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Abstract: Aircraft cabin noise poses a health risk for regular passengers and crew, being connected to
a heightened risk of cardiovascular disease, hearing loss, and sleep deprivation. At cruise conditions,
its most significant cause is random pressure fluctuations in the turbulent boundary layer of aircraft,
and as such the derivation of an accurate model to predict the power spectral density of these
fluctuations remains an important ongoing research topic. Early models (such as those by Lowson
and Robertson) were derived by simplifying the governing equations, the Reynolds-averaged Navier
Stokes equations, and solving for fluctuating pressure. Most subsequent equations were derived
either by applying statistical and mathematical techniques to simplify the Robertson and Lowson
models or by making modifications to address apparent shortcomings. Overall, these models have
had varying success—most are accurate near the Mach and Reynolds numbers they were designed for,
but less accurate under other conditions. In response to this shortcoming, Dominique demonstrated
that a novel technique (machine learning, specifically artificial neural networking) could produce
a model that is accurate under most flight conditions. This paper extends this research further by
applying a different machine learning technique (nonlinear least squares regression analysis) and
dimensional analysis to produce a new model. The resulting equation proved accurate under its
design conditions of low airspeed (approximately 11 m/s) and low turbulent Reynolds number
(approximately 850,000). However, a larger dataset with more diverse flight conditions would be
required to make the model more generally applicable.

Keywords: machine learning; power spectral density models; regression models; turbulent boundary
layer wall pressure fluctuations

1. Introduction

Typical median noise levels in an aircraft cabin have been estimated to be as high
as 100 dBA [1] during cruise conditions, despite regulatory requirements by the Ontario
Occupational Health and Safety Act not permitting noise level exposure in excess of 85 dBA
over an eight-hour shift [2]. Unsurprisingly, passengers have reported that these noise levels
contribute significantly to in-flight discomfort [3]. However, for regular crew members the
effects have led to genuine health and safety risks, ranging from difficulty communicating
during critical flight phases [4] to a higher risk of cardiovascular disease and hearing
loss, as well as issues with sleep deprivation [5]. There are several causes of this aircraft
cabin noise (including turbulence-generated noise, engine/mechanical noises, and internal
passenger and equipment noises), with their relative importance varying depending on
the phase of flight the aircraft is in [6]. At takeoff and landing, mechanical noises from
the engine and jet dominate. However, since takeoff and landing represent a relatively
minimal percentage of most commercial flights, much of the research has instead focused
on cruise conditions, where turbulent boundary layer (TBL)-generated noise dominates [7].
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To analyze and quantify the amount of noise this generates, the physical cause of TBL noise
must first be understood.

To do this, consider the case of air that flows uniformly and unobstructed before its
bottom edge comes into contact with a flat plate. Initially, the flow will be laminar or
smooth. However, as it progresses along the plate, the fluid layers nearer to the plate slow
due to frictional and viscous effects, leading to differing velocity gradients within the flow
field and eventually the formation of eddies (swirling, turbulent flow). This turbulent flow
creates pressure fluctuations that induce vibrations on the wing, which then transfer sound
energy into the aircraft cabin [8].

While theoretically it would be possible to model turbulence by deriving an equation
for fluctuating pressure, doing so is extremely difficult in practice. In fact, turbulence
problems such as this have historically been among the most difficult to model as their
governing equations, the Reynolds-Averaged Navier Stokes (RANS) equations, lack closure.
One workaround is to use computational fluid dynamics (CFD) software to iteratively
simulate the RANS solution for given geometry and boundary conditions, but this has
proven impractical for TBL-generated noise due to its high complexity [9,10].

Instead of CFD, dozens of empirical models have been created that seek to predict the
power spectral density (PSD) of wall pressure fluctuations from aircraft TBLs as a function
of frequency and other critical flight parameters, including freestream velocity, boundary
layer thickness, and Reynolds number. It is unlikely that an equation that is obtained
using a limited range of testing data, and sometimes simplified, can accurately predict a
phenomenon as complex as TBL (and its PSD) for all the flow conditions, but it is used
as a starting point, nonetheless. Furthermore, the RANS equations provided an obvious
starting point for early models. Notably, the earliest models (such as the Heisenberg
and Batchelor models) simplified the RANS equations by assuming the highly simplified
case of homogenous, isotropic turbulence, then solving for the root mean square of the
pressure fluctuations term. These models were only applicable for attached flow regimes.
Subsequent models, most notably those by Kraichnan, extended this work by accounting
for the mean shear [11–14]. Finally, this work was extended to separated flow conditions in
the Robertson [7] and Lowson [11] models. Subsequent models from Laganelli, Efimtsov,
and Rackl and Weston modified these models to fix identified shortcomings [15–17], while
models from Goody and Smol’yakov used statistical and mathematical techniques to make
simplifications [18,19]. The accuracy of the models varies from problem to problem, but in
general, they are most accurate under their design conditions [17,20,21]. For example, if a
model was derived for high Reynolds number and high Mach flow, the model would be
most accurate at that condition, and less accurate at lower Reynolds and Mach values.

