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Abstract: The independence and autonomy of both elderly and disabled people have been a growing
concern in today’s society. Therefore, wheelchairs have proven to be fundamental for the movement
of these people with physical disabilities in the lower limbs, paralysis, or other type of restrictive
diseases. Various adapted sensors can be employed in order to facilitate the wheelchair’s driving
experience. This work develops the proof concept of a brain–computer interface (BCI), whose ultimate
final goal will be to control an intelligent wheelchair. An event-related (de)synchronization neuro-
mechanism will be used, since it corresponds to a synchronization, or desynchronization, in the mu
and beta brain rhythms, during the execution, preparation, or imagination of motor actions. Two
datasets were used for algorithm development: one from the IV competition of BCIs (A), acquired
through twenty-two Ag/AgCl electrodes and encompassing motor imagery of the right and left
hands, and feet; and the other (B) was obtained in the laboratory using an Emotiv EPOC headset, also
with the same motor imaginary. Regarding feature extraction, several approaches were tested: namely,
two versions of the signal’s power spectral density, followed by a filter bank version; the use of
respective frequency coefficients; and, finally, two versions of the known method filter bank common
spatial pattern (FBCSP). Concerning the results from the second version of FBCSP, dataset A presented
an F1-score of 0.797 and a rather low false positive rate of 0.150. Moreover, the correspondent average
kappa score reached the value of 0.693, which is in the same order of magnitude as 0.57, obtained
by the competition. Regarding dataset B, the average value of the F1-score was 0.651, followed by a
kappa score of 0.447, and a false positive rate of 0.471. However, it should be noted that some subjects
from this dataset presented F1-scores of 0.747 and 0.911, suggesting that the movement imagery (MI)
aptness of different users may influence their performance. In conclusion, it is possible to obtain
promising results, using an architecture for a real-time application.

Keywords: brain–computer interface; intelligent wheelchair; Emotiv EPOC headset

1. Introduction

Independence and autonomy in mobility are two of the most important conditions for
determining the quality of life of people with disabilities or with low mobility capacities [1].
Limited mobility could have origin in a broad range of situations, from accidents to disease
to the ageing process. Currently, several mobility-related technologies are designed to
achieve independent mobility, in particular powered orthosis, prosthetic devices, and
exoskeletons. Notwithstanding these devices, wheeled mobility devices remain among the
most used assistive devices [2]. According to the World Health Organization (WHO) [3],
approximately 10% of the world’s population, or around 740 million people, suffer from
disabilities, and, among those people, almost 10% require a wheelchair. Therefore, it is
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estimated that about 1% of the total population needs wheelchairs, which translates into
74 million people worldwide [4].

The importance of providing multifaceted wheelchairs that can be adapted to the
most diverse conditions of their users is thus emphasised. Different interfaces are being
developed, enabling us to overcome existing barriers of use. In particular, special attention
has been dedicated to voice control techniques, joysticks, and tongue or head movements.
However, hand gesture recognition and brain–computer interface (BCI) systems are proving
to be interesting methods of wheelchair control due to their accessible price and non-
invasiveness. Therefore, BCIs seem the best option to bridge the users’ will and the
wheelchair, as they provide a direct pathway between the “mind” and the external world,
just by interpreting the user’s brain activity patterns into corresponding commands [5],
and, thus, not requiring neuro-muscular control capabilities whatsoever. Furthermore,
people desire to be in charge of their motion as much as possible, even if they have lost
most of their voluntary muscle control; therefore, BCIs are an exceptional option [6]. Brain–
computer interfaces provide control and communication between human intention and
physical devices by translating the pattern of brain activity into commands [6]. The flow of
a BCI consists of the acquisition of the information from the brain, followed by the data
processing, and ending in the output of a control command [7]. Thus, usually, a BCI can be
conceptually divided into signal acquisition, pre-processing, and feature extraction and
classification; the last three are the interpretation of the first one.

This paper is structured into six sections, beginning with this introduction. The
second section addresses the background and state of the art concerning brain–computer
interfaces (BCIs) for acquiring and classifying brain activity. Section 3 details the methods
and materials employed in the experimental work. In Section 4, the results obtained from
various approaches, including a real-time application, are presented. A discussion of the
findings is presented in Section 5, followed by conclusions and suggestions for future work.

2. Background and State of the Art of BCI Brain Activity Acquisition Methods

Understanding the acquisition methods for brain activity is crucial for the development
of effective brain–computer interfaces (BCIs). There are several methods available, but
the most commonly used and well-established method is electroencephalography (EEG).
EEG is favoured for its low cost, convenience, standardized electrode placement, and well-
documented acquisition techniques. Additionally, EEG offers known filtering methods to
address noise and ocular artefacts, making it an attractive option for BCI applications.

2.1. Signal Acquisition

There are several methods to acquire brain activity that can be fed into a BCI; however,
the most used acquisition method is EEG, as it is low-cost and convenient to use. Other
factors that make it such an attractive tool are the standardisation of electrode placement,
plentiful and well-documented information on acquisition techniques, and being a well-
established method with known filtering [8]. Table 1, adapted from [7], compares the
different types of methods used to acquire signals for BCI use.

Table 1. Properties of brain activity acquisition methods.

EEG MEG NIRS fMRI ECoG MEA fTCD

Deployment Non-invasive Non-invasive Non-invasive Non-invasive Invasive Invasive Non-invasive

Measured Activity Electrical Magnetic Hemodynamic Hemodynamic Electrical Electrical Hemodynamic

Temporal Resolution Good Good Low Low High High High

Spatial Resolution Low Low Low Good Good High Low

Portability High Low High Low High High High

Cost Low High Low High High High
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I. Magnetoencephalography (MEG) is a neuro-imaging technique, which uses the
magnetic fields created by the natural currents that flow in the brain to map the brain
activity. To do that, it uses magnetometers. The cerebral cortex’s sites, which are activated
by a stimulus, can be found from the detected magnetic field distribution [9].

II. Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-
infrared (NIR) region of the electromagnetic spectrum (from 780 nm to 2500 nm). NIR
light can penetrate human tissues; however, it suffers a relatively high attenuation due to
the main chromophore haemoglobin (the oxygen transport red blood cell protein), which
is presented in the blood. Therefore, when a specific area of the brain is activated, the
localised blood volume in that area changes quickly and, if optical imaging is used, it is
possible to measure the location and activity of specific regions of the brain. This is due to
the continuous tracking of the haemoglobin levels through the determination of optical
absorption coefficients [10].

III. Functional magnetic resonance imaging (fMRI), through variations associated with
blood flow, can measure brain activity. This technique relies on the fact that cerebral blood
flow and neuronal activation are coupled; thus, when an area of the brain is in use, the
blood flow to that region also increases [11].

IV. Electrocorticography (ECoG) is a type of electrophysiological monitoring that
records activity mainly from the cortical pyramidal cells (neurons). For that, it requires the
electrodes to be placed directly on the exposed surface of the brain so that the recorded
activity comes directly from the cerebral cortex [12].

V. Micro-electrode arrays (MEAs) are devices that contain multiple microelectrodes;
the number can vary from ten to thousands, through which the neural signals are obtained.
These arrays function as neural interfaces that connect neurons to electronic circuitry [13].

VI. Functional transcranial Doppler (fTCD) is a technique that uses ultrasound Doppler
to measure the velocity of blood flow in the main cerebral arteries during local neural
activity [14]. Changes in the velocity of the blood flow are correlated to changes in cerebral
oxygen uptake, enabling fTCD to measure brain activity [15].

However, the robustness of all existing BCI systems is not satisfactory due to the
non-stationary nature of non-invasive EEG signals. If a BCI system is unstable, other
techniques should be further developed to improve the overall driving performance [6].
Usually, these concerns improve feature extraction and classification as the other option
would fall on trading to an invasive approach. Although the range of existent commercial
headsets is quite good, most of them lack in the number of available electrodes as they
are more turned to improve the user’s focus and to help to relax, or be used for gaming.
Furthermore, the ones that present better characteristics are the Emotiv EPOC, Emotiv Flex,
and the Open BCI [16]. Although the last two do not restrict the electrodes’ configuration
as Emotiv EPOC does, they are more expensive and complex. As for the open BCI one, it
does not offer the same freedom of measurement and comfort as Emotiv ones, as these are
wireless with a 12 h, for EPOC, and 9 h, for Flex, lasting battery [17]. The cost of an Emotiv
is approximately USD 1000, and Open BCI can cost more than USD 2000 [16]. Hereupon,
authors nowadays do not use commercial EEG headsets to obtain the signals that will feed
the BCI; they prefer assembling their own EEG set through an amplifier and electrodes, as
seen in Table 2.

Table 2. EEG headsets used in the literature.

Article EEG Headset Principle Article EEG Headset Principle

[18] 12 Ag/Cl electrodes ERP—P300 [19] NuAmps and 12 electrodes ERP—P300

[20] NuAmps and 15 electrodes ERP—P300 [21] gTec EEG (16 electrodes and
g.USBamp amplifier) ERP—P300

[22] 16-channel electrode cap ERP—P300 [23] Biopac MP150 EEG system ERP—P300

[24] gTec EEG (12 electrodes and
g.USBamp amplifier) ERP—P300 [25] Neuroscan (15 electrodes’ cap) ERP—P300
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Table 2. Cont.

