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Abstract: Internet of Things (IoT) devices often operate with limited resources while interacting with
users and their environment, generating a wealth of data. Machine learning models interpret such
sensor data, enabling accurate predictions and informed decisions. However, the sheer volume of
data from billions of devices can overwhelm networks, making traditional cloud data processing
inefficient for IoT applications. This paper presents a comprehensive survey of recent advances in
models, architectures, hardware, and design requirements for deploying machine learning on low-
resource devices at the edge and in cloud networks. Prominent IoT devices tailored to integrate edge
intelligence include Raspberry Pi, NVIDIA’s Jetson, Arduino Nano 33 BLE Sense, STM32 Microcon-
trollers, SparkFun Edge, Google Coral Dev Board, and Beaglebone AI. These devices are boosted with
custom AI frameworks, such as TensorFlow Lite, OpenEI, Core ML, Caffe2, and MXNet, to empower
ML and DL tasks (e.g., object detection and gesture recognition). Both traditional machine learning
(e.g., random forest, logistic regression) and deep learning methods (e.g., ResNet-50, YOLOv4, LSTM)
are deployed on devices, distributed edge, and distributed cloud computing. Moreover, we analyzed
1000 recent publications on “ML in IoT” from IEEE Xplore using support vector machine, random
forest, and decision tree classifiers to identify emerging topics and application domains. Hot topics
included big data, cloud, edge, multimedia, security, privacy, QoS, and activity recognition, while
critical domains included industry, healthcare, agriculture, transportation, smart homes and cities,
and assisted living. The major challenges hindering the implementation of edge machine learning
include encrypting sensitive user data for security and privacy on edge devices, efficiently manag-
ing resources of edge nodes through distributed learning architectures, and balancing the energy
limitations of edge devices and the energy demands of machine learning.

Keywords: machine learning; Internet of Things; IoT devices; edge intelligence; edge learning;
artificial intelligence; deep learning; review

1. Introduction

During the past ten years, there has been a growing interest in wireless communication
technology, and the number of IoT devices has risen significantly. It is forecasted to reach
more than 26 billion devices connected to the Internet by 2030 [1], as depicted in Figure 1.
These devices generate a large volume of data per second, have limited computing power,
small memory capacities, and lack the self-sufficient intelligence to process raw data locally
and make independent decisions. Resource-constrained IoT devices include sensors, smart
fridges, and smart lights.
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Figure 1. The Growth of IoT Devices between 2019 and 2030.

Feeding data into a machine learning (ML) system is among the most effective meth-
ods for extracting information and making decisions from IoT devices. Unfortunately,
the processing capacity of these devices hinders the deployment of ML algorithms. Tradi-
tionally, the solution has been to offload all data to a centralized cloud system for further
processing. However, this approach often leads to high latency, bandwidth saturation,
and user data privacy concerns, as the data must be transferred and stored in the cloud
indefinitely. Moreover, with the constant development of the IoT industry and the massive
amount of data collected by each device, offloading all data to the cloud is becoming
increasingly challenging (Figure 1). To address these issues, various solutions have been
proposed. One effective solution is to process data as close as possible to its source and
only transmit essential data to remote servers for further processing. This approach, known
as edge computing or edge intelligence, offers several advantages.

In fact, edge intelligence (EI) proposes relocating data processing at the edge of the
IoT network, which includes gateways, embedded devices, and edge servers near where
the data is collected rather than a distant location. This is achieved by placing computing
devices near the data-generating devices, spreading computation across the network’s
layers. For example, the IoT gateway may preprocess the data before transmitting the
temporary results to the cloud, which will complete the rest of the processing. Integrating
ML capabilities into edge computing could reduce data dimensionality. The preprocessing
would be executed at the edge node to extract important information transmitted to the
cloud for advanced analysis, decreasing bandwidth requirements and workload in the
cloud systems. By processing all data locally, the system not only saves on bandwidth but
also preserves privacy. A similar term is fog computing, which refers to an infrastructure
where the cloud is brought closer to IoT devices. This system reduces delays and improves
security by handling computations closer to the network’s edge.

The primary distinction between fog and edge computing comes down to where data
processing occurs. Edge computing handles data directly on sensor-equipped devices or on
nearby gateway devices. Meanwhile, in the fog model, data processing occurs a bit farther
from the edge, usually on devices linked through a local area network (LAN). Bringing the
intelligence closer to the source can be implemented in edge or fog nodes. We delve deeper
into this concept in Sections 3 and 4. Another solution discussed is running ML algorithms
on end devices (embedded intelligence), which is mostly addressed as on-device learning.
This concept can introduce substantial improvements to the IoT infrastructure. Applying
ML directly on the device enables real-time decision-making through data analysis, tailored
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behavior personalized specifically for each consumer, congestion prevention and, above all,
to preserve the confidentiality of the user’s data. Several research efforts have been made
in order to successfully deploy ML in the IoT device (closer to the data source). These
smart devices will be able to process sensed data, analyze the problem, and operate directly.
In order to achieve this, many devices have been developed with improved GPUs and
CPUs capable of handling the complexity of machine learning and deep learning (DL).

Additionally, lighter versions of frameworks and platforms that can support on-device
machine learning have been developed. Section 4 of this paper delves deeper into this
topic. The final solution examined in this paper involves integrating computation across the
layers of the IoT network. The deployment of complex ML algorithms on the device itself
is still limited due to the computing and memory constraints. Therefore, it is recommended
to distribute the data processing among IoT devices, gateways, fog, and cloud computing.
For instance, the IoT device can preprocess the data using lightweight embedded models
and only offload the necessary data to the cloud for additional processing. This concept
focuses on deploying ML models across all layers of the network, leveraging the hierarchical
structure of the IoT system. Each layer, from embedded devices to gateways to edge servers
to cloud servers, is capable of performing a certain amount of computation, with the
capabilities increasing as we move up the hierarchy. This distributed approach enables
the efficient processing of data, from the edge to the cloud, by allocating tasks to the most
suitable computational entity at each level. Model partitioning is another solution in deep
learning, in which certain layers are processed on the device, while others are processed on
an edge server or within the cloud. Due to the computational cycles of other edge devices,
this approach may be able to reduce latency. Evidently, after computing the first layers of
the deep neural network (DNN) model, the intermediate results are comparably smaller,
facilitating faster network transmission to an edge server. We have discussed this aspect
further in the paper.

Although there is still much progress to be made in standardizing IoT architecture
and technologies, Figure 2 can precisely identify the major components of the architecture
as commonly utilized across a variety of applications. The architecture key components
are divided into blocks in Figure 2. Each block illustrates a representation of the explained
element, and arrows connect the blocks to show how each element interacts with the others.
Text blocks are also included, with bulleted lists of the essential parts of each key factor.
The IoT architecture includes :

1. Perception or Sensing Layer: the perception layer includes the physical components,
such as IoT devices, sensors, and actuators. It is in charge of identifying objects and
gathering information from them. we can find different types of sensors depending
on the application [2]. ML can be implemented in this layer, which we identify as
embedded intelligence. It is further explained in the next section.

2. Network Layer: network or transmission layer is in charge of routing and transmit-
ting the data collected from the physical objects to the upper layers. The communica-
tion can be wired or wireless. The communication protocols commonly utilized in IoT
include Wi-Fi, Bluetooth, IEEE 802.15.4, Z-wave, LTE-Advanced, RFID, Near Field
Communication (NFC), and ultra-wide bandwidth (UWB).