Despite this shortcoming, very little research has explored the possibility of using
alternative or novel techniques to develop a model. One notable exception is the use of
machine learning (ML), a type of artificial intelligence (AI) that automatically fits a model
to a dataset by Dominique, which shows early promise. Specifically, the Dominique model
used artificial neural networking to generate the model, but more ML techniques must be
explored in depth [22]. As such, this paper explores the possibility of using regression ML
to fit a TBL model to a set of high Reynolds number, low airspeed, zero-pressure gradient
wind tunnel data. Wind tunnel data was collected at the Carleton University low-speed
wind tunnel. Although wind tunnel data were collected at low speeds, wind tunnel testing
was conducted with airflows of similar Reynolds numbers to those typical of conventional
commercial aircraft in cruise flight. Matching flow speeds of flight requires high-speed flow
testing, which is expensive and often impractical. Hence, for the purpose of TBL empirical
models’ development, many studies have been conducted in low-speed and high-Reynolds
flows. Section 2 explores the derivation and accuracy of existing models in greater depth,
along with the mathematical and statistical techniques used to develop the new model;
Section 3 discusses the model’s results and accuracy; and Section 4 is the conclusion.
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2. Models and Methods

As mentioned previously, the original models by Lowson and Robertson provided the
foundation for most subsequent models. Originally published in 1968, Lowson attempted to
model the separated flow regimes seen in aerospace applications, while further accounting
for mean shear effects. To this end, Lowson assumed incompressible boundary layer flow,
allowing the RANS equations to be simplified via order-of-magnitude analysis. From there,
Lowson converted this solution to the frequency domain and applied a self-similar analysis
to converge on a final equation. The resulting model is shown below as Equation (1) [11]:

∅( f ) =
q2[ 0.0062

(1+0.14M2)
2 ](

8U∞
δ

)
[1 + ( 2π f

8U∞
δ

)
2
]

3
2

. (1)

Six years later, in 1971, Robertson found that this model was only accurate at limited
frequencies. To improve it, Robertson re-simplified the RANS equations with fewer as-
sumptions (homogeneity and self-similarity), before applying scaling techniques to reach
the final model. Ultimately, Robertson found that using displacement boundary layer
thickness, δ*, instead of boundary layer thickness, δ, improved accuracy, as did selecting
different scales. Robertson noted that at the time, PSD data was noisy, making it difficult to
generate the model [7]. The final model is presented as Equation (2) below [7]:

∅( f ) =
q2[ 0.0062

(1+0.14M2)
2 ](

U∞
2δ∗

)
[1 + ( 2π f

U∞
2δ∗

)
0.9
]
2 (2)

Several subsequent models were derived by modifying the Lowson and Robertson
models, usually after identifying shortcomings with new wind and flight test data. First,
consider the Laganelli model, Equation (3), derived in 1993. Using supersonic wind tunnel
test data, Laganelli discovered that friction effects experienced during the transition from
compressible to incompressible flow contribute significantly to PSD, and accounted for
them with the term Fc (the compressible transformation function). This change did make
the model accurate near Mach numbers of 2.25, but it remained inaccurate at other Mach
numbers [15]:

∅( f ) =
q2δ∗

(
2.293 × 10−5)F−0.5733

c

U∞[1 + F2.867
c

(
2π f δ∗

U∞

)2
]

(3)

Perhaps more notable is the Efimtsov model (1982), which used flight test data from a
supersonic passenger aircraft (the Tupolev Tu-144) to show that Mach number, Strouhal
number, and friction Reynolds number predicted TBL-PSD best, and regenerated a model
accordingly [16]:

∅( f ) =
(2π)αβU3

τρ2δ(
1 + 8α3

(
ωδ
Uτ

)2
) 1

3
+ αβReτ

(
ωδ

ReτUτ

) 10
3

(4)

And the Rackl and Weston model, which was created by first identifying flow con-
ditions and frequency regions in which the Efimtsov model struggled to predict power
spectral levels, and then adding terms to the model to improve its performance [17]:

∅( f ) = ∅E f imtsov + 2.5e(−(ln ( 2πδ∗
Uo )−ln (0.6))

2
)

+ 1
4 tanh

(
log
(

f
1000

)
+ 1
)
(M − 1.65) log( f ).