Article EEG Headset Principle Article EEG Headset Principle

[26] BioSemi ActiveTwo system
32 channels SSVEP [27] g.USBamp amplifier with

g.Butterfly active electrodes SSVEP

[28] 8 gold electrodes connected to
the g.USBamp amplifier SSVEP [29] gTec EEG with g.USBamp

amplifier SSVEP

[30] EEG Cap and g.USBamp
amplifier SSVEP [31] BrainNet-36 with 12 channels SSVEP

[32] BrainNet BNT-36 with
3 channels SSVEP [33] 6 channels EEG cap SSVEP

[34] NeuroSky mindset ERD/ERS [35] Grass Telefactor EEG Twin3
Machine ERD/ERS

[36] G-TEC system with 5 Ag/AgCl
electrodes ERD/ERS [37] 8 channels EEG cap ERD/ERS

[38] 5 bipolar EEG channels and a
g.tec amplifier ERD/ERS [39] ActiveTwo 64-channel EEG

system ERD/ERS

[40] Emotiv EPOC ERD/ERS [41] Emotiv EPOC ERD/ERS

[42] Emotiv EPOC ERD/ERS [43] Emotiv EPOC ERD/ERS

[44] EEG Cap—15 electrodes ERD/ERS and
SSVEP [45] Gtec Amplifier (15 channels) ERD/ERS and

SSVEP

[46] g.BSamp amplifier (5 channels) ERD/ERS and
SSVEP [47] NuAmps device (15 channels) ERD/ERS and

ERP—P300

[48,49] NeuroSky ERP—P300; Eye
Blinking (EMG) [5] SYMPTOM amplifier with 10

electrodes
ERP—P300 and

SSVEP

ERP—event-related potential; ERS—event-related synchronization; SSVEP—steady-state visual evoked potential.

However, these are usually not wireless options. Nevertheless, there is still a significant
group who use Emotiv EPOC, as this one offers a wider range of electrodes when compared
with other commercial options, allowing obtaining of the signals from different brain lobes.
It is possible to find several public EEG datasets related to motor imagery [50]. These
datasets involve recordings of brain activity while subjects imagine performing specific
motor tasks, such as moving a limb or making a particular gesture. These datasets are
essential for studying motor control, brain–computer interfaces (BCIs), and rehabilitation.
These datasets cover a wide range of tasks and experimental paradigms. With varying
numbers of subjects, electrode configurations, and recording parameters, each dataset
offers insights into different aspects of brain function and behaviour. From collections like
the largest SCP data of motor imagery, with extensive EEG recordings spanning multiple
sessions and participants, to focused datasets like the imagination of right-hand thumb
movement, capturing specific motor imagery tasks, these datasets [50] serve as valuable
resources for exploring the neural correlates of motor control, emotion processing, error
monitoring, and other cognitive processes.

2.2. Signal Processing

The signal-processing module is divided into different parts [51]. The steps vary
depending on whether the stage is training or testing; however, the training steps are
broader than the testing ones, and, hence, these will be the ones to be discussed. The first
step is to pre-process the signal, and it is further subdivided into band-pass and spatial
filtering; afterwards, the features are extracted and selected. Finally, the classification is
carried out, and the performance is evaluated. To perform this, techniques of machine
learning must be applied, and thus the brief explanation of this concept.

Machine learning (ML) is based on data analytics that automates analytical model
building. By using algorithms that iteratively learn from data, the computer can find
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hidden insights without being explicitly programmed where to look. This approach is
used when the problem is complex and can be described by many variables. It creates an
unknown target function that models the input into the desired output [52]. The learning
algorithm receives a set of labelled examples (inputs with corresponding outputs) and
learns by comparing its predicted output with correct outputs to find errors, modifying the
model accordingly. The resulting model can predict future events. When exposed to new
data, the model can adapt itself. In theory, if the algorithm works properly, the larger the
amount of data there are, the better are the predictions. However, they are limited by bias
in the algorithm and in the data, which can produce systematically skewed predictions.
Therefore, the complexity of the learning algorithm is critical and should be balanced with
the complexity of the data [52].

2.2.1. Pre-Processing

The EEG signal, per se, is very noisy, which is due to several aspects such as the low
signal-to-noise ratio—as it is collected from the individual’s scalp surface, the low spatial
resolution, and other sources such as artefacts or interfering frequencies [53]. Artefact
removal involves cancelling or correcting the artefacts without distorting the signal of
interest and can be implemented in both the temporal and spatial domains [54]. Usually, the
pre-processing concerns two types of filtering, in the frequency and the spatial domain [51]:
band-pass filtering consists of removing some frequencies, or frequency bands, from the
signal [53], outputting the frequency range of interest; and spatial filtering, which consists
of combining the original sensor signals, usually linearly, which can result in a signal with a
higher signal-to-noise ratio than that of individual sensors [51]. It combines the electrodes,
which leads to more discriminating signals [54]. According to Pejas [55], approaches
that rely on spatial filtering not only provide more true positives but also allow more
flexibility when choosing the electrode placement. Spatial filters that linearly combine
signals acquired from different EEG channels can extract and enhance the desired brain
activity; thus, usually, it is enough to place the electrodes somewhere in the desired area
and not in the exact location.

2.2.2. Feature Extraction and Classification

There are different types of features according to the domain from where they are
extracted: time, frequency, or spatial. Different methods are used to extract the features
from the EEG signal and further classify them so that the control commands can be obtained.
Table 3, partly adapted from [56], presents a group of techniques used by different authors.
It comprises several examples referring to the different principles: ERPs, SSVEP, ERD/ERS,
and Hybrid.

Table 3. Summary of different authors’ BCIs regarding the used EEG headset, the neuro-mechanism,
the extracted features, the classification methods, the outputted commands, and accuracy.

Article EEG Headset Principle Features Classifier Control Accuracy

[18] 12 Ag/Cl electrodes ERP—P300
Signal averaging and

standard
deviation

2 class Bayesian L/R/F/B
(45◦ or 90◦)/S 95%

[19] NuAmps and 12 electrodes ERP—P300 Data vectors of
concatenated epochs BLDA (Bayesian) 9 destinations 89.6%

[20] NuAmps and 15 electrodes ERP—P300 Raw signal SVM
7 locations, an
‘application

button’ and lock
90%

[21] gTec EEG (16 electrodes
and g.USBamp amplifier) ERP—P300 Moving average

technique LDA 15 locations, L/R and
validate selection 94%

[22] 16-channel electrode cap ERP—P300 Signal averaging Linear classifier 6 for the IW
(not specified) 92%

[23] Biopac MP150 EEG system ERP—P300 Signal averaging Linear classifier F/B/L/R —
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Table 3. Cont.

Article EEG Headset Principle Features Classifier Control Accuracy

[24] gTec EEG (12 electrodes
and g.USBamp amplifier) ERP—P300 Optimal statistical

spatial filter Binary Bayesian F/B/L/R
(45◦ or 90◦/S 88%

[25] Neuroscan (15 electrodes’
cap) ERP—P300 Signal averaging SVM

37 locations, validate
or delete selection,

stop and show extra
locations

—

[26] BioSemi ActiveTwo system
32 channels SSVEP Peaks in the

frequency magnitude — L/R >95%

[27] g.USBamp amplifier with
g.Butterfly active electrodes SSVEP Frequency band

power (PSD) SVM L/R/F/S 95%

[28] 8 gold electrodes connected
to the g.USBamp amplifier SSVEP — LDA L/R/B/F/S 90%

[29] gTec EEG with g.USBamp
amplifier SSVEP Frequency band

power (PSD)

Threshold
method

not specified
L/R/B/F 93.6%

[30] EEG Cap and g.USBamp
amplifier SSVEP CCA Bayesian F/L/R/turn on/off 87%

[31] BrainNet-36 with
12 channels SSVEP Frequency band

power (PSD) Decision trees L/R/F/S Qualitative
evaluation

[32] BrainNet BNT-36 with
3 channels SSVEP Frequency band

power (PSD)
Statistical
maximum L/R/F/B 95%

[33] 6 channels EEG cap SSVEP FFT and CCA CCA coefficient L/R/F/B/S >90%

[34] NeuroSky mindset ERD/ERS Frequency band
power (PSD) NN Game 91%

[35] Grass Telefactor EEG
Twin3 Machine ERD/ERS Coefficients from the

wavelets
Radial basis
function NN L/R/F/B/rest 100%

[36] G-TEC system with
5 Ag/AgCl electrodes ERD/ERS

Common spatial
frequency subspace

decomposition
(CSFSD)

SVM L/R/F 91–95%

[37] 8 channels EEG cap ERD/ERS

Mean, zero-crossing
and energy from
different levels of

the DWT

ANN L/R/F/S 91%

[38] 5 bipolar EEG channels and
a g.tec amplifier ERD/ERS

Logarithmic
frequency band

power
LDA L/R 75%

[39] ActiveTwo 64-channel
EEG system ERD/ERS

Frequency band
power (PSD)

and CSP
SVM Exoskeleton control

LH/LF/RH/RF 84%

[40] Emotiv EPOC ERD/ERS
PCA and average

power of the
wavelets’ sub-bands

NN w/BP L/R/F/B 91%

[42] Emotiv EPOC ERD/ERS —– Emotiv program L/R/F/S 70%

[56] Emotiv EPOC ERD/ERS Frequency
components SVM L/R/F/B/S 100%

[56] Emotiv EPOC ERD/ERS Frequency
components NN L/R/F/B/S 100%

[56] Emotiv EPOC ERD/ERS Frequency
components Bayesian L/R/F/B/S 94%

[56] Emotiv EPOC ERD/ERS Frequency
components Decision trees L/R/F/B/S 74%

[42] Emotiv EPOC ERD/ERS Frequency band
power (PSD) LDA L/R 70%

[43] Emotiv EPOC ERD/ERS Metrics from the
EEG signal Decision trees L/R 82%
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Table 3. Cont.