3. Processing Layer: the middleware or processing layer collects and processes large
amounts of data from the network layer. It possesses the capability to administer and
deliver a range of services to the underlying layers. Among the technologies used
in this layer are databases, cloud computing, and big data processing modules. The
computation load could be divided between the fog/edge and cloud servers.

4. Application Layer: the application layer is in charge of providing users with services
designed for specific applications. It defines a variety of IoT applications, like Smart
Home, Smart City, and Smart Health.
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Figure 2. Essential Components of an IoT Architecture.

Furthermore, Figure 2 illustrates the significance of machine learning within the IoT
infrastructure. ML techniques are applicable at various points, including IoT nodes, edge or
fog servers, and cloud servers, adapted to suit the requirements of the specific application.

Combining artificial intelligence into edge computing applications has been explored
by numerous review papers. In Grzesik et al. [3] provide a comprehensive survey on the
integration of machine learning and edge computing within edge devices. The authors
examine the benefits and challenges of combining AI in these devices. However, they have
not explored the opportunities of applying AI to different architectures of the IoT. In their
study, Chang et al. [4] investigate the combination of IoT and AI through the utilization of
both edge computing and cloud resources. They delve into seven distinct IoT application
scenarios, concentrating on techniques that facilitate the optimal deployment of AI models.
Nonetheless, they overlooked the exploration of AI techniques and the potential benefits
and applications of AI in edge-based scenarios and did not explore the opportunities of
distributing the intelligence in all the IoT networks. Opposed to these reviews, our study
examines the use of machine learning in various IoT fields, discusses the integration of
intelligence into multiple layers of the IoT network, explores recent developments in this
field and future work, and addresses related issues. Additionally, we employ a structured
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method based on ML classification techniques to analyze all publications on ML in IoT that
are available via an API. The primary contributions of this paper are outlined as follows:

• We conduct a thorough investigation into the current state of the art regarding ML in
the IoT. It involves categorizing ML approaches based on their deployment within
the IoT architecture, their application domains, and the developed frameworks and
hardware to facilitate ML integration.

• We deliver an in-depth analysis of diverse ML techniques, their characteristics, suit-
ability for IoT, and innovative solutions to overcome associated challenges.

• We explore the opportunities and challenges of seamlessly integrating IoT devices
with embedded intelligence while addressing the combination of the computational
overload across the cloud, fog, and edge layers.

• We employ a machine learning approach to analyze publications concerning ML in
the IoT in various applications, training precise classifiers to categorize publications
based on key phrases found in their titles and abstracts. The insights provided enable
other researchers to replicate the analysis with updated publications in the future.

• Based on a comprehensive review of IoT and machine learning literature, we highlight
key challenges and promising research directions for optimizing machine learning on
IoT systems, with a focus on edge computing as the primary paradigm.

The rest of this paper is structured as follows: Section 2 presents ML techniques, focusing
on the requirements of ML algorithms in IoT. Section 3 reviews the fundamentals of edge
computing. In Section 4, we explain the requirements of integrating ML in the IoT network,
focusing on different possible architectures, including available frameworks and hardware
to facilitate the deployment of ML models. We also review cutting-edge research on ML
applications at the edge for various use cases, positioning them on the cloud-to-edge
spectrum. In Section 5, we investigate the open challenges encountered in this field. Then,
in Section 6, we analyze ML and IoT articles, classify, and label them using an ML approach.
Finally, Section 7 outlines the future directions of machine learning at the edge, while
Section 8 concludes this review.

2. Machine Learning Techniques

Machine learning (ML) is a subset of artificial intelligence (AI) focused on improving
performance through automatic learning from experience. ML relies on training machines
with large datasets to make better decisions. As defined by Mitchell, ML involves learning
from experience E to improve performance measure P on tasks T [5]. ML algorithms
can be classified into four major categories: supervised, unsupervised, semi-supervised,
and reinforcement learning. Figure 3 demonstrates a detailed taxonomy of ML algorithms.

Figure 3. Taxonomy of Machine Learning Algorithms.

2.1. Supervised Learning

Supervised learning is one of the most used types of learning, the majority of ML
algorithms are supervised. Supervised machine learning uses labeled datasets to train
algorithms where the input and output are known in advance. The goal is to train the
data to create a predictive model that can accurately anticipate responses when exposed to
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unseen data [6–8]. Supervised machine learning implements classification and regression
techniques. Classification is utilized for estimating discrete responses, while regression
is employed when dealing with continuous labels. Some of the most popular supervised
machine learning algorithms are support vector machine (SVM) and random forest (RF),
which are described in the following paragraphs. Their popularity rises because they can
be implemented and executed in resource-constrained environments and because of their
ability to be distributed in the cloud-to-things network.

SVM is a powerful but simple ML algorithm used in classification and regression [9].
It utilizes a hyperplane to separate data points into distinct classes, aiming to maximize
the margin from the closest data points, referred to as support vectors. The margin is
crucial, as a larger margin indicates better classification accuracy. When a new data point
is introduced, SVM predicts its label based on its position relative to the hyperplane.
While SVM inherently works with linearly separable data, it can handle nonlinear datasets
by transforming them into higher-dimensional spaces. This transformation is achieved
through the kernel trick, which aids in finding the optimal hyperplane without the need
for explicit mapping to higher dimensions, thereby reducing computational complexity.
Several solutions have been developed to deploy SVM in resource-constrained embedded
environments. This paper proposed a real-time tomato classification system using a model
that combines convolutional neural networks (CNN) and SVM [10]. The suggested model
includes two parts: the EfficientNetB0 CNN model for feature extraction, while SVM han-
dles classification tasks. Notably, to optimize model inference on the embedded platform,
they employed TensorRT and performed quantization to lower the model’s computational
complexity while maintaining accuracy. The hybrid model was deployed on the embedded
single-board NVIDIA Jetson TX1, achieving an average accuracy of 93.54% for classifying
static tomato images. During real-time implementation, it achieved an average inference
speed of 15.6 frames per second, showcasing its capability for rapid decision-making.
While the paper demonstrates significant advancements in real-time tomato classification
using a hybrid CNN-SVM model deployed on an embedded system, issues such as ensur-
ing data privacy and edge security continue to raise significant concerns. Additionally,
optimizing algorithms and hardware to minimize energy consumption is essential for
prolonged operation in resource-constrained environments.

RF is a simple yet effective algorithm. It tackles both regression and classification
tasks by constructing a “forest” of decision trees through randomization, often employing
the bagging algorithm [11,12]. In regression, RF averages outputs from multiple trees,
while in classification, it selects the most voted outcome. RF stands out for its accuracy,
robustness, and capacity to handle large datasets without overfitting. However, only
applying current ML algorithms may not ensure optimal performance. Several studies have
introduced solutions to address this challenge, such as FS-GAN, a federated self-supervised
learning architecture proposed to facilitate automatic traffic analysis and synthesis across
diverse datasets [13]. By leveraging federated learning, FS-GAN coordinates local model
training processes across different datasets, enabling decentralized systems like edge
computing networks to train models on multiple devices without transferring data to
a central server. This approach addresses privacy concerns, minimizes communication
overhead, and facilitates efficient model training in distributed environments.

2.2. Unsupervised Learning

Unsupervised learning analyses datasets without predefined outputs, focusing only on
the provided input. Its objective is to identify patterns and structures within unlabeled data.
Unlike supervised learning, there are no provided outcomes, the system observes only input
features and aims to cluster data accordingly [14,15]. Clustering is among the most widely
used unsupervised learning methods. It splits the data into groups according to similarity.
Data with similar features are placed in the same groups, while dissimilar points are placed
in other groups. Clustering is mostly used in video-on-demand, marketing, smart grid, etc.
Figure 4 illustrates the concepts of supervised, unsupervised, and reinforcement learning.
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Figure 4. Supervised/Unsupervised/Reinforcement Learning.