(5)

Additionally, several researchers sought to use statistical techniques to simplify and
improve earlier models. For example, in 2000, Smol’yakov simplified these earlier models
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by assuming that integral equations were time-averaged with respect to y. Smol’yakov
also found that by applying different models at different frequency ranges, accuracy could

be improved, resulting in low ( f < 49.35U2
τ

2πvRe0.88
θ

), medium ( 49.35U2
τ

2πvRe0.88
θ

< f < 0.2U2
τ

2πv ), and high

frequency ( f > 0.2U2
τ

2πv ) models [19], as shown in Equations (6)–(8), below [19]:
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Though perhaps the most notable model to be created with statistical techniques was
the one by Goody (2004), who used scaling techniques to improve earlier first principle-
derived models [18]. The resulting model is shown in Equation (9), below [18]:

∅( f ) =
3(2π f τw)

2
(

δ
U∞

)3

[
(

2π f δ
U∞

) 3
4
+ 0.5]

3.7

+ [1.1R−0.57
T

(
2π f δ
U∞

)7
]

(9)

As discussed previously, few models have been derived using AI or machine learning
techniques, with Dominique (2022) being a notable exception [22]. Machine learning
algorithms take in a large training dataset and use this information to generate a predictive
model. A simple example would be a linear regression model in which a line of best fit
is assigned to a dataset. More generally, a regression algorithm predicts an output based
on the sample input and output data supplied to it. Specifically, Dominique generated
two models, one using an artificial neural network (ANN) regression algorithm and the
other with Gene Expression Programming (GEP). ANN techniques work by using training
data to create a collection of related nodes, called neurons, each of which contains a linear
regression model and a weight. When using an ANN, one or more inputs are required.
The input goes to a node, where the model is applied, and multiplied by its weight before
proceeding to the next node, and so on, until it becomes a final output. The resulting
combination of nodes creates a model. GEPs work similarly, although the modelling
process is based on gene-theory instead of the human brain [22–25]. Dominique’s resulting
GEP model is shown in Equation (10) [22]:

∅(ω)ue

τ2
wδ∗

=

(
5.41 + C f (βc + 1)5.41

)
ω

ω2 + ω + (β + 1)M + (ω + 3.6) ω4.76

C f R5.83
T

(10)

The accuracy of each model varies heavily depending on the conditions it was tested
against, but in general, models are most accurate under the specific conditions they were
designed for, and less accurate under other conditions. Going model by model:

1. Lowson: Is inaccurate under most frequencies. At low frequencies, it tended to
underestimate PSD, while it overestimated PSD at high frequencies [7,26].

2. Robertson: At supersonic airspeeds, the Robertson model tends to underestimate
PSD at high frequencies and overestimate it at low frequencies [17,27]; at subsonic
airspeeds, it tends to underestimate PSD at all frequencies [21].

3. Laganelli: The only condition in which the Laganelli model was accurate was Mach
2.25 [27]. At higher Mach numbers, the model is unpredictable [27]; at lower Mach
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numbers, it overestimates PSD at low frequencies and underestimates PSD at high
frequencies [17].

4. Efimtsov: This model tends to be accurate if the Reynolds number is high, though it
does become inaccurate at extremely high airspeeds (Mach 4 and 8) [17,21,27]. It also
tends to be inaccurate at low Reynolds numbers [26].

5. Rackl and Weston: At low Mach numbers (0.1 to 0.2), the Rackl and Weston model
appears to under-predict PSD at low frequencies and over-predict it at high fre-
quencies, though it seems to predict low-frequency PSD more accurately at higher
Mach numbers.

6. Smol’yakov: At supersonic airspeeds, this model is accurate [17] but tends to overesti-
mate PSD at subsonic speeds [21].

7. Goody: At subsonic speeds, this model is accurate at both high and low Reynolds
numbers [21,26]. At supersonic airspeeds, the model is less accurate [27].

8. Dominique: Due to the recent publication of the model, limited outside research is
available regarding its accuracy, but it appears to be much more accurate and generally
applicable to all flow cases. The model can even predict adverse and forward pressure
gradients (whereas most models do not consider pressure gradients at all). The
overall mean squared error (MSE) of the Dominique model was just 0.88 dB/Hz,
nearly 10 times better than all existing models [22].

Generating a model to fit a dataset is an open problem (that is to say, the procedure can
vary from model to model and there is no right/wrong/best procedure) [28]. For this paper,
the model generation approach was broken down into 5 steps: exploratory data analysis
(EDA), dimension analysis, model development, model evaluation, and model validation.

First, the EDA is explored. The three main goals of performing an EDA are determining
which candidate variables to consider (in other words, establishing which predictive
variables could possibly influence the output), identifying data sources, and calculating
values for all identified candidate variables [28]. Two sources were used to identify possible
candidate variables—any variable that appeared in at least one of the models discussed
in Section 2 was considered, as well as several non-dimensional fluid flow parameters
from [29]. The result was 25 candidate variables, broken down below based on their units:

• Non-dimensional parameters [7,11,15–19,22,29]:

# St (Strouhal number)
# M (Mach number)
# RT (turbulence Reynolds number)
# Reτ (friction Reynolds number)
# Reθ (momentum thickness Reynolds number)
# Fc (compressible transformation factor)
# fv/Uτ

2 (unnamed dimensionless parameter used in Goody model)
# Re (Reynolds number)
# Fr (Froude number)
# We (Weber number)
# Ec (Eckert number)
# Cf (skin friction coefficient)
# Cp (coefficient of pressure)

• Dimensional parameters [7,11,14–19,22]:

