Impact of Mega Constellations on Geospace Safety
Abstract
:1. Introduction
2. Models and Assumptions
2.1. Orbital Flux Calculation and Collision Probability Model
2.2. ACPL Assessment Model
2.3. Starlink Constellation Configuration and Selection of Target Satellites
2.3.1. Starlink Constellation Configuration
2.3.2. Target Satellite Parameters
3. Impact of Starlink on Environmental Fluxes in Earth’s low-orbit Space
4. Impact of Starlink on Control Avoidance Strategies for low-orbiting Satellites in Geospace
4.1. Impact on ACPL Values for LEO Space Target Satellites
4.2. Impact on LEO Space Target Satellite Deorbit Capability
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weimer, B.D. Application for Fixed Satellite Service by WorldVu Satellites Limited, Debtor-in-Possession [SAT-MPL-20200526-00062]. Available online: https://fcc.report/IBFS/SAT-MPL-20200526-00062 (accessed on 23 December 2021).
- Foust, J. FCC Approves Starlink License Modification. Available online: https://spacenews.com/fcc-approves-starlink-license-modification/ (accessed on 28 December 2021).
- E-Space. Available online: https://www.E-Space.com/news/E-Space-to-launch-demonstration-satellites-in-q2-with-rocket-lab (accessed on 19 July 2022).
- ITU: Committed to Connecting the World. Available online: https://www.itu.int/en/Pages/default.aspx (accessed on 30 May 2022).
- Hindin, J.D. Application for Fixed Satellite Service by Kuiper Systems LLC [SAT-LOA-20190704-00057]. Available online: https://fcc.report/IBFS/SAT-LOA-20190704-00057 (accessed on 21 June 2022).
- Hainaut, O.R.; Williams, A.P. Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. Astron. Astrophys. 2020, 636, A121. [Google Scholar] [CrossRef]
- Oltrogge, S.D.L. Alfano Collision Risk in Low Earth Orbit. In Proceedings of the International Astronautical Congress 2016, Paper IAC-16-A6,2,1,x32763. Guadalajara, Mexico, 26–30 September 2016. [Google Scholar]
- WIltshire, W. Application for Fixed Satellite Service by Space Exploration Holdings, LLC [SAT-MOD-20200417-00037]. Available online: https://fcc.report/IBFS/SAT-MOD-20200417-00037 (accessed on 25 May 2022).
- OneWeb. Available online: https://oneweb.net/ (accessed on 11 April 2022).
- Radtke, J.; Kebschull, C.; Stoll, E. Interactions of the space debris environment with mega constellations—Using the example of the OneWeb constellation. Acta Astronaut. 2017, 131, 55–68. [Google Scholar] [CrossRef]
- Reiland, N.; Rosengren, A.J.; Malhotra, R.; Bombardelli, C. Assessing and minimizing collisions in satellite mega-constellations. Adv. Space Res. 2021, 67, 3755–3774. [Google Scholar] [CrossRef]
- Anselmo, L.; Cordelli, A.; Pardini, C.; Rossi, A. Space Debris Mitigation Extension of the SDM Tool. ISA Tech. Rep. Space Debris 2000, 63. [Google Scholar] [CrossRef]
- Virgili, B.B.; Dolado, J.; Lewis, H.; Radtke, J.; Krag, H.; Revelin, B.; Cazaux, C.; Colombo, C.; Crowther, R.; Metz, M. Risk to space sustainability from large constellations of satellites. Acta Astronaut. 2016, 126, 154–162. [Google Scholar] [CrossRef]
- CelesTrak. Available online: https://celestrak.com/ (accessed on 14 December 2021).
- Stoll, E.; Merz, K.; Krag, H. Ollision Probability Assessment for the Rapideye Satellite Constellation. In Proceedings of the European Conference on Space Debris, Darmstadt, Germany, 22–25 April 2013; p. 9. [Google Scholar]
- Tao, H.; Che, X.; Zhu, Q.; Li, X. Satellite In-Orbit Secondary Collision Risk Assessment. Int. J. Aerosp. Eng. 2022, 2022, 6358188. [Google Scholar] [CrossRef]
- Oltrogge, D.L.; Alfano, S. The technical challenges of better Space Situational Awareness and Space Traffic Management. J. Space Saf. Eng. 2019, 6, 72–79. [Google Scholar] [CrossRef]
- Muelhaupt, T.J.; Sorge, M.E.; Morin, J.; Wilson, R.S. Space traffic management in the new space era. J. Space Saf. Eng. 2019, 6, 80–87. [Google Scholar] [CrossRef]
- Lewis, H.G.; Radtke, J.; Rossi, A.; Beck, J.; Oswald, M.; Anderson, P.; Virgili, B.B.; Krag, H. Sensitivity of the space debris environment to large constellations and small satellites. J. Br. Interplanet. Soc. 2017, 70, 105–117. [Google Scholar]
- Kawamoto, S.; Hirai, T.; Kitajima, S.; Abe, S.; Hanada, T. Evaluation of Space Debris Mitigation Measures Using a Debris Evolutionary Model. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2018, 16, 599–603. [Google Scholar] [CrossRef]
- Anselmo, L.; Pardini, C. Dimensional and scale analysis applied to the preliminary assessment of the environment criticality of large constellations in LEO. Acta Astronaut. 2019, 158, 121–128. [Google Scholar] [CrossRef]
- Olivieri, L.; Francesconi, A. Large constellations assessment and optimization in LEO space debris environment. Adv. Space Res. 2020, 65, 351–363. [Google Scholar] [CrossRef]
- Union of Concerned Scientists Satellite Database|Union of Concerned Scientists. Available online: https://www.ucsusa.org/resources/satellite-database#.XCcxUVAzbDd (accessed on 1 April 2022).