2.3. Semi-Supervised Learning

Semi-supervised learning uses both labeled and unlabeled data, optimizing efficiency
and accuracy. Labeled data is typically scarce and costly to obtain, requiring skilled
human annotators. In contrast, unlabeled data is easier to gather. Leveraging both types,
semi-supervised learning offers a compelling solution for enhancing algorithms with less
human effort while achieving higher accuracy [16,17]. These models enhance unsupervised
learning by leveraging small amounts of labeled data, offering simplicity and cost-efficiency
compared to supervised learning. Generative models, Graph-based models [18], mixture
models And EM, and semi-supervised support vector machines [16] are some of the
algorithms used in semi-supervised learning.

2.4. Reinforcement Learning

Reinforcement learning relies on interaction with the environment, where machines
learn via experiments in order to improve their actions relying on rewards or penalties [7].
Notably, Q-learning stands out as a prominent algorithm in this field [19,20]. Unlike other
methods, reinforcement learning does not rely on data but rather on past experiences. It’s
widely applied in autonomous systems like race cars, robotic navigation, and AI gaming,
forming a reward-based learning system. Various researchers have devised innovative
solutions to deploy reinforcement-based models on the edge [21]. In this study, the author
introduces a distributed edge intelligence sharing scheme aimed at improving learning
efficiency and service quality in edge intelligence systems. This scheme allows edge nodes
to enhance learning performance by exchanging their intelligence, tackling challenges like
repetitive model training and overfitting caused by limited data samples. The approach
is structured as a multi-agent Markov decision process, the scheme employs an ensemble
deep reinforcement learning algorithm to optimize intelligence exchange among edge
nodes [22].

2.5. Deep Learning

Deep learning approaches are well-suited for handling vast quantities of data and
computationally intensive tasks such as image identification, speech recognition, synthesis,
and others. As the demand for CPU power continues to rise, robust GPUs are increas-
ingly being utilized to execute deep learning tasks. Deep neural networks, like artificial
neural networks (ANNs), are created using deep learning. The term “deep” refers to the
architecture of the network, which is characterized by numerous hidden layers [23]. Each
deep learning model is made up of several layers. The input data is sequentially processed
through the layers, with matrix multiplications performed at each layer. A layer’s output
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becomes the following layer’s input. The last output from the final layer can be a feature
representation or a classification result. When a model has multiple layers, it is called a
deep neural network [24].

In deep learning, the number of layers is proportional to the number of features
extracted. Unlike traditional methods, deep learning techniques automatically determine
the features, so no feature calculation or extraction is required before using the method.
With the advancement of DL, multiple network structures have been developed. CNN
is a special case of the DNN family. CNN is performed when the matrix multiplications
include convolutional filter operations [25]. CNN classifiers are commonly used for image
classification, computer vision, and video analysis. Recurrent neural networks (RNN)
are DNNs designed specifically for time series prediction, including loop connections
within their layers to retain state information and facilitate predictions on sequential inputs,
solving problems related to machine translation, audio data in speech recognition [26].
LSTM (long short-term memory) is a variant of RNN [27]. An LSTM unit comprises a
cell, an input gate, an output gate, and a forget gate. These gates control the flow of
information into and out of the cell, enabling the cell to maintain relevant information over
time. The forget gate, in particular, can identify which information is retained and which is
discarded. Designing a good DNN model for a specific application is difficult due to the
large number of hyperparameters involved. During the design process, decisions often
involve compromises on system metrics. For instance, a DNN model with high accuracy
typically needs greater memory capacity to store all the model parameters compared to a
model with lower accuracy. The choice of success metric depends on the application domain
where DL is implemented. Islam et al. developed a custom CNN model for detecting
tomato diseases, achieving an impressive 99% accuracy. Their model outperformed other
CNNs based on the training time and computational cost. Additionally, they demonstrated
the feasibility of running their model on drone devices. However, further analysis and
experiments are required to effectively deploy their model on edge devices [28].

3. Edge Computing for IoT

Current computing and storage paradigms include cloud, fog, and edge computing.
They are another important part of the internet of thing’s architecture, the storage layer of
a computing system for handling large amounts of data. A reliable data gathering, storage,
computation, and analytic framework unfolds from the integration of these paradigms
with the IoT.

3.1. Cloud Computing

Cloud computing is a centralized framework that provides on-demand computing
resources such as servers, networks, storage, etc. [29]. The data must be transmitted to the
data centers for additional processing and analysis in order to be usable, as illustrated in
Figure 5. The cloud architecture is considered to have high latency and can congest the
network because of its high load balancing. Since IoT’s data are high, only cloud computing
is no longer an option. Cloud computing can be divided into numerous types:

• Software as a Service (SaaS): Applications run on a service provider in the cloud,
they are hosted, managed in a distant computer and connect to users via Internet.

• Platform as a Service (PaaS): Offers a cloud environment with all necessary resources
to develop and build ready-to-use applications but without expense and hassle of
purchasing and managing hardware or softwares.

• Infrastructure as a Service (IaaS): Offers computing resources to business, from
servers to storage and networks. it is a pay-as-you-go, internet-based service model.

In the last few decades, the IoT has become increasingly prevalent, and the number of
connected devices has grown exponentially. This has resulted in unprecedented volumes
of data being generated by these devices.
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Figure 5. Fog and Edge Computing Layers.

3.2. Fog Computing

Fog computing is considered a shift from a centralized paradigm (CC) to a more
decentralized system. It was created by CISCO back in 2012 [30] and refers to a virtualized
platform that offers computation, storage, and communications services across edge de-
vices and standard cloud computing data centers. These centers are often located at the
network’s edge, though not exclusively. Fog architecture consists of fog nodes (FNs) that
can be placed anywhere along end devices and in the cloud. An FN can be constituted by
various devices including switches, routers, servers, access points, IoT gateways, video
surveillance cameras, or any other device equipped with processing capabilities, storage ca-
pacity, and network connectivity. This enables communication among the fog layer and end
devices through a range of protocol layers and non-IP-based access technologies. The ab-
straction within the fog layer hides the complexity of various FNs offering a suite of services
such as data processing, storage, resource allocation, and security. These functionalities are
leveraged by a Service Orchestration Layer to efficiently distribute resources tailored to
meet the distinct requirements of the end devices [31]. Integrating a fog layer into IoT-based
systems to lower latency, conserve energy, and enhance real-time responsiveness has been
the focus of various research studies. In the study by Singh et al. [32], a framework was
introduced to track student stress and generate real-time alerts for stress forecasting. Data
processing and cleaning were performed locally in the fog layer to minimize the workload
in the cloud, followed by loading the data to the cloud layer for additional processing.
The authors utilized multinomial Naive Bayes techniques to estimate emotion scores and
categorize stress events. Additionally, they employed bidirectional Long Short-Term Mem-
ory (BiLSTM) for speech texture analysis and Visual Geometry Group (VGG16) for facial
expression analysis.