# U∞ (freestream velocity) [m/s]
# q (dynamic pressure) [Pa]
# δ* (boundary layer displacement thickness) [m]
# f or ω (frequency/angular velocity, respectively, of fluctuating pressure in TBL)

[Hz, rad/s]
# uτ (friction velocity) [m/s]
# δ (boundary layer thickness) [m]
# v (kinematic viscosity) [m2/s]
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# Ue (boundary layer edge velocity) [m/s]
# τw (wall shear stress) [Pa]
# ρ (air density) [kg/m3]
# L (characteristic length of wind tunnel testing chamber) [m]
# M (dynamic viscosity) [Pa s]

Additionally, datasets were sourced from experimental wind tunnel data previously
collected by J. B. Blitterswyk [21] and N. Thompson [30] at Carleton University, resulting in
a total of 14 unique wind tunnel datasets (which were divided into 12 for training and 2 for
testing). Measurements were collected via a microphone array that stored wall pressure
fluctuations, along with any data necessary to evaluate several key flow parameters (for
example, U∞ and Re) [22]. Experimental testing was performed in a closed-loop wind
tunnel at Carleton University, fitted with an adjustable roof to ensure flow remained at a
zero pressure gradient. The effects of background and machinery noise were minimized
by installing acoustic foam in the test section of the wind tunnel [21,30]. Key parameters
for each dataset are summarized below in Tables 1 and 2, but in general, they can be
characterized as low subsonic speed and low Reynolds number. The resulting training
dataset was of the size n = 23,372, while the testing dataset was n = 3718.

Table 1. Summary of training datasets [21,30].

Name U∞ (m/s) δ (m) Re q (Pa)

Experiment_1 * 14.2 0.04750 1,317,840 117
Experiment_2 * 14.3 0.03197 1,331,810 119
Experiment_3 * 12.0 0.03554 1,112,170 83.5
Experiment_4 * 12.6 0.04850 1,176,380 93.5
Experiment_5 * 10.4 0.05100 963,256 62.7
Experiment_6 * 8.71 0.04987 574,286 45.5
Experiment_7 * 10.2 0.02529 671,209 62.2
Experiment_8 * 8.05 0.02981 530,796 38.9
Experiment_9 † 7.63 0.03312 601,874 38.0
Experiment_10 † 8.58 0.03506 549,484 44.2
Experiment_11 † 9.52 0.03512 609,541 54.4
Experiment_12 † 10.4 0.03485 758,996 70.1

Mean 10.6 0.03814 849,803 69.2
Stnd. Dev. 2.18 0.00833 298,182 27.5

* = From [30]. † = From [21].

Table 2. Summary of testing datasets [21,30].

Name U∞ (m/s) δ (m) Re q (Pa)

Experiment_13 * 10.2 0.02981 674,506 62.8
Experiment_14 † 7.63 0.03315 627,985 37.5

Mean 8.92 0.03148 651,246 50.2
Stnd. Dev. 1.3 0.00167 23,261 12.7

* = From [30]. † = From [21].

Using the statistical programming language R, the above datasets were cleansed,
and wall pressure levels were converted into power spectral densities and combined
into a singular large training dataset and a separate testing dataset. When the measured
value was not available in the original datasets, the candidate values were calculated in
R. Table 3 shows the formatting of the resulting datasets, using the training dataset as
an example. Each row represents a given frequency and wind tunnel test run, and each
column represents the candidate variable value at that frequency and test. In total, each
dataset therefore has 20 columns.
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Table 3. Formatting of datasets.

Dataset f St . . . PSD

Experiment_1 50 1.05 . . . 6.1 × 10−4

Experiment_1 53.333 1.12 . . . 5.8 × 10−4

. . . . . . . . . . . . . . .
Experiment_2 50 0.70 . . . 5.9 × 10−4

Experiment_2 53.333 0.75 . . . 4.9 × 10−4

. . . . . . . . . . . . . . .
Experiment_12 4449.5 93.32 . . . 1.2 × 10−9

Experiment_12 4450.6 93.34 . . . 1.4 × 10−9

The next stages in the model development process were dimensional analysis, which
refers to the process of determining the relationship between physical quantities by consid-
ering their units [29], and model development. PSD, assuming it has not been normalized
to dB, is expressed in units of [Pa2/Hz], and thus the simplest possible model that could
predict PSD is shown in Equation (11), below:

∅( f ) =
A[pressure]2

1/time
(11)

where “pressure” can be any candidate variable in units of Pa, “time” can be any candidate
variable in units of s, and A is an arbitrary coefficient fitted to the training data such
that the model predicts PSD with as little error as possible. Of course, it is unlikely
that an equation this simplistic could accurately predict a phenomenon as complex as
TBL (and its PSD), but it is used as a starting point, nonetheless. If Equation (11) is
manipulated using non-dimensional parameters, eventually the model will have enough
information to be able to adequately predict PSD [31]. This principle forms the bedrock
of this analysis: to generate a suitable model, Equation (11) was initially fitted to the data,
shortcomings were identified, a non-dimensional parameter was added to address this
shortcoming, and so on, until an acceptable solution was reached. The intermediate models,
final model, and results are discussed in Section 4. It is important to note that for each
candidate model form, all possible combinations of candidate variables with acceptable
units were considered, ultimately resulting in 186 unique models being tested. While the
exact impact of this is impossible to quantify, it most likely served to make the model less
prone to overfitting while improving its ability to handle a wider range of turbulence and
airspeed cases, by ensuring that a wide range of parameters were considered at all stages
of model development.