Article EEG Headset Principle Features Classifier Control Accuracy

[57] Emotiv EPOC ERD/ERS CSP SVM L/R 60%

[58] Emotiv EPOC ERD/ERS — LDA L/R 60%

[59] Emotiv EPOC ERD/ERS

PSD, Hjort
parameters, CWT and

DWT—PCA for
feature reduction

K-NN L/R 86–92%

[60] Emotiv EPOC ERD/ERS Energy distribution
from the DWT SVM L/R/T/N 97%

[61] Emotiv EPOC ERD/ERS CSP LDA L/R 68%

[61] Emotiv EPOC ERD/ERS CSP SVM L/R 68%

[61] Emotiv EPOC ERD/ERS CSP Nu-SVC RBF
Kernel L/R 68%

[44] EEG Cap—15 electrodes
ERD/ERS—
(L/R) and

SSVEP

CSP (ERD/ERS); CCA
(SSVEP)

SVM (ERD/ERS);
Canonical
correlation
coefficient
(SSVEP)

L/R/A/DA, maintain
an uniform velocity

and turn on/off
—

[45] Gtec Amplifier (15 channels)
ERD/ERS—

(L/R) SSVEP-
(Des)accelerate

CSP (ERD/ERS); CCA
(SSVEP) SVM L/R/A/DA —

[46] g.BSamp amplifier
(5 channels)

ERD/ERS and
SSVEP

Frequency band
power (PSD) LDA L/R 81%

[47,48] NuAmps device
(15 channels)

ERD/ERS and
ERP—P300 CSP LDA L/R/A/DA 100%

[48,49] NeuroSky
ERP—P300 and

Eye Blinking
(EMG)

Changes in the level Threshold L/R/F/B/S —

[5] SYMPTOM amplifier with
10 electrodes

ERP—P300 and
SSVEP

PCA (ERP); PSD
(SSVEP) LDA ERP—9 destinations

SSVEP—confirm 99%

L—left; R—right; F—forward; B—backward; S—stop; A—accelerate; DA—decelerate; H—hand; F—foot;
T—tongue; N—no imaging.

The ERD/ERS neuro-mechanism is a widely used one and has been producing notice-
able results. This corresponds to a change in the power of specific frequency bands since
the user is imagining or visualising a certain motor movement. The best combination is
obtained with SVMs or NN as classifiers. Authors such as Abiyev et al. [57] and Khare
et al. [35] achieved an impressive accuracy of 100%. The extracted features were all in the
frequency domain, mostly from the frequency coefficients, band power, or spatial filtering.
SSVEP BCIs can originate ace outcomes regardless of the classifier. This is probably due to
the neuro-mechanism itself, as it is linked to a specific frequency, facilitating the extraction
of the feature vector. However, contrarily to the ERD/ERS BCIs, these require some sort
of hardware, usually flashing buttons (each one at a unique frequency rate), which will
act as the stimulus for the user. The latter will focus on the button, which represents the
desired direction; hence, proportionally amplifying the EEG signal band corresponding
to the button frequency. The extracted features fall in the frequency domain and regard
the power in specific frequency bands (corresponding to the respective button). ERPs are
short amplitude deflections in the brain signal that are timestamped to an event. They are
identified by the triggering event, direction of deflection, observed location, and latency [7].
That is why these BCIs usually use temporal features, whereas ERD and SSVEP BCIs em-
ploy frequency features [6]. Concerning the used classifier, the BCI performance does not
seem to depend upon this choice. Regarding hybrid BCIs, it can be deduced that methods
that aim to decompose the signal are preferentially used to extract the features. Concerning
the classification, the used classifiers are mainly SVMs and LDA. It is possible to conclude
that, depending on the chosen neuro-mechanism, the type of extracted features will differ.
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However, for the classifiers, the same cannot be applied, although it is possible to infer that
some classifiers have a better performance than others have, namely, SVMs, NN, and LDA.

A BCI provides control and communication between human intention and physical
devices by translating the pattern of the brain activity into commands. The goal is to
use this as a way of controlling an IW, which will eventually lead to an increase in the
quality of life of people with disorders and limitations. A BCI has different main blocks:
signal acquisition, signal processing, and the application of the output commands. The
first one aims to collect the brain signals to feed them to the signal processing unit. There
are several ways of achieving this, with EEG being the most common, affordable, and
well-documented way. To make it even more accessible and portable for the patient, the
EEG headset should be wireless; hence, the Emotiv EPOC is the chosen one.

Moreover, the aim is to use the Emotiv EPOC headset as a way to record the user’s
brain activity, as it is rapidly installed and portable. Although many authors have already
proposed several solutions, none of them meet the required criteria to be commercialised,
either by the lack of portability or the lack of accuracy. Therefore, the final goal would be to
have a portable, comfortable, affordable, and reliable solution for an end-user consumer, so
that the system would ideally be prepared for an out-of-the-laboratory application. Thus,
this work contributes to the conceptualisation of the BCI system, regarding its architecture
and algorithms.

3. Materials and Methods

A motor imagery (MI) neuro-mechanism is proposed, as it allows the user to focus on
the path instead of focusing on the user interface, as the last two are stimulus-dependent
neuro-mechanisms. Figure 1 presents the overall scheme of the BCI architecture along with
its constituent parts.
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Figure 1. Scheme of the BCI architecture and its parts.

Three classes for the commands are used, namely left (0), right (1), and neutral (2).
The first two correspond to changes in the direction, whereas the last one implies that the
subject wishes to maintain the same direction. This choice relies on the fact that the left and
right are the basic commands to control a moving device and, since the system is working
in a continuum, the necessity of a neutral class to maintain the direction of movement arises.
According to Tang et al. [39], some subjects present a better ability to distinguish between
the feet and hands, rather than the left hand from the right one. Consequently, three
different runs are tested, where the subject can substitute one of the hands for the thought
of feet. More specifically, the subject may have a better performance while differentiating
the left hand from the feet, and it may be advantageous to use the thought of the feet to
turn to the right.

Moreover, the experiments are divided into two main parts: the validation of the
concept and the corresponding execution or testing. Regarding the first part, two datasets
are used, dataset 2a from the BCI competition IV (dataset A) [62] and another one acquired
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in our laboratory using the Emotiv EPOC headset (dataset B). Concerning the execution of
the algorithm, a real-time acquisition from the headset is attempted and evaluated.

3.1. Datasets

Dataset A contains a four-class MI for different body parts: the left and right hand
(LH/RH), feet (F), and tongue. This dataset corresponds to dataset 2a of the BCI competition
IV and comprises 2 sessions of 288 trials from 9 different subjects. In each session, there
were 6 smaller sessions of 48 trials, each separated by breaks. It also encompasses an
evaluation dataset with the same characteristics as the previously described one. For this
work, the tongue MI was discarded, as it was not of interest.

The acquisition protocol for each trial can be seen in Figure 2 and it is a sequence
composed of a fixation cross (2 s), followed by an arrow representing the desired MI (1.5 s),
a period of blank screen for the subject to imagine the asked cue (2.75 s), and it finishes
with a break (~2 s). Furthermore, there is a sound alerting for the beginning and ending of
the MI period (4 s).
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Figure 2. Acquisition protocol for dataset A.

The signals were obtained using 22 Ag/AgCl electrodes, which were positioned
following the 10/20 system shown in Figure 3a. These were placed mostly at the central
part of the cortex, where the sensorimotor part is located.

Technologies 2024, 12, x FOR PEER REVIEW 10 of 28 
 

 

Dataset A contains a four-class MI for different body parts: the left and right hand 

(LH/RH), feet (F), and tongue. This dataset corresponds to dataset 2a of the BCI competi-

tion IV and comprises 2 sessions of 288 trials from 9 different subjects. In each session, 

there were 6 smaller sessions of 48 trials, each separated by breaks. It also encompasses 

an evaluation dataset with the same characteristics as the previously described one. For 

this work, the tongue MI was discarded, as it was not of interest. 

The acquisition protocol for each trial can be seen in Figure 2 and it is a sequence 

composed of a fixation cross (2 s), followed by an arrow representing the desired MI (1.5 

s), a period of blank screen for the subject to imagine the asked cue (2.75 s), and it finishes 

with a break (~2 s). Furthermore, there is a sound alerting for the beginning and ending 

of the MI period (4 s). 

 

Figure 2. Acquisition protocol for dataset A. 

The signals were obtained using 22 Ag/AgCl electrodes, which were positioned fol-

lowing the 10/20 system shown in Figure 3a. These were placed mostly at the central part 

of the cortex, where the sensorimotor part is located. 

  
(a) (b) 

Figure 3. Electrodes’ placement, according to the 10/20 system, for both datasets: (a) dataset A; (b) 

dataset B. 

The acquisition protocol for dataset B was approximately the same as for dataset A, 

with two differences inspired by Tang et al. [39], Dharmasena et al. [42], and Stock and 

Balbinot [63]. More specifically, in the MI cue, the arrows were displayed on the screen for 

the whole period, as shown in the diagram presented in Figure 4. Furthermore, the indi-

cation of the start of a cue was not used to simplify the process. There were three different 

cues: right hand (right arrow), left hand (left arrow), and foot (down arrow). The set of 

sessions comprised 360 trials, 120 for each MI. 

Figure 3. Electrodes’ placement, according to the 10/20 system, for both datasets: (a) dataset A;
(b) dataset B.