3.3. Edge Computing

Edge computing, which was introduced prior to cloud computing, has gained sub-
stantial momentum, especially with the rise of the IoT. It enables IoT data computation and
analysis at the network’s edge, near the data source. Within IoT networks, the primary
goal is to address critical needs such as security, privacy, low latency, and high bandwidth.
Edge computing lowers the amount of data transmitted between nodes, resulting in cost
savings and reduced network bandwidth consumption. Furthermore, edge computing
serves as a complement to existing cloud computing platforms, enabling efficient data
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processing. Depending on the IoT application, direct data processing on IoT devices may
be necessary, supplementing centralized cloud infrastructure common in traditional setups.
The concept of edge computing arises as processing capabilities are brought closer to end
network elements. Edge computing and fog computing both involve processing data
closer to where it’s generated. While edge computing processes data directly on devices
or within the local network, aiming to reduce latency and bandwidth usage by handling
tasks locally before sending relevant information to centralized servers. Fog computing,
on the other hand, extends this concept by deploying the FN at various points within
the network, including both edge devices and traditional cloud data centers. This allows
for a more distributed architecture, enabling efficient data processing and analysis across
multiple network tiers. So, while edge computing is more localized, fog computing takes a
broader approach, encompassing a wider range of network locations and resources. Edge
intelligence extends the foundation of edge computing by directly integrating intelligent
algorithms and models into edge devices. At the edge, it enables local data analysis,
decision-making, and autonomous behavior. Edge intelligence enables real-time insights,
reduced reliance on cloud resources, and improved autonomy in IoT environments by
embedding machine learning and artificial intelligence capabilities on edge devices. It uses
edge computing infrastructure to perform intelligent tasks and data processing, enhancing
the overall capabilities of IoT networks. By bringing computational power and intelligence
closer to the data source, combining edge computing and AI enables efficient and effective
IoT deployments. It meets critical requirements like security, privacy, low latency, and high
bandwidth while decreasing reliance on centralized cloud resources. This convergence
enables smarter and more autonomous IoT systems, allowing devices at the network’s edge
to perform advanced analytics, decision-making, and real-time responses.

4. Implementing Machine Learning at the Edge

ML the edge requires several fundamental factors, including hardware, frameworks,
model compression, and model selection. These elements have an impact on both the
effectiveness and efficiency of edge-based AI applications. Hardware selection must strike a
balance between computational power and energy efficiency while also taking into account
specific use cases and resource constraints. In addition, model optimization techniques
such as compression and selection are critical in adapting machine learning models for
edge deployment.

4.1. IoT Hardware and Frameworks Employed in Edge Intelligence

IoT is a term that was presented in early 1999 by Kevin Ashton. It is an interconnection
between physical world objects, embedded intelligent devices, and the internet. This is
how the expression Internet of Things came to be in the first place. The key concept of IoT is
connecting our day-to-day devices (cellphones, cars, lamps, etc.) via the internet to facilitate
our work [2]. The connected devices have multiple types of sensors attached to them, such
as temperature, speed, etc. to monitor and capture information from the physical world.
Then data are sent to the cloud in order to be viewed, analyzed, and saved. IoT plays a
crucial role in measuring and exchanging data between the physical world and virtual
world. IoT devices must communicate with one another (the network or transmission layer
in the 3-layer IoT architecture), the communication could be short or long range. Wireless
technologies like Bluetooth, ZigBee, and Wi-Fi are suitable for short-range communication,
while mobile networks like GSM, GPRS, 3G, 4G, LTEWiMAX, LoRa, Sigfox, CAT M1, NB-
IoT and 5G are employed for long-range communication. Utilizing an IoT platform such as
Mainflux, Thingspeak, Thingsboard, DeviceHive or Kaa to handle M2M communication
and using protocols including MQTT, AMQP, STOMP, CoAP, XMPP, and HTTP has become
common practice in IoT systems. However, with the rapid development of this new
paradigm, our world is crowded with billions of smart IoT devices that generate a massive
amount of data every day, hence the possibility to congest the network. In following section,
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we will discuss the advancement in the IoT devices and frameworks that made it possible
to embed complex ML models in resource-constrained devices.

4.1.1. IoT Hardware in Edge Intelligence: Design and Selection

One of the current challenges of integrating intelligence into IoT devices was the
hardware’s limited resources and its ability to handle on-device machine learning inference
or training. That is why several companies have worked hard to develop an optimal
hardware selection, considering factors like accuracy, energy consumption, throughput,
and cost. The following section explains the hardware that has been specifically invented
to deploy, build, and support ML at the network edge. To achieve high performance using
a machine learning model, you will need rich GPUs that can handle big data with low
latency. This is no longer the case since there are many efforts that have been made in
the resource-constrained devices. Lately, we have noticed types of small devices that can
support ML, even deep learning models. In the list below, we will introduce the most
commonly used devices for deploying ML models at the edge.

The Raspberry Pi

Among the most commonly used devices for edge computing is the Raspberry
Pi, a single-board computer designed by the Raspberry Pi Foundation [33]. It has
been used to run machine learning inference without the need for additional hardware.
The Raspberry Pi 3 Model B features a Quad Cortex A53 @ 1.2 GHz CPU, a 400 MHz
VideoCore IV GPU, and 1 GB SDRAM. In comparison, the Raspberry Pi 4 Model 4 is
an enhanced version, offering increased speed and power. It includes Gigabit Ethernet,
built-in wireless networking, and Bluetooth capabilities. The Raspberry Pi 4 Model 4
boasts a Quad Cortex A72 @ 1.5 GHz CPU and supports up to 8 GB SDRAM.

NVIDIA’s Jetson

NVIDIA Jeston is a new product developed by the Company NVIDIA fully dedicated
for edge computing. the platform high-performance, low-power and energy efficiency
makes it suitable for embedded applications and deploying Intelligence on the device. One
of the popular Jetson products is the NVIDIA Jeston Nano Developer Kit developed by
NVIDIA Corporation in Santa Clara, CA, USA [34], Jetson Nano is the entry-level board of
the NVIDIA Jetson family. It is suitable for running Neural Networks calculations due to
it’s 128 Maxwell’s GPU cores. it has 4 USB ports, a micro USB, an Ethernet port, two ribbon
connectors, and a jack socket to provide additional power if needed. The Jetson Nano is
compatible with all major DL frameworks, such as TensorFlow, pyTorch, Caffe, MXNet...
Another Module from the Jetson family is Nvidia Jetson TX2 Series Jetson TX2, the Nvidia
Jetson modules’s medium-sized board, is larger than Jetson Nano. It proves useful when it
comes to computer vision and deep learning. it has the Dual-Core NVIDIA Denver 2 64-Bit
CPU and Quad-Core Arm® Cortex®-A57 MPCore processor. It is very suitable for running
ML algorithms with its 256-core NVIDIA Pascal™ GPU. Jetson Tx2 proved be very efficient
in real-time vehicle detection with high accuracy [35].

Nvidia Jetson AGX Xavier can function as a GPU workstation for edge AI applications
with as little as 30 W power supply and delivering to 32 TOPs AI performance. Jetson AGX
Orin Series are considered the most powerful in the Jetson modules, offering up to 275 TOPS
and 8 times the performance compared to the previous generation for simultaneous AI
inference. It is well-suited for a variety of applications, including manufacturing, logistics,
retail, and healthcare, due to its high-speed interface that accommodates multiple sensors.

Arduino Nano 33 BLE Sense

Arduino Nano 33 BLE Sense is another AI enabled development board [36]. It can
be considered one of the cheapest boards available in the market. The Nano 33 BlE
Sense is simple and easy to use. It has an extensive library and resources which support
TensorFlow lite, that offer the possibility to create your Ml model and upload it using
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the Arduino IDE. Although, it is limited to executing a single program at a time, It has a
built-in microphone, acceleromter and a 9axis inertial sensor that makes it excellent for
wearable devices. Arduino Nano Board 33 is used various applications such as speech
recognition [37] and Smart Health [38].