For Equation (11), this leaves the problem of fitting coefficient A to the dataset, and
fitting any combination of coefficients and exponents for more complex future models.
Several such techniques exist, but the two most common are neural network (NN) tech-
niques, such as the ANN used for the Dominique model, and regression techniques [21].
Regression is a probabilistic model-fitting technique in which the values for β of a series of
predictor variables, X’ = {β1X1, β2X2, . . ., βnXn}, are fit to output variables, Y’ = {Y1, Y2, . . .,
Yn}, such that the equation Yi’ = f(X’) + εi best predicts Yi’ (where εi represents random,
unexplainable errors in the dataset) [32]. For a recap on NNs, please refer to Section 2. The
use of regression model-fitting techniques provides several theoretical advantages over the
NN techniques used by Dominique:

1. Unlike the NN technique used by Dominique, it is not a black box problem—NN
techniques tend to be opaque in their derivation and it is more difficult for the user to
understand the importance (or lack thereof) of each input variable [24].

2. Regression algorithms are generally simpler to use and require less specific train-
ing/experience [24].

3. NNs require significant computational power, as well as a large dataset, to produce
an accurate model [24].
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4. Compared to regression algorithms, NNs are more prone to overfitting [24].
5. Due to the relative recency of NN usage, there are fewer established techniques for

determining whether a given NN model is the best possible fit for a dataset (without
performing complex multivariable sensitivity analysis), and it is more difficult to
assign confidence intervals [24].

Considering these advantages, the authors decided that a regression algorithm would
be used to fit models to the dataset. More specifically, a nonlinear least squares (NLS)
regression algorithm was implemented in R, due to the relative ease of implementation
(thus allowing several models to be developed quickly) [32].

Applying the procedure as above would produce several candidate models of varying
complexity. The final two steps seek to identify the best candidate model and quantify its
accuracy. The second to last step is model evaluation, which assesses the model’s accuracy
against testing and training data to identify which candidate model performs best. The final
step is model validation, which assesses the accuracy of the final model against outside
data sources.

Despite the large sample size, there were relatively few unique instances of parameters
that did not vary with frequency (which applies to all parameters excepting f, St, and PSD).
For example, the training dataset included only 12 unique Re values. Therefore, it was
anticipated that generating a model with this dataset would create errors associated with
small sample sizes. Specifically, all models must undergo a trade-off between bias and
variance, a phenomenon known as the bias/variance trade-off [31]. The total model error
can be defined by Equation (12), below:

ME =

√
(bias error)2 + (variance error). (12)

where bias error refers to errors created from applying simplifications to the model, and
variance error refers to the deviation between the estimated and actual values of model
parameters. Theoretically, as parameters are added to the model, bias error will decrease,
and bias error is minimized when the number of parameters is equal to the sample size
of the training dataset. However, as the number of parameters increases, so too does the
variance error, which is maximized when the number of model parameters equals the
training data sample size. Therefore, decreases in bias error tend to increase variance error,
or vice versa, and a final model must thus balance complexity with model accuracy [31].

Low-data environments, such as in this study, are particularly vulnerable to having
high variance error [33]. Fortunately, several statistical parameters exist to quantify this
trade-off, including Akaike Information Criteria (AIC) and Bayesian Information Criteria
(BIC) [34]. Both AIC and BIC work by simultaneously penalizing models if the complexity
is too high (a progressively larger penalty is applied for each new input parameter) or
if the accuracy is too low [33,34]. AIC and BIC parameters are similar in practice, with
AIC (Equation (13)) assuming each parameter has a fixed quantity, and BIC (Equation (14))
assuming parameters are normally distributed [34]:

AIC = 2k − 2 ln
(

L̂
)
. (13)

BIC = k ln(n)− 2 ln
(

L̂
)
. (14)

In general, AIC tends to penalize models for poor performance more than BIC, while
BIC tends to penalize added complexity more heavily. In both cases, a lower score indicates
a superior model [34].