The acquisition protocol for dataset B was approximately the same as for dataset A,
with two differences inspired by Tang et al. [39], Dharmasena et al. [42], and Stock and
Balbinot [63]. More specifically, in the MI cue, the arrows were displayed on the screen
for the whole period, as shown in the diagram presented in Figure 4. Furthermore, the
indication of the start of a cue was not used to simplify the process. There were three
different cues: right hand (right arrow), left hand (left arrow), and foot (down arrow). The
set of sessions comprised 360 trials, 120 for each MI.
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In total, signals from nine different healthy subjects were acquired, where subjects 4
and 6 are left-handed, while the others are right-handed. All subjects are below 25 years
old, except subject 5, who is 51. During acquisition, the subjects were seated comfortably in
a chair, in a quiet room, with their hands on the top of the table while looking at the screen;
they were also asked to keep their movements, such as eye gazing, sniffing, or coughing, to
a minimum. All the procedures were performed under the ethical standards of the 1964
Helsinki Declaration.

The electrode placement can be seen in Figure 3b. Although none of these match the
placement for dataset 2a, they still cover part of the central, parietal, and frontal locations
of the cortex, which are known for contributing to the MI [14]. However, it is expected that
the results will not be as satisfactory, as the centre of the cortex is not covered [61]. It is also
important to state that the recorded points may also depend on the format of the subject’s
head, as electrode placement on narrower heads will not be the same as for wider ones,
because the electrodes in the headset are fixed.

3.2. Data Processing

The two datasets were divided into training and test as follows:

• Dataset A: the training data supplied by the BCI Competition IV were used as a train
and the evaluation one as a test. The duration of the epochs was two seconds, as
explained in [62].

• Dataset B: 100 trials of each MI were used as training data, and the remaining 20
were used as tests. Usually, each subject would do a 20-trial session, which results in
5 sessions for training and 1 session for testing. For each visual cue and motor imagery
moment, as these had a duration of 5 s, two epochs of two seconds each were extracted,
allowing to double the data, ending up with 240 epochs, in total, for each class.

• A subject-oriented approach was followed, requiring the model to undergo training
specific to each subject before being tested. However, it should be noted that the
sessions utilised for testing differed from those used for training purposes.

3.2.1. Pre-Processing and Feature Extraction

Filtering the EEG signal is already enough to remove noise and ocular artefacts, which
are the most common. The first comprises high frequencies, which are discarded, as these
are not included in the bands of interest. Moreover, ocular artefacts mainly appear in the
theta band, which, once again, is not a band of interest for the MI paradigm. Thus, for
every feature extraction approach, presented in the next section, a filtering step is always
applied to eliminate these artefacts. The main methods for feature extraction regarding the
MI paradigm are spatial filtering using the common spatial pattern (CSP) approach and the
use of the signal’s frequency band or the frequency coefficients as features. The different
approaches were tested, but with some variations. The next steps, feature selection and
classification, were the same for all the approaches.

1. Filter Bank Common Spatial Pattern I

As dataset A is from a competition, the first approach was to develop an algorithm
based on the winning method, denoted the filter bank common spatial pattern (FBCSP),
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as described in [62]. The goal is to maximise the best band for each user, which results in
dividing the alpha and beta bands into nine sub-bands, from 4 Hz to 40 Hz. Although Ang
et al. [62] use a Chebyshev II filter, in this work a Butterworth filter of order five and zero
phase was applied. This choice lies in the facts that this filter is known for being the flattest
in the passing band, the zero phase provides zero group distortion, and the order five is a
nice compromise with respect to speed. The FBCSP algorithm applies the CSP procedure
to each sub-band of the signal. The algorithm generates a linear filter, which is used to
extract features that best discriminate between classes, by maximising the ratio between
their covariance matrices [64].

2. Filter Bank Common Spatial Pattern II

This approach follows the same principles as the first approach but, after obtaining a
spatial filter, the average power of Z is computed and used as features.

3. Power Spectral Density

The signal is filtered using a Butterworth filter, for the reasons previously enunciated,
from 4 to 35 Hz to comprise the alpha and beta bands. Afterwards, epochs of two seconds
are obtained and normalised. The latter consists of centring each channel to have zero mean.
For that, the mean of each epoch for each channel is calculated and then subtracted [57].
Afterwards, the Welch method, with a Hanning window, is applied to obtain the power
spectral density for each epoch, which is used as the features vector. The Welch method con-
sists of dividing the signal into overlapping segments, which are further windowed. Then,
the signal periodogram, which is an estimate of the signal spectral density, is calculated,
resorting to the discrete Fourier transform. Windowing the segments, for example with
the Hanning window, allows for mitigating spectral leakage. This is because the Fourier
transform assumes that the signal is periodic, and non-periodic signals lead to sudden
transitions that have a broad frequency response [65]. Different methods for choosing the
most significant features were tested, namely a method based on a mutual information
criterion, the ANOVA F test, and the extra trees classifier, to compute the features’ impor-
tance. The first measures the dependency between two random variables and relies on
non-parametric methods based on entropy estimation, such as from K-nearest neighbours,
to improve the selection. The second assesses the amount of variability between each class
mean, in the context of the variation within the different classes, to determine whether
the mean differences are statistically significant or not. Finally, the extra trees classifier
is used to compute the importance of the features, allowing the irrelevant ones to be dis-
carded. For either of the methods, only the K best features are selected. This is performed
by a 10-fold cross-validation, using 5–70% of the features. The 70% limit is imposed to
prevent overfitting.

3.2.2. Classification

The classifiers were trained to differentiate between three different classes. Due to
slower computational time and the fact that they might generate overfitting, non-linear
classifiers were not used as a first approach [56]. Thus, four classifiers were trained:
Gaussian Naive Bayes (GNB), linear discriminant analysis (LDA), linear support vector
machines (LSVMs), and logistic regression (LR). Using these four classifiers, different
combinations were tested, as represented in Table 4.
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Table 4. Testing a combination of classifiers.

Number of
Classifiers Type Number of

Classifiers

1
Non-probabilistic

2—Ensemble

Voting Hard

Probabilistic—F1 Voting Soft

2
Non-probabilistic AdaBoost

Probabilistic—F1

When using a single classifier to predict the result, there are two main approaches:
predict a class or predict the probability of belonging to each class. In the latter approach,
the ideal value for the probability threshold can be obtained through different metrics.
The F1-score was the chosen one, as it considers both the precision and the recall of the
classifier. When using two classifiers to predict the final command, different approaches
were applied, which are further explained:

• Two classifiers: if both classifiers predict that the class is 0, then the class is 0; the same
is applied for classes 1 and 2. However, if they do not agree with the classification,
then the trial is classified as 2 in order to decrease the number of false positives, which
in this case are the trials miss-classified as MI to the left or right;

• Two classifiers with variable probability: the idea behind this approach is the same
as before; however, the output of each classifier is a probability and not a class label.
Thus, a threshold is estimated for each one of the classifiers to output a label, and then
the same method is applied, as explained for the two classifiers;

• Ensemble methods: these methods are already developed and are widely used to
combine the different predictions so that a more generalised and robust model can
be obtained. These methods can be divided into two main groups: averaging and
boosting. Regarding the first one, the different classifiers are built independently
and only after that are their outputs combined to reduce the variance. Concerning
the boosting methods, the classifiers are built sequentially so that the next classifier
can try to decrease the bias of the combined. Voting classifier: this combines the
predictions of the different classifiers and outputs a final prediction as the result of a
majority vote. This majority vote can be hard or soft. Hard: each classifier predicts
the class, and the final prediction is the one that most of them predicted. The final
prediction can be obtained using a weighted averaging procedure if the classifiers
have different weights. Soft: each classifier has a weight and predicts the probability
of each class, and then the final prediction is obtained using a weighted averaging
procedure. AdaBoost: considers several initial classifiers, called weak learners, and
combines their predictions through a weighted majority vote. This process is repeated,
and at each iteration/boost the data are modified. Each sample starts with a weight,
and if it is incorrectly classified its weight increases for the classifier to notice it more;
on the other hand, correctly classified samples have their weights reduced. After
several iterations, the overall classifier, or strong learner, is expected to be better than
the individual ones.

To further improve results, several non-linear classifiers were also tested. These include
the K-nearest neighbours (K-NNs), kernel support vector machines (KSVMs), decision trees
(DTs), neural networks (NNs), and, finally, random forest (RF). Similarly to linear classifiers,
the same combinations of classifiers were tested as well. As these classifiers require more
data to obviate overfitting, for each trial of MI, which had a duration of five seconds, more
epochs were extracted. For each trial, two epochs of two seconds were extracted. The
first second of the signal was not used, as a preventive way, since the image of the arrow
could act as a stimulus for the pretended direction. Hereupon, this time is sufficient for
the person to assimilate which MI must do. Nevertheless, the approach of doubling the
number of epochs ended up also being used for the linear and statistical classifiers. This
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was to ensure that both methods used the same amount of data. Table 5 summarises all the
optimised hyper-parameters for the respective classifiers, as well as a brief description of
their function. The optimisation process was carried out using a grid search with a 5-fold
cross-validation decided by the F1-score.

Table 5. Optimised hyper-parameters for the different classifiers.

Supervised
Classifier Hyper-Parameter Grid Search Space Description

LR C logspace −4 to 6, step
size 1

Regularisation parameter, which has a significant effect on
the generalisation performance of the classifier

K-NN n_neighbors 1 to 50, step size 10 Number of neighbours to use

SVM

Kernel rbf—Gaussian kernel
function

Function used to compute the kernel matrix for
classification

gamma logspace −3 to 6, step
size 1

Regularisation parameter used in RBF kernel, which has
significant impact on the performance of the kernel

C logspace −3 to 7, step
size 1

Regularisation parameter, which has a significant effect on
the generalisation performance of the classifier

DT

max_depth 1 to 20, step size 2
The maximum depth of the tree. If none, then nodes are

expanded until all leaves are pure or until all leaves
contain less than min_samples_split samples.

min_samples_split 10 to 500, step size 20 Minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2 Minimum number of samples required in a newly created
leaf after the split

NN

hidden_layers 5 to 55, step 10 The i element represents the number of neurons in the i
hidden layer

activation relu—rectified linear
unit function Activation function for the hidden layer

solver
adam—stochastic

gradient-based
optimiser

The solver for weight optimisation

learning_rate constant Learning rate schedule for weight updates. If ‘constant’,
the learning rate is given by learning_rate_init

learning_rate_init logspace −4 to 4, step 1 The initial learning rate used. It controls the step size in
updating the weights.

alpha logspace −4 to 4, step 1 L2 penalty (regularisation term) parameter.