STM32 Microcontrollers

STM32 [39] is a family of 32-bit microcontroller integrated circuits produced by STMi-
croelectronics. This family includes various models based on different ARM Cortex pro-
cessor cores, such as the Cortex-M33F, Cortex-M7F, Cortex-M4F, Cortex-M3, Cortex-M0+,
and Cortex-M0. Despite the differences in the specific Cortex cores used, all STM32 micro-
controllers are built around the same 32-bit ARM processor architecture. Each microcon-
troller has a processor core, static RAM, flash memory, a debugging interface, and various
peripherals internally. In order to implement AI at the edge for the STM32, STMicroelectron-
ics has developed specialized libraries for its devices, specifically the STM32Cube. The AI
Toolkit allows pre-trained NNs to be integrated into STM32 ARM CortexM-based microcon-
trollers. It generates from Tensorflow and Keras STM32-compatible C code-provided NN
models, as well as models in the standard ONNX format. STM32Cube has an intriguing
feature to execute large NNs; it stores weights and activation buffers either in external flash
memory or RAM.

SparkFun Edge

SparkFun Edge is the result of a collaboration between Google and Ambiq to develop
a real-time audio analysis Dev-Board [40]. It is utilized for voice and gesture recognition
purposes. A distinguishing feature of this board is the inclusion of the Apollo3 Blue micro-
controller from Ambiq Micro, which features a 32-bit ARM Cortex-M4F CPU with direct
memory access. Operating at 48 MHz CPU clock speed (96 MHz with TurboSPOTTM),
and extremely low power consumption of 6 uA/MHz. Despite its power efficiency, it can
easily run TensorFlow Lite, offering 384 KB of SRAM and 1 MB of Flash memory. This
development board also features two microphones, a 3-axis accelerometer from STMicro-
electronics, and a camera connector.

Google Coral Dev Board

Coral Dev [41] is designed for conducting fast on-device ML inference due to its
integrated Google Edge TPU, which is an Application-Specific Integrated Circuit. Coral
Development Board is a single-board computer with wireless capabilities for high-speed
machine learning inference. It has a removable system-on-Module. The operating system
on this board is Mendel, a Debian Linux variant. Supports TensorFlow Lite for model
inference, Python and C++ as programming languages This development board is primarily
used for image classification and object detection, but it can be used for a variety of other
tasks. Working with this Dev Board is made easier by good documentation and support
available online.

Beaglebone AI

The BeagleBone AI is a brand-new, high-end single-board computer. It’s designed to
help developers build ML and computer vision applications. This board is equipped by
a Texas Instruments AM5729 system-on-chip. Powered by a Texas Instruments AM5729
system-on-chip, it features a dual-core C66x digital signal processor (DSP) and four embed-
ded vision engine (EVE) cores. This configuration simplifies the exploration of machine
learning applications in everyday life due to an optimized Texas Instruments Deep Learn-
ing (TIDL) framework and a machine learning OpenCL API with pre-installed toolkits.
The BeagleBone AI is compatible with all popular machine learning frameworks, such
as TensorFlow, Caffe, MXNet, and others. It is capable of executing tasks like image
classification and object detection.
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The selection of hardware platforms is crucial in determining the performance and
capabilities of deployed solutions in edge computing and AI-enabled embedded systems.
From widely accessible options like the Raspberry Pi, offering flexibility at a low cost,
to specialized platforms like NVIDIA’s Jetson series, providing high-performance com-
puting tailored for deep learning tasks, each hardware option presents distinct benefits
and limitations. For instance, while platforms such as Arduino Nano 33 BLE Sense offer
simplicity and affordability, they may lack the computational power necessary for complex
AI tasks. However, solutions like Google Coral Dev Board and BeagleBone AI excel in
high-speed on-device ML computing but at a higher cost. Understanding these trade-offs
is essential for selecting the most suitable hardware platform based on the specific needs of
the application at hand, whether it be real-time audio analysis, computer vision, or any
IoT deployments.

4.1.2. Edge Intelligence Frameworks and Libraries

Since the rapid explosion of ML-based applications and the unfeasibility of using
only cloud-based processing, edge computing has gained momentum, leading to the
deployment of most deep learning applications at the edge. As a result, new techniques
to support DL models at the edge are required. This rising demand has prompted the
creation of customized ML frameworks designed for edge computing architecture. These
frameworks are critical in allowing the creation and deployment of lightweight models
capable of operating effectively with limited resources. They also ensure efficient inference
and learning processes in resource-constrained environments by optimizing model size,
complexity, and computational requirements. This section classifies and explains the
popular AI frameworks and libraries utilized in the reviewed research papers:

TensorFlow

TensorFlow stands out as one of the most commonly used open source frameworks
for creating, training, evaluating, and deploying machine learning models [42,43]. It was
developed by the Google brain team in 2011 and made open-source by 2015. TensorFlow
flexible architecture enables developers to use a single API for distributing computation
across multiple CPUs and GPUs, whether it be on desktops, servers, or mobile devices.
This adaptability makes it particularly well-suited for distributed machine learning algo-
rithms. TensorFlow supports a wide range of applications [44], with a focus on deep neural
network [45]. It runs on Windows, Linux, Mac and even Android. its main programming
languages are Python, Java and C.

TensorFlow Lite is a lightweight version of TensorFlow for resource-constrained
devices. It enables on-device learning and makes ML run everywhere with low latency.
TensorFlow light is designed for on-device inference rather than training purposes. It
achieves reduced latency by compressing the pre-trained DNN model.

OpenEI

OpenEI is an open lightweight framework for edge intelligence [46]. OpenEI allows
performing AI computations, data sharing capabilities on low-power devices suitable for
deployment at the edge. OpenEI is made up of three parts, a package manager for running
real-time DL tasks and training models locally, a model selector for choosing the best
models for various edge hardware, and a library with a RESTful API for data sharing.
The objective of OpenEI is to ensure that once deployed, any edge hardware will have
intelligent capabilities.

Core ML

Core ML is Apple’s ML framework. It enhances on-device performance by integrating
the CPU, GPU, and Neural Engine while minimizing memory usage and power consump-
tion [47]. Executing the full model on the user’s device avoids the necessity for a network
connection, safeguarding the privacy of the user’s data and ensuring responsiveness of your
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app. Core ML supports a large selection of ML algorithms like ensemble learning, SVM,
ANN, and linear models. However, Core ML does not support unsupervised models [48].

Caffe

Caffe is a fast and flexible DL framework created by the Berkeley Vision and Learning
Center (BVLC), with contributions from a community of developers on GitHub. Caffe
enables research projects, big manufacturing applications, and startup prototypes in vision,
speech recognition, robotics, neuroscience, astronomy, and multimedia [49]. Caffe is
a BSD-licensed C++ library that supports the training and deployment of CNNs and
other DL models. It also integrates with Python/Numpy and MATLAB. Caffe2 a new
lightweight version of Caffe, was designed to facilitate data processing with DL directly on
end devices. Caffe2 incorporates numerous new computation patterns, such as distributed
computation, mobile, and reduced precision computation, expanding upon the capabilities
of the original Caffe framework. With cross-platform libraries, Caffe2 facilitates deployment
across multiple platforms, enabling developers to harness the computing power of GPUs in
both cloud and edge environments [50]. It’s worth noting that Caffe2 has been integrated
into PyTorch.