The AIC and BIC scores were used to assess and compare the performance of each
model, particularly to indicate whether a model had an adequate complexity/accuracy
trade-off compared to previous ones. However, by themselves, the AIC and BIC scores
do not adequately quantify model predictive performance [34]. As such, a more direct
measure—the Mean Squared Prediction Error (MSPE)—was also used to assess model
performance. MSPE scores can be defined as the square of the average deviation between a
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model’s prediction and experimental values. For this paper, MSPE was calculated against
the testing data, as doing so would help prevent bias towards the training dataset. It is
shown in Equation (15) [34]:

MSPE = mean
(
(actual PSD − predicted PSD)2

)
. (15)

In general, amongst a class of model’s, the best performing model was selected with
AIC and BIC scores, while models of different classes were compared via MSPE scores.
The rational for this decision was primarily practical in nature, as MSPE scores were more
computationally complex, rendering it impossible to calculate for all models while still
allowing a sufficiently large number of models to be tested.

In summary, the procedure for model generation was to slowly add complexity to
Equation (11) in response to apparent shortcomings, and at each stage, fit the model using
a NLS regression algorithm, and assess performance using the AIC, BIC, and MSPE scores.
A code that performed each step was implemented in R, and the results are presented in
Section 3. Additionally, once a final model was identified, the model validation step was
performed by plotting its prediction against outside experimental data sources and the
testing dataset.

3. Results

Initially, Equation (11) was run through the NLS algorithm, but the results were
nonsensical. Two modifications were required to produce acceptable results: first, St had to
be added (and raised to a fitted exponent b) in the denominator, allowing PSD to decay
with frequency increases; and second, the time term in the denominator was replaced with
speed/distance, in line with findings from Robertson [7]. The resulting model is referred to
as “Candidate Model 1”, and its resulting equation is shown below:

∅( f ) =
A[pressure]2(

speed
distance

)
Stb

. (16)

For the pressure term, τw and q were considered; for speed, U∞, Uτ , and Ue were
considered; and finally, for distance, δ and δ* were considered. The model performed best
when q, U∞, and δ* were used, in which case A = 1.0987 × 10−4 and b = 0.88885. Note that
the MSPE, AIC, and BIC scores are summarized in Table 4 later in this section. The resulting
plot is shown in Figure 1, below.

Aerospace 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 1. Plot of Equation (14) vs. measured data. 

Clearly, Equation (16) is unable to adequately predict high-frequency behaviour and 
could benefit from improvement at predicting initial values in the low-frequency region. 
It was hypothesized that adding a large, non-dimensional parameter, such as a Reynolds 
number, to the denominator may improve high-frequency slope prediction, as shown in 
Equation (17): ∅(𝑓) =  [ ]( )( (  ) ).  (17) 

For the Reynolds number, Reτ, ReT, Reθ, and Re were all considered (referred to as 
Candidate Models 2A, 2B, 2C, and 2D, respectively), while all pressure, speed, and dis-
tance values were also considered. Ultimately, the model performed best when q, Uτ, δ, 
and ReT were used (2B), in which case A = 5.0679 × 10−6, b = 1.611, and c = 0.60254. The 
resulting plot is shown in Figure 2, below. 

 
Figure 2. Plot of Equation (15) vs. measured data. 

Figure 1. Plot of Equation (14) vs. measured data.



Aerospace 2024, 11, 446 10 of 18

Table 4. AIC and BIC scores for models.

Equation MSPE AIC BIC

16 (1) 1693.3 −418,762.3 −418,738.2
17 (2B) 1462.3 −419,329.9 −419,297.6

18a (5A) 1182.0 −422,487.8 −422,447.5
20 (6B) 621.54 −419,532.3 −419,500.1
21 (7A) 665.34 −421,008.6 −420,968.3
21 (7B) 599.54 −420,242.9 −420,202.6

Clearly, Equation (16) is unable to adequately predict high-frequency behaviour and
could benefit from improvement at predicting initial values in the low-frequency region.
It was hypothesized that adding a large, non-dimensional parameter, such as a Reynolds
number, to the denominator may improve high-frequency slope prediction, as shown in
Equation (17):

∅( f ) =
A[pressure]2(

speed
distance

)(
Stb + (Reynolds number)c) . (17)

For the Reynolds number, Reτ , ReT, Reθ , and Re were all considered (referred to as
Candidate Models 2A, 2B, 2C, and 2D, respectively), while all pressure, speed, and distance
values were also considered. Ultimately, the model performed best when q, Uτ , δ, and ReT
were used (2B), in which case A = 5.0679 × 10−6, b = 1.611, and c = 0.60254. The resulting
plot is shown in Figure 2, below.

Aerospace 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 1. Plot of Equation (14) vs. measured data. 

Clearly, Equation (16) is unable to adequately predict high-frequency behaviour and 
could benefit from improvement at predicting initial values in the low-frequency region. 
It was hypothesized that adding a large, non-dimensional parameter, such as a Reynolds 
number, to the denominator may improve high-frequency slope prediction, as shown in 
Equation (17): ∅(𝑓) =  [ ]( )( (  ) ).  (17) 

For the Reynolds number, Reτ, ReT, Reθ, and Re were all considered (referred to as 
Candidate Models 2A, 2B, 2C, and 2D, respectively), while all pressure, speed, and dis-
tance values were also considered. Ultimately, the model performed best when q, Uτ, δ, 
and ReT were used (2B), in which case A = 5.0679 × 10−6, b = 1.611, and c = 0.60254. The 
resulting plot is shown in Figure 2, below. 