- Foust, J. ESA Spacecraft Dodges Potential Collision with Starlink Satellite. Available online: https://spacenews.com/esa-spacecraft-dodges-potential-collision-with-starlink-satellite/ (accessed on 25 November 2021).
- Aroged Chinese Space Station Nearly Collided with Starlink Satellites Twice-Chinese Unleashed Their Wrath on Musk. Available online: https://www.aroged.com/2021/12/27/chinese-space-station-nearly-collided-with-starlink-satellites-twice-chinese-unleashed-their-wrath-on-musk/ (accessed on 28 December 2021).
- Braun, V.; Funke, Q.; Lemmens, S.; Sanvido, S. DRAMA 3.0—Upgrade of ESA’s debris risk assessment and mitigation analysis tool suite. J. Space Saf. Eng. 2020, 7, 206–212. [Google Scholar] [CrossRef]
- Klinkrad, H. Space Debris: Models and Risk Analysis; Springer−Praxis Books in Astronautical Engineering; Springer: Berlin/Heidelberg, Germany; Praxis Pub: Berlin, Germany; New York, NY, USA; Chichester, UK, 2006; ISBN 978-3-540-25448-5. [Google Scholar]
- Frey, S.; Colombo, C. Transformation of Satellite Breakup Distribution for Probabilistic Orbital Collision Hazard Analysis. J. Guid. Control. Dyn. 2021, 44, 88–105. [Google Scholar] [CrossRef]
- SDS Space-Track. Available online: https://www.space-track.org (accessed on 11 April 2022).
- Blandino, J.J.; Martinez, N.; Demetriou, M.; Gatsonis, N.A.; Paschalidis, N. Feasibility for Orbital Life Extension of a CubeSat Flying in the Lower Thermosphere. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar] [CrossRef]
- Bitetti, L.; Ratti, B.B.; Destefanis, R.; Sanchez, A.H. Reliability Model Supporting Satellite Life Extension and Safe Disposal. In Proceedings of the 2018 Annual Reliability and Maintainability Symposium (RAMS), Reno, NV, USA, 22–25 January 2018. [Google Scholar]
Name | Affiliation | Altitude [km] | First Launch Data | Number of Satellites |
---|---|---|---|---|
Starlink | SpaceX | 340–1150 | 24 May 2019 | 41,927 |
E-Space | E-Space | LEO | March 2022 | 100,000 |
Kuiper | Amazon | 590–630 | No launch | 3236 |
OneWeb | OneWeb | 1200 | 27 February 2019 | 1980 |
Space Internet | Samsung | 2000 | No launch | 4700 |
GW-A69 | China Star Network | 508–590 | No launch | 6080 |
GW-2 | China Star Network | 1145 | No launch | 6912 |
Orbital Planes | 72 | 72 | 36 | 6 | 4 |
---|---|---|---|---|---|
Satellites per plane | 22 | 22 | 20 | 58 | 43 |
Altitude | 550 km | 540 km | 570 km | 560 km | 560 km |
Inclination | 53° | 53.2° | 70° | 97.6° | 97.6° |
Name | PERIOD | Inclination | Apogee | Perigee | Mass | Width | Height | Depth |
---|---|---|---|---|---|---|---|---|
JILIN-01-01 GAOFEN 2D | 95.38 min | 97.54° | 547 km | 527 km | 230 kg | 0.5 m | 1.1 m | 0.5 m |
CORVUS BC5 | 94.43 min | 97.43° | 500 km | 481 km | 10 kg | 0.2 m | 0.3 m | 0.2 m |
YAOGAN-35 C | 94.54 min | 35° | 497 km | 496 km | 300 kg | 2.5 m | 2.5 m | 2.5 m |
Revolutions | 0 | 5 | 10 | |||
---|---|---|---|---|---|---|
Name | ||||||
JILIN-01-01 GAOFEN 2D | Without Starlink | ACPL-10−6 | 5.07 × 10−2 | 1.12 × 10−2 | 5.58 × 10−3 | 9.08 |