Pytorch

PyTorch is a popular open-source library for building DL models. It was developed
by Facebook. This package uses dynamic computation and uses Python concepts [51].
PyTorch carries PyTorch Mobile, which supports the execution of ML models on edge
devices, mainly iOS and Android [52]. Both PyTorch and Caffe2 have their own set of
benefits. Caffe2 is more towards industrial usage with a huge emphasis on mobile, whereas
PyTorch is oriented toward research. In 2018, the Caffe2 and PyTorch projects came together
to form PyTorch 1.0. This new framework combines the user experience of the PyTorch
frontend with the scaling, deployment, and embedding capabilities of the Caffe2 backend.
For the aforementioned reasons, simplicity and ease of usage are what make PyTorch
popular among deep learning researchers and data scientists.

Apache MXNet

MXNet [53] is a deep-learning library that is both effective and versatile. It was
created by the University of Washington and Carnegie Mellon University to support
CNN and LSTM networks. It works by combining symbolic expression with tensor
computation to maximize efficiency and flexibility. It is built to run on a variety of
platforms (cloud or edge) and can perform training and inference tasks. It also supports
the Ubuntu Arch64 and Raspbian ARM-based operating systems, in addition to the
Windows, Linux, and OSX operating systems. MXNet is a lightweight library that can be
integrated into various host languages and operate within a distributed setup. Several
other projects have been published by some of the industry’s top-leading tech giants to
move ML functions from the cloud to the edge, like Azure IoT Edge from Microsoft and
AWS IoT Greengrass from Amazon.

The need for implementing machine learning models at the edge continues to rise,
which has encouraged the development of customized frameworks specifically designed
for edge computing architectures. These frameworks are pivotal in facilitating the creation
and deployment of lightweight models capable of operating effectively within resource-
constrained environments. One of the most often used AI frameworks and libraries in mod-
ern literature is TensorFlow; it stands out for its flexibility and cross-platform compatibility.
TensorFlow Lite, a lightweight version, specifically targets resource-constrained devices,
ensuring low-latency on-device computing. OpenEI, an open lightweight framework, sup-
ports AI computations and data sharing capabilities on low-power devices deployed at the
edge, aiming to integrate any edge hardware with intelligent capabilities post-deployment.
Core ML, Apple’s proprietary framework, optimizes on-device performance while main-
taining user data privacy and application responsiveness. Furthermore, Caffe and its
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lightweight successor, Caffe2, serve as fast and flexible deep learning frameworks suitable
for various applications, from research projects to industrial prototypes. PyTorch, favored
by deep learning researchers and data scientists, boasts dynamic computation and native
support for edge deployment via PyTorch Mobile. Apache MXNet, with effectiveness and
adaptability, is capable of supporting a wide range of platforms and tasks, from CNNs
to LSTM networks, positioning itself as a lightweight library amenable to deployment in
distributed environments. These frameworks, alongside cloud-to-edge migration tools
like Azure IoT Edge and AWS IoT Greengrass, show how researchers and companies
are working together to make edge devices smarter with AI, thereby revolutionizing the
landscape of edge machine learning. A comparison of multiple frameworks and libraries
for edge intelligence is presented in Table 1.

Table 1. A Comparison of Frameworks and Libraries for Edge Intelligence.

Framework Library Development
Language

Edge Device
Requirements Open Source Task Applications

TensorFlow Lite C++, Java Mobile Embedded
Device Yes Inference Computer Vision [54],

Object Detection [55].

Caffe2 C++ Multiple Platforms Yes Training and
Inference

Image Analysis [56],
Video Analysis [57].

Core ML Python Apple Devices No Inference Image analysis [58]

MXNet Python, C++ Multiple Platforms Yes Training and
Inference

Image
Recognition [59] Text

Recognition [60]

PyTorch Python Multiple Platforms Yes Training and
Inference

Image
Recognition [61] Text

Recognition [62]

AWS IoT Greengrass Python, Node.JS,
Java, C and C++ Multiple Platforms Yes Inference

Precision
Agriculture [63],

Autonomous [64]
Vehicles [65]

Edge2Train C++ MCUs supported by
Arduino IDE Yes Training and

Inference Video Analysis [66]

OpenEI – Multiple Platforms Yes Training and
Inference Various Applications

TensorRT C++ NVIDIA GPU No Inference Image
Classification [67]

DeepThings C/C++ Multiple Platforms Yes Training and
Inference Object Detection

4.2. Model Compression

Model compression involves lowering the size and computational demands of ML
models without compromising their performance. It enables us to deploy the model on tiny
devices. Model compression techniques allow the implementation of resource-intensive
DL models in resource-limited edge devices by minimizing the model’s parameter count
or training DL models scaled down from their original size. Because edge devices have
limited storage and processing power, compressing ML models is critical to ensuring
efficient deployment. There are several techniques used in edge intelligence for model
compression, like pruning, quantization, knowledge distillation, and low-rank factoriza-
tion [68]. The two main ways for lowering the model size while maintaining a high accuracy
are lower precision (fewer bits per weight), which is known as quantization and fewer
weights, which is known as pruning. Post-training quantization reduces memory needs
and execution speed while maintaining accuracy. Using ML frameworks like TensorFlow
and Keras, this technique can be used both after and before training. Furthermore, pruning
algorithms in neural networks remove redundant connections, reducing computing de-
mands and program memory. Combining quantization and pruning approaches provides
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a comprehensive model compression solution that optimizes both size and performance
for deployment on smaller devices [69]. Huang et al. introduced DeepAdapter, a cloud-
based-edge-device framework aimed at optimizing DL models for mobile web applications.
Within DeepAdapter, a context-aware pruning algorithm is employed to reduce model
size and computational demands while preserving performance. This adaptive approach
replaces fixed network pruning methods, ensuring that pruned models are finely tuned
to current resource constraints. Through the pruning process, redundant parameters or
connections are selectively eliminated from the deep neural network models. Resulting
in a more streamlined model that is better suited for deployment on resource-constrained
devices, ultimately improving efficiency and performance in mobile web environment [70].
These authors propose an iterative algorithm that optimizes the partitioning and com-
pression of a base DNN model. By dynamically adjusting strategies based on rewards,
the approach efficiently maximizes performance while meeting resource constraints [71].
This study also validates that pruned models demonstrate accelerated inference and re-
duced memory usage by introducing GNN-RL, a pruning method that combines graph
neural networks (GNNs) and reinforcement learning for topology-aware compression [72].

4.3. Architecture at the Edge (Where to Implement ML in IoT Architecture?)

Deploying ML algorithms in IoT devices was nearly impossible due to their limited
computation power and small memories. The typical solution suggests offloading data
processing to the cloud, but this leads to greater latency, privacy issues, and decreasing
bandwidth. To resolve these issues, many research studies have been made about dis-
tributing machine learning algorithms on four important architectures as we can see in the
Figure 6. Deploying machine learning algorithms in IoT applications is used in a variety of
fields; we can organize the important applications as follows:

• Smart Health: To enhance patient well-being, innovative devices have emerged. For in-
stance, adhesive plasters equipped with wireless sensors can observe wound status
and transmit data to a doctor remotely, eliminating the necessity for the doctor’s
physical presence. Additionally, wearable devices and tiny implants can track and
relay various health metrics such as heart rate, blood oxygen levels, blood sugar levels,
and body temperature. Notably, there are sensors designed to forecast health events,
like seizures. For instance, a wearable device mentioned in a study by Samie et al. [73]
predicts epileptic seizures, alerting the patient beforehand.

• Smart Transportation: By leveraging in-vehicle sensors, mobile devices, and city-
installed appliances, we can provide improved route recommendations, streamline
parking space reservations, conserve street lighting, implement telematics for public
transportation, prevent accidents [74], and enable autonomous driving.