 
Figure 2. Plot of Equation (15) vs. measured data. Figure 2. Plot of Equation (15) vs. measured data.

While Equation (17) did little to improve the high-frequency behaviour, it appeared
to improve low-frequency behaviour. It was apparent by this point that the best way to
predict the high frequency’s slope was by maximizing the exponent b on the St term. It
was hypothesized that adding another non-dimensional parameter, either to the numerator
(Equation (18a), Candidate Model 5A) or the denominator (Equation (18b), Candidate
Model 5B), would free up the model to predict a higher value for exponent b:

∅( f ) =
A[pressure]2(dimensionless parameter)d(

speed
distance

)(
Stb + (Reynolds number)c) (18a)
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∅( f ) =
A[pressure]2(

speed
distance

)(
Stb + (Re)c + (D.P)d

) . (18b)

For the dimensionless parameter, Cf, M, Re, ReT, Reτ , Reθ , Fr, We, and fv/Uτ
2 were

considered, along with all terms from previous models. Ultimately, (18a) performed
best when q, Uτ , δ, and ReT were used for the Reynolds number, and Re was used for the
dimensionless parameter. In this case, A = 2.922 × 10−15, b = 2.657, c = 1.4447, and d = 1.7377.
The resulting plot is shown in Figure 3, below.
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Equation (18a) demonstrated improvement over previous models, as it maintained
accurate prediction of PSD for much longer into higher frequency regions; however, im-
provement was still required. By this point it had become evident that a high exponent b
on St would be necessary to adequately model high-frequency behaviour, as aside from the
Goody parameter, which was not compiled in the algorithm, no other candidate variables
varied with frequency. As such, Equation (18a) was modified in two parts. First, in the
high-frequency range, Equation (19) was fitted to the data:

∅( f ) =
1

Stb . (19)

Three definitions of “high frequency” were used: f ≥ 500 Hz, f ≥ 300 Hz,
and f ≥ 1000 Hz. At 500 Hz, the NLS algorithm predicted that b = 4.1743; at 300 Hz,
b = 5.2179; and at 1000 Hz, b = 3.6339. Next, keeping those exponents constant, Equation (18a)
was re-fitted to create Candidate Models 6A, 6B, and 6C. As was the case before, all pres-
sures, velocities, distances, Reynolds numbers, and non-dimensional parameters were
reconsidered. The model performed best when f ≥ 500 Hz (b = 4.1743) was used, along
with q, Uτ , δ, and ReT being used for the Reynolds number, and Reθ was used as the
non-dimensional parameter. The resulting equation (Candidate Model 6B) is shown as
Equation (20), below:

∅( f ) =
A[q]2(Reθ)

d(
Uτ
δ

)(
Stb + (ReT)

c) (20)

In this case, A = 7.2018 × 10−5, c = 2.3973, and d = 2.4624. The resulting plot is shown
in Figure 4, below.
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This model performs better in the high-frequency region than earlier models. Inter-
estingly, it appears to perform slightly worse at low frequencies. It was theorized that the
large exponent of St caused it to “dominate” behaviour at all frequencies, and thus, adding
a small (much less than zero) coefficient to the St would allow the numerator to instead
dominate early behaviour, as in Equation (21), Candidate Model 7, below:

∅( f ) =
A[pressure]2(dimensionless parameter)d(

speed
distance

)(
EStb + (Reynolds number)c) . (21)

This model was otherwise derived as Equation (20), with each of the three values for
b, along with all parameters, being reconsidered. The model performed best when q was
used for pressure, Uτ was used for speed, δ for distance, ReT for the Reynolds number, and
M for the dimensionless parameter. The model performed similarly well when b = 4.1743
(f ≥ 500 Hz; Candidate Model 7A) and b = 5.2179 (f ≥ 300 Hz; Candidate Model 7B). The
results are shown in Figures 5 and 6, below.
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For the b = 4.1743 case, A = 0.39031, c = 1.3968, d = 2.6241, and E = 0.019972; for the
b = 5.2179 case, A = 0.37047, c = 1.3697, d = 2.6574, and E = 0.0013168. As can be seen in
the figures, improvement was minimal in comparison to Equation (20). Further attempts
to modify the model either offered negligible performance improvements or could not
compile due to limitations with the NLS algorithm.