RF

n_estimators 10 to 100, step 20 Number of trees in the forest

max_depth None or 2 to 10, step
size 2

The maximum depth of the tree. If none, then nodes are
expanded until all leaves are pure or until all leaves

contain less than min_samples_split samples.

min_samples_split 10 to 500, step size 20 The minimum number of samples required to split a node

min_samples_leaf 1 to 10, step size 2 The minimum number of samples required in a newly
created leaf after the split

LR—logistic regression; K-NN—K-nearest neighbour; SVM—support vector machine; DT—decision tree;
NN—neural networks; RF—random forest.

3.2.3. Evaluation

To evaluate the results from the different approaches on the two datasets, the F1-score,
the kappa score, and the false positive (FP) rate were used. The F1-score is the average
of the precision and recall, and it reaches its best value at 1 (perfect precision and recall)
and worst at 0. The kappa score expresses the level of agreement between two annotators.
Although it is not usually used to compare a prediction with a ground truth, it was the only
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metric provided by the IV BCI Competition. A kappa value between −1 and 0 denotes a
random classifier, while a value near 1 means a perfect one. Concerning the FP rate, a new
metric was developed, since it is more important, for the final application, to penalise the
FPs from classes 0 and 1, than from class 2. Nevertheless, a high rate of true positives is
still desirable, independently of the class. Thus, the false positive rate was used for this
evaluation. For an FP rate higher than 1, the classifier produces more false positives than
true positives; hence, a rate smaller than 1 is desirable. For each subject, the best run out of
the three was obtained based on the F1-score. Then, for that run, the respective kappa score
and FP rate are also presented. Furthermore, for all the approaches, the feature selector
was the extra trees. Table 6 contains the used linear and statistical classifiers (0–3), and the
non-linear classifiers (4–8).

Table 6. Labels of the classifiers.

Number Name

0 Gaussian Naive Bayes (GNB)

1 Linear discriminant analysis (LDA)

2 Linear support vector machines (LSVMs)

3 Logistic regression (LR)

4 K-nearest neighbours (K-NNs)

5 Kernel support vector machines (KSVMs)

6 Decision trees (DTs)

7 Neural networks (NNs)

8 Random forest (RF)

The first step consisted of only applying the linear and statistical classifiers. After-
wards, with the intent of improving even more the performance of the approach that
presented the best results, the non-linear classifiers, along with the first set of classifiers,
were only applied to the correspondent approach. This is because these classifiers take
longer to run and optimise.

3.3. Hardware and Software

Python version 3 was the programming language used for the experimental work
related to signal processing and classification, along with Numpy, Pandas, Seaborn, and
Scikit-Learn libraries. For real-time testing, an interface was required to deliver the raw data
acquired by the headset to Python. Given that the headset is an Emotiv EPOC, the pyemotiv
Python library was applied. This library interfaces with the Emotiv EPOC research SDK,
provided by the distributor, enabling the output of raw EEG data for the experimental
setup [17].

4. Results

This section presents the results obtained from the different approaches previously
explained, as well as the outcomes of a real-time application.

4.1. Filter Bank Common Spatial Pattern I—FBCSP I

In this approach, only the linear and statistical classifiers are used to build the different
classifier combinations, since the obtained results were not the best.

4.1.1. FBCSP I Approach Using Dataset A

Table 7 presents the obtained F1-score for the different combinations, using only linear
or statistical classifiers. The row “Best” corresponds to the best score for each subject. Most
subjects presented a preferable run, regardless of the combinations, except for subject 1,
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who chose, at least once, one of the three runs. The highest F1-score, on average, was
obtained by the ensemble voting hard, which can be explained as it corresponds to the
major vote between the two best classifiers; thus, by combining their predictions, it comes
out as more accurate.

Table 7. F1-score, kappa, and FP rate for dataset A and FBCSP I, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.729 0.763 0.560 0.906 0.708 0.615 0.601 0.903 0.774 0.733
Prob. F1 0.729 0.797 0.663 0.883 0.714 0.603 0.575 0.896 0.662 0.768
2 Classifiers 0.712 0.782 0.496 0.920 0.679 0.610 0.546 0.848 0.776 0.751
Prob. F1 0.738 0.792 0.623 0.932 0.689 0.634 0.567 0.874 0.768 0.760
Soft 0.730 0.843 0.597 0.950 0.692 0.563 0.592 0.848 0.749 0.735
Hard 0.748 0.801 0.632 0.928 0.719 0.647 0.615 0.869 0.759 0.758
Ada 0.682 0.694 0.588 0.856 0.616 0.551 0.509 0.894 0.676 0.750
Best 0.765 0.843 0.663 0.950 0.719 0.647 0.615 0.903 0.776 0.768

Kappa 1 Classifier 0.587 0.632 0.333 0.854 0.556 0.410 0.396 0.847 0.660 0.597
Prob. F1 0.573 0.694 0.493 0.819 0.556 0.299 0.354 0.840 0.472 0.632
2 Classifiers 0.583 0.653 0.236 0.875 0.500 0.403 0.546 0.764 0.660 0.611
Prob. F1 0.590 0.674 0.438 0.896 0.535 0.382 0.347 0.792 0.646 0.604
Soft 0.586 0.764 0.389 0.924 0.521 0.347 0.354 0.771 0.618 0.590
Hard 0.607 0.701 0.361 0.889 0.569 0.472 0.417 0.785 0.639 0.632
Ada 0.535 0.542 0.493 0.785 0.424 0.326 0.264 0.840 0.514 0.625
Best 0.656 0.764 0.493 0.924 0.569 0.472 0.546 0.847 0.660 0.632
Winner 0.570 0.680 0.420 0.750 0.480 0.400 0.270 0.770 0.750 0.610

FP rate 1 Classifier 0.295 0.206 0.475 0.092 0.355 0.565 0.527 0.031 0.228 0.177
Prob. F1 0.271 0.134 0.294 0.111 0.178 0.878 0.423 0.123 0.200 0.098
2 Classifiers 0.264 0.090 0.613 0.071 0.250 0.415 0.607 0.066 0.144 0.119
Prob. F1 0.195 0.095 0.415 0.045 0.282 0.165 0.516 0.027 0.145 0.063
Soft 0.334 0.126 0.578 0.044 0.361 0.582 0.699 0.098 0.280 0.242
Hard 0.271 0.145 0.734 0.060 0.188 0.414 0.500 0.038 0.189 0.172
Ada 0.386 0.307 0.685 0.157 0.474 0.571 0.755 0.109 0.260 0.154
Best 0.159 0.090 0.294 0.044 0.178 0.165 0.423 0.027 0.144 0.063

Table 7 presents the respective kappa score, corroborating with the ensemble voting
hard being the best combination. The kappa score from the winner of the IV BCI competition
is also presented. However, the competition involved the classification of four classes:
left hand, right hand, foot, and tongue; as for this work, there are only three classes: left,
right, and neutral. Thereafter, the results from the competition are here exposed just as a
qualitative comparison. Hereupon, the obtained kappa value of 0.604 is in the same order
of magnitude as the result from the competition, 0.57, and thus higher than 0.5, which
surely reflects the no randomness of the classifiers. Moreover, the FP rate had its lowest
value, on average, for the one probabilistic classifier, whose threshold was decided based
on the maximisation of the F1-score. This result is logical, as, by maximising the F1-score,
there is an implicit maximisation of the precision and the recall, thus minimising the FP
rate. However, the lowest FP rate was expected to belong to the ensemble voting hard
because it was the combination with the highest F1-score. These different approaches
correspond to different combinations of several classifiers. Table 8 presents the best ones
for the different approaches and subjects. It can be concluded that the best algorithms
correspond to the Gaussian Naive Bayesian classifier (0), linear discriminant analysis (1)
and logistic regression (3), which was not presumed, as the LR was seldom mentioned
during the literature review. Concerning the linear SVM (2), it was never picked, suggesting
that it is not a good classifier for this dataset, using these features, as it is not capable of
accurately distinguishing the three classes.
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Table 8. Best classifiers, from the first set, for each combination for dataset A and FBCSP I.

