. Our findings demon-
strate close agreement between the outcomes derived from our proposed method and the
exact solutions derived from the MCS simulations. Moreover, compared to a MCS, which
requires 106 function calls in order to obtain results, only 27 function calls are needed
when using our proposed method. In contrast to conventional analysis methods like MCSs,
not only does our proposed method exhibit higher accuracy, but it also demonstrates
superior efficiency.
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