With Starlink | ACPL-10−6 | 2.02 × 10−1 | 5.64 × 10−2 | 2.82 × 10−2 | 7.16 | |
3.984 | 5.035 | 5.053 | ||||
Without Starlink | ACPL-10−4 | 1.04 × 10−3 | 4.30 × 10−4 | 2.15 × 10−4 | 4.837 | |
With Starlink | ACPL-10−4 | 2.37 × 10−3 | 8.11 × 10−4 | 4.06 × 10−4 | 5.837 | |
2.278 | 1.886 | 1.888 | ||||
CORVUS BC5 | Without Starlink | ACPL-10−6 | 9.78 × 10−2 | 2.17 × 10−2 | 1.08 × 10−2 | 9.055 |
With Starlink | ACPL-10−6 | 8.10 | 1.23 | 6.15 × 10−1 | 13.170 | |
82.822 | 56.682 | 56.944 | ||||
Without Starlink | ACPL-10−4 | 1.55 × 10−3 | 1.19 × 10−4 | 5.95 × 10−5 | 26.050 | |
With Starlink | ACPL-10−4 | 8.62 × 10−1 | 3.96 × 10−2 | 1.98 × 10−2 | 43.535 | |
556.129 | 332.773 | 332.773 | ||||
YAOGAN-35C | Without Starlink | ACPL-10−6 | 1.31 × 10−1 | 2.61 × 10−2 | 1.30 × 10−2 | 10.076 |
With Starlink | ACPL-10−6 | 6.68 × 101 | 2.96 | 1.48 | 45.135 | |
509.923 | 113.409 | 113.846 | ||||
Without Starlink | ACPL-10−4 | 3.15 × 10−3 | 1.06 × 10−3 | 5.31 × 10−4 | 5.932 | |
With Starlink | ACPL-10−4 | 9.24 | 3.93 × 10−1 | 1.97 × 10−1 | 46.903 | |
2933.33 | 370.75 | 370.998 |
Revolutions | 0 | 5 | 10 | |||
---|---|---|---|---|---|---|
Name | ||||||
JILIN-01-01 GAOFEN 2D | Without Starlink | ACPL-10−6 | 8.61 × 10−5 | 1.90 × 10−5 | 9.49 × 10−6 | 9.072 |
With Starlink | ACPL-10−6 | 3.44 × 10−4 | 9.59 × 10−5 | 4.79 × 10−5 | 7.18 | |
3.995 | 5.047 | 5.047 | ||||
Without Starlink | ACPL-10−4 | 1.76 × 10−6 | 7.32 × 10−7 | 3.66 × 10−7 | 4.808 | |
With Starlink | ACPL-10−4 | 4.02 × 10−6 | 1.38 × 10−6 | 6.89 × 10−7 | 5.834 | |
2.284 | 1.885 | 1.882 | ||||
CORVUS BC5 | Without Starlink | ACPL-10−6 | 1.66 × 10−4 | 3.68 × 10−5 | 1.84 × 10−5 | 9.021 |
With Starlink | ACPL-10−6 | 1.37 × 10−2 | 2.09 × 10−3 | 1.05 × 10−3 | 13.047 | |
82.530 | 56.793 | 57.065 | ||||
Without Starlink | ACPL-10−4 | 2.64 × 10−6 | 2.02 × 10−7 | 1.01 × 10−7 | 26.138 | |
With Starlink | ACPL-10−4 | 1.46 × 10−3 | 6.73 × 10−5 | 3.37 × 10−5 | 43.323 | |
5563.030 | 333.168 | 333.663 | ||||
YAOGAN-35C | Without Starlink | ACPL-10−6 | 2.22 × 10−4 | 4.43 × 10−5 | 2.21 × 10−5 | 10.045 |
With Starlink | ACPL-10−6 | 1.07 × 10−1 | 5.02 × 10−3 | 2.51 × 10−3 | 42.629 | |
481.981 | 113.318 | 113.574 | ||||
Without Starlink | ACPL-10−4 | 5.35 × 10−6 | 1.80 × 10−6 | 9.02 × 10−7 | 5.931 | |
With Starlink | ACPL-10−4 | 1.56 × 10−2 | 6.68 × 10−4 | 3.34 × 10−4 | 46.706 | |
2915.887 | 371.111 | 370.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Zhu, Q.; Che, X.; Li, X.; Man, W.; Zhang, Z.; Zhang, G. Impact of Mega Constellations on Geospace Safety. Aerospace 2022, 9, 402. https://doi.org/10.3390/aerospace9080402
Tao H, Zhu Q, Che X, Li X, Man W, Zhang Z, Zhang G. Impact of Mega Constellations on Geospace Safety. Aerospace. 2022; 9(8):402. https://doi.org/10.3390/aerospace9080402
Chicago/Turabian StyleTao, Haicheng, Qinyu Zhu, Xueke Che, Xinhong Li, Wanxin Man, Zhibin Zhang, and Guohui Zhang. 2022. "Impact of Mega Constellations on Geospace Safety" Aerospace 9, no. 8: 402. https://doi.org/10.3390/aerospace9080402