The MSPE, AIC, and BIC scores of each model are presented in Table 4, below.
According to the MSPE statistical test, (21) performs best, particularly for Candidate

Model 7B (when b = 5.2179 is used), followed by the model generated from Equation (20).
These models were particularly accurate at high frequencies, while earlier models were
similarly accurate at lower frequencies. This distinction is important, given that a main
practical application of this model would be to estimate passenger aircraft cabin noise
levels—human ears are most sensitive to noises between 500 and 4000 Hz [35]. Thus, a
model that can adequately predict high-frequency PSD, but not low-frequency PSD, is
more useful than a model that does the opposite. Since Equation (21), particularly the
b = 5.2179 case, best modeled high-frequency PSD, it was selected as the final model:

∅( f ) =
0.37047[q]2(M)2.6574(

Uτ
δ

)(
0.0013168(St)5.2179 + (ReT)

1.3697
) . (22)

Next, the model validation step was performed (recall from Section 2 that this involved
comparing data performance against the testing data and outside data). Equation (22)
showed a better agreement with the testing dataset—as depicted in Figure 7, below—with
the most notable inaccuracy being that the high frequency’s downslope starts too early.

For the outside data, three datasets were considered: Gravante (Gravante2953w) [36],
which was at a higher Reynolds number and lower freestream velocity to the train-
ing/testing datasets; Salze (Salze1642w) [37], which was comparable in both cases; and
Goody (Goody7300w) [38], which was at higher values for both. The values of frequency,
PSD, and flow parameters (for example, δ and Re) were estimated and/or calculated at
several key points by Thomson and Rocha, several of which are summarized in Table 5,
below. To ensure consistency from experiment to experiment, and to make up for missing
data, Thomson and Rocha used only the listed Mach number, stream-wise location, pres-
sure, and temperature from the original studies. All other values were calculated using
consistent formulas (please refer to Appendix B in [39] for more information). Thomson
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and Rocha reported more values than were present in the original studies [39]. The values
from Thomson and Rocha are reported in Table 5.
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Table 5. Summary of testing dataset parameter values from [39].

Name U∞ (m/s) δ (m) Re q (Pa)

Gravante 7.20 0.0548 1,523,373 30.8
Salze 11.0 0.02044 532,258 71.2

Goody 27.1 0.03906 6,195,958 399

The resulting plots are shown in Figures 8–10, below.
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Additionally, a plot of the final model’s prediction of measured data (grey) vs. the
predictions of the Lowson (blue) and Goody (red) models has been included in Figure 11.
The proposed final model provides the most accurate prediction of the three.

Based on these figures, the proposed model is accurate under its design conditions,
along with the lower airspeed presented by the Gravante dataset, but is less accurate against
the Goody dataset. It is theorized that this struggle is due to the lack of parameters that vary
with frequency in the training dataset, as it effectively required the downslope to be entirely
predicted by the St term, along with the relative lack of unique data conditions. This is
problematic for two reasons: first, it is well documented in literature that the dependence
of PSD on St varies with frequency [37,38].
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If more frequency-varying parameters were present, a model could be designed, for
example, to have a very small coefficient but an exponent of −7.6 on St, such that it
dominates at high frequencies, but not at mid and low frequencies. However, practical
limitations require the exponent to be smaller to, at minimum, accurately model the overlap
region [40,41]. Similarly, the limited variation in training data does not permit the model to
even consider the possibility of unique high-frequency behaviour, such as in the case of the
Goody data, in which there is relatively little downslope.

However, beyond the accuracy, the method used in this paper presents several ad-
vantages and conclusions. First, its iterative nature allowed 186 different model forms to
be tested and statistically assessed. This number is unmatched in the previous literature,
except, perhaps, by the Dominique model. However, the black box nature of ANNs meant
that the Dominique model did not provide the same level of insight into each case [22]. A
significant secondary advantage of generating 186 different model forms is that it allowed
for a database consisting of all results to be published in [42]. Future researchers should
strongly consider incorporating any of these models into their research and analysis, as
it is expected that certain alternative models will perform better at novel airspeed and
turbulence conditions. Furthermore, as the model generation procedure did not rely on
TBL-specific physics, it can be more broadly applied to other scientific and engineering
applications. Even within the field of TBL-PSD modelling itself, future researchers may
consider applying it to data cases not covered in this paper, such as adverse and favourable
pressure gradients. Finally, the open nature of the procedure offers evidence answering sev-
eral open-ended questions in TBL-PSD modelling. For example, this paper demonstrates
that the most accurate models were generated when ReT is the Reynolds number used in
the denominator, and similar evidence that the optimum combination of variables to use in
the velocity/time term is Uτ and δ.

4. Conclusions and Outlook

An empirical model for the prediction of the power spectral density of turbulent wall
pressure fluctuations in aircraft was developed using a nonlinear least squares regression
algorithm. The wind tunnel test data used for model generation was collected at low
freestream velocity (approximately 11 m/s) and a high, turbulent Reynolds number (ap-
proximately 850,000). The resulting model showed predictive ability with the training
and testing datasets, as well as outside data collected at similar and lower freestream
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velocities and Reynolds numbers. However, the model struggled to predict power spectral
density at higher speeds and turbulence. This error is believed to be caused by the lack of
representation of additional flow cases in the training data, as well as the small sample size
(in which only 12 unique values for most candidate variables were included in the training
data). Despite the shortcomings, it is clear the proposed model can be used to accurately
predict power spectral density near its design conditions, and the use of machine learning
techniques continues to demonstrate early promise.
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