1 2 3 4 5 6 7 8 9

1 Classifier 0 0 3 3 3 3 3 3 3
Prob. F1 0 3 3 3 3 0 0 1 3
2 Classifiers 3 0 3 1 3 1 1 3 0 1 3 0 0 1 3 0 3 1
Prob. F1 0 1 3 1 0 3 3 1 0 3 0 3 3 0 1 3 1 0
Soft 0 3 3 1 3 1 3 0 3 1 0 3 0 3 3 0 1 3
Hard 3 0 0 1 0 3 3 0 3 0 3 0 3 0 1 3 3 1

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

4.1.2. FBCSP I Approach Using Dataset B

Similarly to what was presented for dataset A, Table 9 introduces the F1-score for the
best run in each approach. Contrary to A, several subjects picked all three runs at least once
as their best. Only subjects 5, 6, and 7 picked one or two. This already suggests that the
extracted features were not very strongly indicative of the class. Once again, the best F1-
score was obtained by the ensemble voting hard approach, followed by the two classifiers.
However, since the F1-score varies from 0 to 1, the obtained result is not satisfactory as it
stays in the bottom half of the spectrum. Similarly, for the kappa score, the value of 0.218
is closer to 0 than to 1, indicating that the classifier is closer to random than to perfect, as
presumed. The FP rate is quite high, reaching almost 1, that is to say, the number of FP is
almost the same as TP, thus manifesting that this approach is not adequate for the ultimate
goal of controlling an IW. A very low FP rate is mandatory to maintain the safety of the IW
driver. Nevertheless, subjects 3 and 1 presented a better performance than the others did,
presenting scores equivalent to dataset A, which corroborates that people have different
aptness regarding MI [40]. Nevertheless, it is also important to consider inter-individual
differences, such as distinct brainwave patterns, cognitive abilities, and learning speeds,
among others. This major difference between subjects may also be due to the positioning
of the headset, as the electrodes are fixed, which may lead to more coverage of the motor
cortex in some subjects than in others.

Table 10 contains the chosen classifiers for the different methods. Similarly to A, LR
(3) and LDA (1) presented the best performance. However, the Gaussian Naive Bayes (0)
did not perform well enough to be chosen. Once again, the linear SVM (2) was not picked.

Table 9. F1-score, kappa, and FP rate for dataset B and FBCSP I, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.444 0.507 0.386 0.636 0.400 0.375 0.405 0.456 0.390 0.439
Prob. F1 0.438 0.470 0.416 0.662 0.316 0.492 0.334 0.437 0.361 0.452
2 Classifiers 0.448 0.442 0.456 0.622 0.391 0.419 0.361 0.442 0.404 0.496
Prob. F1 0.427 0.427 0.353 0.640 0.444 0.403 0.333 0.442 0.303 0.496
Soft 0.435 0.485 0.358 0.592 0.430 0.455 0.401 0.406 0.330 0.453
Hard 0.484 0.597 0.401 0.626 0.410 0.547 0.386 0.470 0.483 0.440
Ada 0.428 0.417 0.375 0.625 0.392 0.433 0.383 0.358 0.375 0.492
Best 0.507 0.597 0.456 0.662 0.444 0.547 0.405 0.470 0.483 0.496

Kappa 1 Classifier 0.160 0.262 0.075 0.450 0.075 0.063 0.100 0.175 0.075 0.162
Prob. F1 0.150 0.175 0.000 0.488 0.075 0.250 0.012 0.125 0.050 0.175
2 Classifiers 0.133 0.162 0.188 0.438 0.037 0.125 0.050 0.000 0.137 0.063
Prob. F1 0.121 0.137 −0.012 0.438 0.037 0.150 0.000 0.137 −0.038 0.238
Soft 0.146 0.225 0.037 0.387 0.137 0.175 0.113 0.075 −0.012 0.175
Hard 0.218 0.387 0.100 0.438 0.088 0.325 0.063 0.200 0.200 0.162
Ada 0.142 0.125 0.063 0.438 0.088 0.150 0.075 0.037 0.063 0.238
Best 0.253 0.387 0.188 0.488 0.137 0.325 0.113 0.200 0.200 0.238
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Table 9. Cont.

Average 1 2 3 4 5 6 7 8 9

FP rate 1 Classifier 0.908 0.672 1.239 0.355 1.370 0.867 0.646 0.852 1.435 0.736
Prob. F1 1.202 1.056 2.000 0.380 1.587 0.767 1.610 1.240 1.273 0.907
2 Classifiers 0.796 0.811 0.727 0.373 0.744 0.680 0.955 1.250 1.000 0.622
Prob. F1 0.888 0.804 1.949 0.240 0.209 0.596 0.975 1.176 1.486 0.559
Soft 0.918 0.793 1.116 0.451 1.059 0.611 0.857 1.043 1.590 0.741
Hard 0.730 0.521 1.125 0.440 0.511 0.439 1.156 0.839 0.821 0.717
Ada 0.916 0.720 1.222 0.373 1.426 0.692 1.065 1.302 1.000 0.441
Best 0.543 0.521 0.727 0.240 0.209 0.439 0.646 0.839 0.821 0.441

Table 10. Best classifiers, from the first set, for each combination for dataset B and FBCSP I.

Classifiers 1 2 3 4 5 6 7 8 9

1 Classifier 3 1 3 3 3 3 1 3 3
Prob. F1 1 3 3 3 3 3 3 3 3
2 Classifiers 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3
Prob. F1 3 1 3 1 3 1 0 3 3 1 3 1 3 1 3 1 3 1
Soft 3 1 3 1 1 3 3 1 3 1 1 3 1 3 1 3 3 1
Hard 3 1 1 3 3 1 3 1 3 1 3 1 3 1 3 1 1 3

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

4.2. Filter Bank Common Spatial Pattern II—FBCSP II

Next, we describe the implementation of the FBCSP II approach using dataset A,
providing detailed analysis and results of the classification performance. Following that,
we examine the application of the same approach using dataset B, shedding light on its
efficacy and comparative performance metrics.

4.2.1. FBCSP II Approach Using Dataset A

Table 11 presents the F1-score for dataset A, regarding the use of only linear or
statistical classifiers. Most of the subjects present a preference concerning the run; for
others, such as 3 and 5, it is not clear, as the three runs were chosen as the best one, at least
once. Globally, the different classifier combinations presented resulted more or less in the
same ranking and behaved as expected. The best F1-score was obtained, once again, for
the ensemble voting hard approach, followed by the one classifier approach, which was
not prospected, as it is intuitive that the output of two classifiers would be more accurate
than just one. The worst score corresponds to the AdaBoost, thus clearly excluding it as a
recommended approach.

The best kappa was from the ensemble voting hard approach, 0.693, which is higher
than the one from the previous approach, 0.607, and in the same order of magnitude as 0.57,
the kappa score of the competition’s winner. It was already prospected that both the two
classifier approaches would present a lower FP rate because they prevent the FP for classes
0 and 1. This is also one of the reasons why their F1-score is slightly lower than for the other
approaches. AdaBoost presented the lower F1-score and kappa, and therefore presented
the highest FP rate. It can be concluded (Table 12) that the best algorithms correspond
once again to linear discriminant analysis (1) and logistic regression (3). The Gaussian
Naive Bayesian classifier (0) was chosen a few times; however, it was almost always the
second-best classifier, whereas the linear SVM (2) was never picked. Therefore, it is possible
to conclude that the latter is not a good classifier for this dataset using these features, as it
is not capable of accurately distinguishing the three classes.
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Table 11. F1-score, kappa, and FP rate for dataset A and FBCSP II, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.793 0.856 0.697 0.950 0.838 0.606 0.668 0.898 0.782 0.846
Prob. F1 0.792 0.854 0.643 0.928 0.849 0.629 0.663 0.923 0.788 0.855
2 Classifiers 0.785 0.840 0.643 0.933 0.840 0.604 0.686 0.859 0.842 0.817
Prob. F1 0.783 0.840 0.643 0.930 0.840 0.644 0.686 0.859 0.793 0.817
Soft 0.787 0.878 0.682 0.921 0.825 0.662 0.608 0.888 0.805 0.818
Hard 0.797 0.829 0.698 0.949 0.833 0.618 0.679 0.924 0.774 0.871
Ada 0.724 0.801 0.620 0.894 0.769 0.616 0.542 0.819 0.745 0.713
Best 0.818 0.878 0.698 0.950 0.849 0.662 0.686 0.924 0.842 0.871

Kappa 1 Classifier 0.683 0.785 0.535 0.924 0.757 0.382 0.500 0.833 0.667 0.764
Prob. F1 0.685 0.764 0.465 0.928 0.764 0.431 0.479 0.882 0.674 0.778
2 Classifiers 0.596 0.681 0.361 0.896 0.611 0.292 0.382 0.639 0.764 0.743
Prob. F1 0.658 0.757 0.458 0.889 0.750 0.396 0.521 0.757 0.681 0.715
Soft 0.623 0.757 0.472 0.875 0.736 0.493 0.306 0.826 0.701 0.438
Hard 0.693 0.743 0.542 0.924 0.750 0.424 0.514 0.882 0.653 0.806
Ada 0.586 0.701 0.431 0.840 0.653 0.424 0.313 0.729 0.618 0.569
Best 0.720 0.785 0.542 0.928 0.764 0.493 0.521 0.882 0.764 0.806
Winner 0.570 0.680 0.420 0.750 0.480 0.400 0.270 0.770 0.750 0.610

FP rate 1 Classifier 0.218 0.108 0.383 0.029 0.127 0.646 0.347 0.016 0.238 0.071
Prob. F1 0.161 0.038 0.317 0.040 0.066 0.403 0.255 0.025 0.237 0.065
2 Classifiers 0.192 0.153 0.532 0.035 0.131 0.395 0.276 0.024 0.132 0.050
Prob. F1 0.150 0.083 0.370 0.080 0.067 0.186 0.279 0.011 0.194 0.080
Soft 0.238 0.127 0.529 0.081 0.152 0.336 0.581 0.042 0.197 0.097
Hard 0.195 0.145 0.340 0.044 0.156 0.429 0.295 0.020 0.247 0.080
Ada 0.260 0.116 0.463 0.109 0.229 0.474 0.624 0.068 0.118 0.136
Best 0.121 0.038 0.317 0.029 0.066 0.186 0.255 0.011 0.132 0.050

Table 12. Best classifiers, from the first set, for each combination for dataset A and FBCSPII.