• Smart Agriculture: Using sensors and embedded devices for soil scanning and water,
light, humidity, and temperature control. Introducing intelligence and IoT devices to
farmers to enhance crop quality and yield while optimizing human labor [75,76].

• Surveillance Systems: Smart cameras can collect video from multiple locations on the
street. Smart security systems can identify suspects or prevent dangerous situations
with real-time visual object recognition.

• Smart Home: Conventional household appliances, such as refrigerators, washing
machines, and light bulbs have evolved by integrating internet connectivity, enabling
communication between devices and authorized users. This connectivity enhances
device management and monitoring while optimizing energy consumption rates.
Moreover, the availability of smart home sensors introduces features such as smart
locks and home assistants, further enhancing the functionality and convenience of
modern homes.

• Smart Environment: Wireless sensors dispersed all over the city offer the ideal in-
frastructure for monitoring a wide range of environmental conditions. Enhanced
weather stations can leverage barometers, humidity sensors, and ultrasonic wind
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sensors. Moreover, intelligent sensors can oversee the city’s air quality and water
pollution levels [77].

Figure 6. (a) On-Device Computation, (b) Distributed Edge Server-based Architecture, (c) Edge
Computing, and (d) Joint Computation between the Cloud and the Device.

There are numerous other machine learning based IoT applications and various exam-
ples of how ML could be applied in these fields. It is explained in detail in many different
other reviews. In this paper, we have decided to review and classify the integration of
machine learning algorithms in IoT devices based on the location of the ML model in the
architecture previously discussed, which is a new concept as far as we know. While writing
this review, only English papers were taken into account. Furthermore, the reviewed papers
were published between 2017 and 2024 to analyze the recent advancements in this field.
The most advanced machine learning applications in IoT are categorized by application
domain, input data type, machine learning techniques used, and where they fall on the
cloud-to-things range.

4.3.1. On-Device Intelligence

ML models were primarily deployed on robust devices such as computers, servers,
and specialized hardware. However, recent advancements have enabled the implementa-
tion of ML training and inference on low-power chips. These advancements involve both
innovative hardware designs and software frameworks to extend the intelligence to the
edge. On-device intelligence, also known as embedded intelligence, empowers devices to
perform data processing, machine learning, and artificial intelligence tasks directly without
relying on cloud or external server resources. This method provides numerous advan-
tages, including lower latency, enhanced privacy, security, and improved performance in
scenarios where network connectivity is limited or unreliable. In this study, Faleh et al.
demonstrate the feasibility of deploying CNN models on embedded devices [78]. They
used the Jetson Nano board to enable real-time mask recognition directly at the edge device.
Utilizing a lightweight CNN classifier model, MobileNetV2, trained on a central server,
they deployed it on the embedded Jetson Nano device linked to an alarm system to detect
missing masks. The authors achieved an accuracy rate over 99% according to their experi-
mental results. In this work [79], the authors presented a cost-effective intelligent irrigation
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system designed to forecast environmental factors using embedded intelligence. They con-
ducted a comparative analysis across various frameworks, including the deployment of an
LSTM/GRU-based model on a Raspberry Pi board. Their findings highlight the accuracy of
LSTM and GRU in predicting environmental factors. Bansal et al. [74] introduced DeepBus,
a pothole detection system leveraging IoT to identify surface irregularities on roads in
real-time. Road data is collected using a Raspberry Pi 3B+ equipped with an accelerometer
and gyroscope. Then, the data undergoes labelling, preprocessing to remove missing data,
and outlier detection. The authors evaluated and trained various ML models, finding that
the RF classifier reached an accuracy of 86.8% for pothole detection on the collected dataset.
After these initial phases, the model is implemented on smartphones, where it continuously
collects data from the phone’s sensors and detects potholes and bumps in real-time. This
live data on potholes is made accessible to all users via a real-time map to enable smart
transportation. Drivers can receive warnings based on this information, and their locations
can be shared with civic authorities for prompt repair of road damages. Collecting and
sharing real-time road data with users and civic authorities raises privacy and security
concerns, posing significant challenges in protecting sensitive information and ensuring
compliance with data protection regulations in IoT-based systems. Samie et al. [73] offered a
new efficient algorithm that predicts epileptic seizure on IoT devices with limited resources.
In fact, all the related work on epileptic seizure prediction applies SVM, Random Forest
and CNN classifiers. However, based on the authors, these algorithms are not suitable for
implementation on small, low-power portable IoT devices due to their complex features
and higher computation processing requirements. Therefore, the authors proposed a new
seizure prediction model. The EEG data which records electrical activity in the brain and
can be measured with wearable or implantable sensors, are pre-processed (filtered and
segmented) on the MSP432 IoT device. Then, features are extracted and selected to be
passed to the logistic regression classifier, which is commonly used in seizure prediction
(due to its light computation and low memory). After that, the remaining features, along
with the logistic regression model output, are sent to the gateway (smartphone device
also used by the patient) to eXtreme Gradient Boosting (XGBoost) for classification and
post-processing. While the proposed approach achieves high accuracy and efficiency on
constrained devices, it simplifies features and reduces the size of data segments, which may
limit the model’s effectiveness in real-world epileptic seizure detection scenarios. Balancing
the need to keep models lightweight for deployment on resource-constrained IoT devices
while ensuring sufficient complexity and robustness to accurately detect seizures in diverse
real-world scenarios is equally important. Various solutions have been developed to handle
this challenge. For instance, this study utilized quantization to develop a lightweight
CNN model capable of capturing complex EEG signal features while maintaining high
performance in environments with limited computational resources [80]. Transfer learning
techniques have emerged as a solution to reduce the need for intensive feature engineering,
thus resulting in a lighter model. In this study, the authors developed a system for detecting
wheat rust [81]. Utilizing a CNN model based on transfer learning on an NVIDIA Jetson
Nano, they achieved on-device inference. Their smart edge device comprises a camera
for capturing crop images, a trained ResNet-50 for disease classification, and a touch-
screen interface to display results to farmers. This system aids farmers in monitoring crop
health, facilitating swift and accurate disease identification in real-time. On-device intelli-
gence holds the potential to significantly transform numerous fields by allowing real-time,
resource-efficient data analysis and decision-making on IoT devices. By processing data
locally, on-device intelligence reduces latency, enhances privacy and security, improves
reliability in low-connectivity environments, optimizes resource utilization, and enables
scalability and flexibility in IoT ecosystems.

While numerous hardware and software solutions exist for edge ML, designing and
deploying ML models on end devices remains a complex task. To deploy an AI model
effectively on embedded devices, researchers and developers must carefully consider fac-
tors such as hardware selection. ML and DNN models demand significant computational
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resources due to intensive linear algebra operations and large-scale matrix/vector multipli-
cations, rendering traditional processors inefficient. As a result, various novel specialized
processing architectures and methodologies have emerged to address these challenges and
achieve goals such as compact size, cost-effectiveness, reduced power consumption, low
latency, and enhanced computational efficiency for edge devices. The optimal hardware for
integration into edge devices encompasses a range of options tailored to specific applica-
tions. These include Application-Specific Integrated Circuits (ASICs), Field-Programmable
Gate Arrays (FPGAs), processors based on Reduced Instruction Set Computing (RISC),
and embedded Graphics Processing Units (GPUs) [82]. A notable advancement in IoT
hardware is the emergence of ultra-low-power AI accelerators, executing ML and DL tasks
directly on the chip or device through parallel computation. Strategies like model design
and compression, as well as techniques to reduce inference time on end devices, are crucial
for successful AI model deployment on embedded devices.