Classifiers 1 2 3 4 5 6 7 8 9

1 Classifier 3 3 3 3 3 3 3 3 3
Prob. F1 3 3 1 3 3 3 3 3 3
2 Classifiers 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Prob. F1 3 0 3 1 1 3 3 1 3 1 3 1 3 1 3 1 3 1
Soft 0 3 3 0 3 1 3 0 3 0 3 1 3 1 3 0 3 0
Hard 3 0 3 1 3 1 3 0 3 0 3 1 3 1 3 0 3 1

0—Gaussian Naïve Bayesian; 1—linear discriminant analysis; 3—logistic regression.

Due to their promising results, the use of non-linear classifiers was also tested. How-
ever, the results, contrary to what was expected, did not improve; instead, they stayed
roughly the same. Furthermore, the best combination was not the ensemble voting hard
but the two classifiers, which reflected in a lower FP rate. Regarding the kappa score, its
average value is very close to the one previously obtained for the first group of classifiers.

4.2.2. FBCSP II Approach Using Dataset B

Similarly to what was presented for dataset A, Table 13 introduces the F1-score for the
best run in each approach. Most of the subjects presented a preference regarding a run or
two. The best classifier was the AdaBoost, with an average F1-score of 0.504, immediately
followed by the ensemble voting soft, with a score of 0.497. Moreover, the highest F1-score
value was lower than for A but higher than for the previous approach, 0.484. Once again,
it is important to emphasise that subject 1 and subject 3 presented scores equivalent to
dataset A.
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Table 13. F1-score, kappa, and FP rate for dataset B and FBCSP II, using the first set of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.461 0.612 0.451 0.712 0.438 0.515 0.479 0.472 0.000 0.471
Prob. F1 0.478 0.556 0.431 0.710 0.394 0.506 0.467 0.456 0.316 0.463
2 Classifiers 0.454 0.606 0.435 0.697 0.431 0.527 0.471 0.468 0.000 0.455
Prob. F1 0.457 0.605 0.433 0.700 0.437 0.506 0.490 0.456 0.000 0.489
Soft 0.497 0.624 0.425 0.716 0.414 0.526 0.481 0.481 0.337 0.471
Hard 0.486 0.612 0.433 0.705 0.408 0.515 0.422 0.472 0.332 0.471
Ada 0.504 0.517 0.417 0.742 0.475 0.500 0.508 0.467 0.342 0.567
Best 0.524 0.624 0.451 0.742 0.475 0.527 0.508 0.481 0.342 0.567

Kappa 1 Classifier 0.243 0.400 0.175 0.550 0.137 0.275 0.225 0.200 0.000 0.225
Prob. F1 0.200 0.262 0.100 0.513 0.088 0.225 0.200 0.188 0.000 0.225
2 Classifiers 0.232 0.387 0.150 0.513 0.125 0.288 0.213 0.200 0.012 0.200
Prob. F1 0.233 0.375 0.150 0.513 0.137 0.225 0.238 0.188 0.025 0.250
Soft 0.244 0.425 0.137 0.563 0.113 0.288 0.225 0.213 0.013 0.225
Hard 0.224 0.400 0.150 0.538 0.100 0.275 0.125 0.200 0.000 0.225
Ada 0.256 0.275 0.125 0.613 0.213 0.250 0.262 0.200 0.012 0.350
Best 0.285 0.425 0.175 0.613 0.213 0.288 0.262 0.213 0.025 0.350

FP rate 1 Classifier 0.515 0.306 0.741 0.167 0.51 0.597 0.69 0.804 0.05 0.776
Prob. F1 0.459 0.361 0.563 0.136 0.511 0.241 0.804 0.727 0.15 0.638
2 Classifiers 0.49 0.296 0.731 0.148 0.5 0.524 0.667 0.714 0.024 0.804
Prob. F1 0.444 0.373 0.563 0.173 0.549 0.241 0.695 0.618 0.071 0.717
Soft 0.544 0.311 0.882 0.188 0.592 0.556 0.724 0.772 0.098 0.776
Hard 0.561 0.306 0.827 0.169 0.646 0.597 0.8 0.804 0.125 0.776
Ada 0.513 0.468 0.68 0.124 0.404 0.55 0.77 0.804 0.293 0.529
Best 0.385 0.296 0.563 0.124 0.404 0.241 0.667 0.618 0.024 0.529

Furthermore, the best value for the average kappa score, 0.256, is both lower than the
one for dataset A and also lower than the value of the competition; however, it is higher
than the value of 0.218 from FBCSP I. Nevertheless, is still not a desirable value as it is
too close to 0. As presumed from the previous scores, the FP rate is higher for dataset
B than for dataset A. The lowest value, 0.444, was obtained with the one probabilistic
classifier approach. The FP rate for the best approach, AdaBoost, was 0.513, which is
high but still lower than the best for approach FBCSP I, 0.730. Concerning the selected
classifiers, it is clear, from Table 14, that LDA and LR were preferred over the other two.
Moreover, the Gaussian Naive Bayes classifier was not chosen as the best one for either of
the combinations. Despite what was concluded from dataset A, the linear SVM was picked
for this one, even if only once, which endorses that LDA and LR are the most suitable
classifiers for this approach.

Table 14. Best classifiers, from the first set, for each combination for dataset B and FBCP II.

S1 S2 S3 S4 S5 S6 S7 S8 S9

1 Classifier 3 1 2 3 1 3 1 1 3
Prob. F1 3 1 3 3 3 3 1 1 3
2 Classifiers 3 1 1 3 3 1 3 1 1 3 3 1 1 3 1 3 3 1
Prob. F1 3 1 1 3 3 1 3 1 3 1 3 1 1 3 1 3 3 1
Soft 3 1 1 3 3 1 3 1 1 3 3 1 1 3 1 3 3 1
Hard 3 1 1 3 3 1 3 1 1 3 1 3 1 3 1 3 3 1

1—Linear discriminant analysis; 2—linear support vector machines; 3—logistic regression.

Because the formerly exposed results were not satisfactory, in the sense that they are
not acceptable for a real application, further approaches demanded to be tested. Moreover,
as FBCSP II was better than FBCSP I, non-linear classifiers were added to the previous
classifiers to be trained and tried out. Table 15 contains the F1-score from this method. As
expected, the results improved compared with the linear and statistical classifiers approach.
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Two combinations obtained the same average F1-score, the one classifier, and the ensemble
voting hard, which was not foreseen as it was presumed that two classifiers would predict
a more accurate result rather than just one.

Table 15. F1-score, kappa, and FP rate for dataset B and FBCSP II, using both sets of classifiers.

Average 1 2 3 4 5 6 7 8 9

F1-score 1 Classifier 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515
Prob. F1 0.648 0.718 0.631 0.912 0.628 0.667 0.737 0.642 0.450 0.447
2 Classifiers 0.588 0.712 0.586 0.773 0.582 0.601 0.613 0.545 0.460 0.418
Prob. F1 0.599 0.712 0.560 0.771 0.619 0.650 0.658 0.623 0.374 0.418
Soft 0.646 0.758 0.626 0.892 0.589 0.644 0.678 0.622 0.485 0.519
Hard 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515
Ada 0.668 0.758 0.631 0.912 0.628 0.667 0.737 0.642 0.517 0.519
Best 0.651 0.747 0.595 0.911 0.604 0.660 0.706 0.604 0.517 0.515

Kappa 1 Classifier 0.426 0.463 0.375 0.863 0.387 0.488 0.525 0.387 0.125 0.225
Prob. F1 0.433 0.625 0.175 0.863 0.425 0.488 0.563 0.463 0.100 0.200
2 Classifiers 0.359 0.550 0.313 0.625 0.400 0.390 0.413 0.325 0.050 0.162
Prob. F1 0.413 0.575 0.325 0.638 0.413 0.475 0.488 0.438 0.175 0.188
Soft 0.447 0.625 0.450 0.838 0.375 0.463 0.450 0.425 0.150 0.250
Hard 0.443 0.600 0.375 0.863 0.387 0.488 0.538 0.387 0.125 0.225
Ada 0.478 0.625 0.450 0.863 0.425 0.488 0.563 0.463 0.175 0.250
Best 0.426 0.463 0.375 0.863 0.387 0.488 0.525 0.387 0.125 0.225

FP rate 1 Classifier 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000
Prob. F1 0.411 0.322 0.111 0.101 0.595 0.506 0.400 0.506 0.125 1.036
2 Classifiers 0.314 0.190 0.200 0.078 0.486 0.178 0.288 0.561 0.068 0.774
Prob. F1 0.399 0.370 0.364 0.110 0.534 0.397 0.466 0.440 0.071 0.836
Soft 0.471 0.300 0.461 0.121 0.700 0.506 0.500 0.581 0.135 0.933
Hard 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000
Ada 0.290 0.190 0.111 0.078 0.486 0.178 0.288 0.440 0.068 0.774
Best 0.471 0.519 0.314 0.101 0.690 0.468 0.422 0.648 0.080 1.000

Regarding the kappa score, it was higher for the ensemble voting hard, which is better
than the score for just the linear and statistical classifiers, but still lower than for dataset
A, which corroborates with that previously stated about the headset used to acquire these
signals. The FP rate was lower than previously, as was anticipated due to the rise of the F1-
score. Despite these results, it is still important to mention that subjects 1, 3, and 6 produced
results comparable to the ones from dataset A, even if with slightly higher FP rates than
the ones from dataset A. Table 16 presents the chosen classifier(s) for each combination.
These encompass mainly the kernel SVMs, followed by the neural networks. In some cases,
the K-NN is chosen as the second-best classifier. None of the linear or statistical classifiers
were chosen, which indicates that this dataset requires more complex models to predict
better results.

Table 16. Best classifiers, from both sets, for each combination for dataset B and FBCSP II.

Individual (I) I1 I2 I3 I4 I5 I6 I7 I8 I9

1 Classifier 5 5 5 5 5 5 5 5 5
Prob. F1 5 5 5 5 5 5 5 5 5
2 Classifiers 5 7 5 7 5 4 5 7 5 7 5 7 5 7 5 7 5 7
Prob. F1 5 7 5 4 5 4 5 7 5 7 5 7 5 7 5 4 5 7
Soft 5 7 5 4 5 4 5 8 5 7 5 7 5 7 5 4 5 4
Hard 5 7 5 7 5 4 5 7 5 7 5 7 5 7 5 4 5 7

4—K-nearest neighbours; 5—kernel support vector machines; 7—neural networks; 8—random forest.
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4.3. Power Spectral Density

The next subsections present the findings and insights from the analysis of results
obtained using power spectral density.

4.3.1. Power Spectral Density Approach Using Dataset A

As mentioned before, since the best results with linear classifiers were not obtained
with the PSD approach, non-linear strategies were not employed. Moreover, as no single
linear classifier produced satisfactory results on its own, combinations thereof were not
evaluated either. The obtained F1-score was 0.510, which is much lower than the F1-score
of 0.793 for the combination of one classifier and FBCSP II. Moreover, the FP rate is also
much higher than the one for FBCSP II, thus endorsing the idea that this approach is not
the best for this dataset.

4.3.2. Power Spectral Density Approach Using Dataset B

Similarly to dataset A, only the one classifier approach was tested due to unsatisfactory
results. However, the difference between this and the FBCSP II was not as large as the one
for dataset A. The average F1-score, 0.443, was quite similar to the one for dataset A, 0.510,
which did not happen for the other approaches. However, the kappa score and the FP rate
were worse. The latter presents a high value of 0.844, which lies close to 1, that is to say,
there is almost more FP than TP, which is not the goal.

4.4. Real-Time Application

The subject with the best performance for dataset B was chosen to perform the real-
time testing. The subject was asked to sit still and maintain movements to a minimum,
similar to the training phase. An external person experimented and asked the subject to
imagine a certain MI. Every 2 s an epoch was sent to the system and a class was predicted.
The person conducting the experiment waited for ten predictions to appear before asking
for the next one, as a way of allowing the system to stabilise. Again, due to stabilisation, the
first three outputs after a new MI were discarded. As subject 3 was the one who presented
the best results, the steps described previously were applied in a real-time scenario, leading
to the results in Table 17. The final system consisted of applying the FBCSP II approach,
which produced the best score. Then, 70% of the features were extracted and fed to an
ensemble voting hard classifier built with the major vote between the kernel SVM and the
K-NN, where the vote percentage was 2 to 1, respectively.

Table 17. Cues and respective outputs from subject 3’s real-time applications.

MI Output Majority % MI Output Majority %

N 2 1 1 2 2 2 0 0 2 2 2 60% R 1 2 1 1 1 1 1 1 1 1 1 90%

R 1 1 0 1 2 1 1 0 0 1 1 60% N 2 2 2 2 1 2 0 0 2 2 2 70%

N 2 0 2 2 2 2 2 0 0 2 2 70% L 2 1 1 1 1 1 0 0 1 0 1 30%

L 0 0 0 1 0 0 1 1 2 2 0 50% N 2 2 2 0 2 2 2 2 2 2 2 90%

L 0 1 0 0 0 1 0 1 2 2 0 50% R 1 0 1 1 1 0 1 1 1 2 1 70%

N 2 0 2 2 0 2 2 2 0 2 2 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

R 1 0 1 2 1 1 2 1 1 0 1 60% L 0 0 2 0 2 0 2 0 2 2 0 50%

L 0 0 2 0 0 0 1 1 0 1 0 60% N 2 1 2 2 2 1 2 2 2 2 2 80%

N 2 2 2 1 2 2 1 2 0 2 2 70% R 1 2 1 2 1 2 0 2 0 2 2 30%

R 1 1 1 1 0 0 2 1 1 1 1 70% N 2 2 2 2 2 2 2 2 2 2 2 100%

N 0 2 2 0 2 2 0 0 2 2 2 60% L 0 0 0 1 0 0 0 0 2 2 0 70%

Overall, the results were satisfactory and as anticipated from the performance pre-
viously analysed. From twenty-two cues, there were only two cues incorrectly classified,
represented in red, one for the left and another for the right. The left one was misclassified
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as right, which is a problem since, if it was an IW, it would go in the opposite direction.
The right cue was classified as neutral. Despite being misclassified, it is not the worst since
a hypothetical IW would have maintained the same direction. Nevertheless, none of the
neutral cues were incorrectly classified. Although some limitations related to the accuracy,
these results show that the system is evolving towards the right direction, suggesting that a
new headset and a refinement of the algorithm would deliver promising results.

5. Discussion

Overall, dataset A, independently of the approach, produced better results than dataset
B. The only exception might be for the PSD approaches, where the average F1-score value
for both datasets was very similar. There are several possibilities for this discrepancy in the
results, such as dataset A was obtained using a stable headset, with movable electrodes. This
leads to the electrodes always assuming the same known position throughout the different
sessions. Moreover, the results were obtained by professionals in a carefully controlled
environment. Dataset B was collected using an Emotiv EPOC. There are several problems
regarding the EPOC, such as it has fixed electrodes. This leads to the absolute position
being different for all the subjects, and even varies from session to session. Moreover, it did
not fit everyone’s head, and four subjects did not make it into this dataset due to limitations
in positioning the electrodes correctly. Some sensors were starting to be oxidised, which led
to noisy acquisitions, which hampered the already difficult EEG processing, as the signal is
very sensitive. The Emotiv EPOC does not cover the motor cortex, which is critical for the
tasks in this study. While the literature suggests it can work for parietal and frontal areas,
its performance is not optimal for motor cortex tasks. Nevertheless, the Emotiv EPOC was
chosen for its balance of cost, ease of use, and functionality, offering a reasonable number
of electrodes, wireless operation, extended battery life, and affordability. Due to the fact
that the process of training is very time-consuming and this work was merely a proof
of concept, only the subject with the best performance for dataset B was chosen for the
real-time testing.

Comparing the different approaches, it was already expected that the best method
would be related to the CSP, as it was the winning method of the competition. This
suggests that spatial methods perform better than the others do, which may be related to
the elimination of existent artefacts in the bands of interest. However, it was interesting
that FBCSP II produced slightly better scores than FBCSP I, implying that feeding the
whole spatial filtered signal to the feature selector works better than feeding a transformed
version of the signal filtered by just the columns of the spatial filter. Although the results
from the competition are merely qualitative, the results from FBCSP II also indicate that
using the extra tree classifier to obtain the features’ importance and the ensemble voting
hard, employing the LR and the GNB, or LDA, to classify the epochs, represents a valuable
update. This led to a final average kappa score of 0.69, which is 20% higher than the winner
value of 0.57. Despite the 20% not being a real quantitative evaluation, the value of 0.69
already suggests that the algorithm is considerably better than a random classifier and can
correctly classify the epochs, presenting an F1-score of 0.797 and the smallest FP rate of all
the tested approaches, 0.150. Similarly, dataset B also presented better results for the FBCSP
II than for the FBCSP I. Moreover, contrarily to dataset A, dataset B improved its results by
allowing the use of non-linear classifiers. Fakhruzzaman et al. [66] and Muñoz et al. [61]
used the Emotiv EPOC headset and the CSP method as a features extractor. Fakhruzzaman
et al. [66] obtained an average accuracy of 60%, whereas Muñoz et al. [61] obtained an
average accuracy of 67.5% using the LDA classifier, 68.3% using the SVM, and 96.7% using
Nu-SVC RBF kernel. Overall, the result of 65% from dataset B regarding the FBCSP II
approach with the ensemble voting hard classifier falls within the mean values presented
by these authors, except for the last method of Muñoz et al. [61]. The latter is greatly
higher than the others are, suggesting that this classifier is indicated for this type of feature,
and should be considered for further implementation in future work. Furthermore, it is
important to state that the signals in dataset B had constraints in AF3 and AF4 electrodes,
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which may be important electrodes according to Lin and Lo [60] and Muñoz et al. [61],
thus decreasing the obtained accuracy and the F1-score. The average accuracy of other
authors using the EPOC and the magnitude of frequency components or the power spectral
density (square of the magnitude) as features was 74–100% for Abiyev et al. [57], 70%
for Hurtado-Rincon et al. [59], and 86–92% for Lin and Lo [60], and Siribunyaphat and
Punsawad [67]. More recent works [49,68,69] have also achieved important F1-scores, using
different EEG headsets. This reflects a promising area to explore for controlling intelligent
wheelchairs.

6. Conclusions and Future Work

The goal of this work was being able to decode MI intentions from the users, using
an Emotiv EPOC as the headset to extract the EEG signals. The intentions were left, right,
and neutral, which would be further translated into control commands for an intelligent
wheelchair. This headset has higher constraints in terms of accessing data in a less controlled
environment; however, overall, this work allowed the development of a proof of concept
for future projects and a thorough study regarding the different algorithms. Although the
real-time results are still not suitable for the actual application, they validate the concept
and the developed architecture to connect the different parts of the system. For future work,
utilising a broader and more diverse dataset may contribute to enhancing the model’s
generality. Another interesting future work could be applying different methods for noise
removal, such as independent component analysis. Additionally, conducting long-term
usage and testing across diverse environments will be essential for assessing system stability
and applicability.
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