4.3.2. Edge Intelligence

After discussing the implementation of ML techniques on device computing, we move
forward where the processing and the algorithm’s execution would be on the edge layer.
Edge intelligence broadens device intelligence to a wider concept. While device intel-
ligence relates to the device’s ability to process and analyze data locally, such as on a
smartphone, tablet, or IoT device, edge AI refers to the ability to process and analyze
data near its source, typically at the edge, instead of relying on centralized cloud-based
services. Edge AI includes not only individual devices, but also computing nodes or servers
strategically located near data sources. In this study, the authors explore the use of edge
computing in an intelligent aquaculture system [83]. They implemented a heterogeneous
architecture consisting of various devices such as NVIDIA Jetson Nx and Jetson Nano to
collect water sensor data and to perform real-time video-based fish detection using DL.
Wardana et al. [77] introduced a new DL model that integrates one- dimensional CNN and
LSTM network to anticipate a short-term hourly PM2.5 concentration at 12 distinct nodes
according to a dataset by Zhang et al. [84]. Then, the CNN-LSTM was optimized with
TensorFlow Lite to generate a lightweight model suitable for edge devices, such as the
Raspberry Pi 3 Model B+ and Raspberry Pi 4 Model B boards. After comparing their pro-
posed model to approximately 20 different deep learning methods, the authors concluded
that their hybrid CNN-LSTM model surpasses other models. Proietti et al. [75] developed
an edge intelligence approach to manage a Greenhouse. In this work, the authors presented
an LSTM Encoder-Decoder-based system in a greenhouse to detect anomalies in plants and
manage their growth and control equipment. The system layout in the greenhouse included
an Arduino MKR that housed all the sensors responsible for environmental data collection
(pressure, humidity, air temperature...), a Full-HD camera, and an Arduino Uno equipped
with the actuators and an LED lamp to provide light for taking pictures. A Raspberry
PI 4 model B and NVIDIA Jetson Nano as edge servers, which are connected to both the
Arduino MKR and Arduino Uno to receive sensor data (MKR) and send control instructions
(Uno). The images are taken and processed using ELA (Easy Leaf Area) in order to calculate
the Leaf Area. The authors feeds the LSTM model the temperature, relative Humidity,
pressure, light Intensity, UVA and Leaf Area data after pre-processing and reshaping into
a suitable format for LSTM. After tuning and training the model in both NVIDIA and
Raspberry Pi, it was obvious that with one LSTM layer and 64 LSTM units, they obtained
the best results. Jetson Nano may be faster than Raspberry Pi. However, Nano was not
capable of completing the analysis of different hyperparameter choices. Rumy et al. [76]
presented an automatic rice leaf disease detection system that applies a lightweight ML
model based only on edge computing. In order to make the image classification model,
the authors experimented with several machine learning algorithms to pre-process images
of healthy and infected leaves, but they concluded that the supervised learning random
forest is the most efficient. After training, they exported and transformed the image classifi-
cation model to Raspberry Pi edge device, which was used to classify and detect the healthy
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leaves from the infected ones. They achieved an accuracy rate of 97.50%, and using this
method can reduce data transmission costs by about 86.66%, which in turn lowers latency.
Using edge computing, the authors in this study in [85] presented a novel approach to
online water quality monitoring and early warning. They presented an advanced version
of the backpropagation neural network (BPNN), enhanced by a new hybrid optimization
approach that combines the cuckoo search algorithm and the Nelder-Mead simplex method.
This novel method successfully adjusted the BPNN’s weight and deviation parameters in
an effort to increase the system’s precision and dependability when assessing water quality.
However, more improvements are needed to reach a better level of accuracy.

The research papers presented in this section demonstrate the significance of combin-
ing machine learning models with edge computing to achieve efficient and real-time data
processing in a variety of IoT applications. The studies show that hybrid deep learning
models can be successfully implemented and optimized on the edge, demonstrating the
advantage they offer over other methods. Researchers have achieved accurate and resource-
efficient solutions for anticipating environmental factors, managing greenhouse conditions
and detecting plant diseases, as well as unmanned aerial vehicle (UAV) applications, by har-
nessing edge-device intelligence. For instance, in a recent study by Liu et al. [86], they
highlighted the importance of integrating edge computing into vehicular networks to
enhance traffic safety and elevate travel comfort. By incorporating Mobile Edge Computing
(MEC) into vehicular networks, the study addressed the challenges and opportunities
of shifting cloud resources closer to the edge of the network. The research provided an
extensive review of advancements in Vehicular Edge Computing (VEC), covering areas
such as task offloading, caching mechanisms, data sharing protocols, flexible network
management strategies, and security and privacy considerations. Despite the significant
progress made in VEC, several issues remain unresolved. These include enhancing Quality
of Service (QoS), improving scalability, and strengthening security and privacy measures.
Addressing these challenges opens up avenues for further research and innovation in the
field of VEC.

4.3.3. Edge-Cloud Joint Computation

In a joint computation between the cloud and the edge layers of a network, certain
tasks or computations are carried out locally at the edge, while others are offloaded to
centralized cloud servers for more intensive processing or analysis. This strategy max-
imizes resource utilization by using the advantages of both edge and cloud computing.
For example, data preprocessing or initial analysis may occur at the edge for rapid response,
while complex analytics or long-term storage take place in the cloud. Joint computation
enhances system efficiency, scalability, and flexibility, making it useful for applications that
require a balance between local processing and centralized resources, such as smart cities,
intelligent transportation systems, or distributed surveillance networks. In this study, they
introduced an innovative architectural framework to connect smart monitoring robotic
devices in healthcare facilities [87]. Their framework consists of three layers: the IoT node
layer, the edge layer, and the cloud layer. Then, data is collected and routed directly to the
edge node, and from there, it is offloaded to the cloud server for primary data processing.
However, the authors need to enhance the data privacy and security of the framework.
Transmitting data from the edge node to the cloud server raises concerns, as without robust
encryption and security measures in place, sensitive healthcare data could be susceptible
to unauthorized access or breaches. Li et al. [88] proposed a novel approach using deep
learning in a video recognition IoT application with edge computing to ensure privacy and
minimize network traffic and data processing load in the central cloud. Multiple wireless
video cameras monitor the environment and identify objects. The wireless cameras record
video at a resolution of 720p with a bitrate of 3000 kilobits per second. the collected video’s
raw data is offloaded to the edge layer (which is deployed in an IoT Gateway) via standard
Wi-Fi connections to be pre-processed. Then, the edge nodes would upload the reduced
intermediate data to the cloud servers for further processing using CNN models. In this
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study, the CNN model is divided into two parts, the edge servers computed the lower
layers and the cloud computed the higher layers. Nevertheless, the system’s scalability
may be limited by the capacity of edge nodes and cloud servers to handle increasing data
volumes and computational tasks. As the number of IoT devices and video streams grows,
the ability of the system to effectively scale to accommodate these demands may be limited.
Sivaganesan et al. [89] developed an innovative approach “semi self-learning farm manage-
ment” based on edge computing instead of cloud processing paradigm to improve speed,
reduce security risks, costs and latency. The wireless environmental sensor collects data on
temperature, humidity, soil moisture, wind speed, and pressure, while the Tetracam-ADC
Lite camera mounted on the drone monitors crop growth and pest attacks. This data is then
transmitted to the edge layer via Wi-Fi Max for processing by the H2O deep learning model.
H2O uses the ISTAT (national institute of statistics) dataset for training, then it predicts the
right time to sow, to reap, to water and fertilize the crops to avoid any damages. All pro-
cessed information from the edge layer is transmitted back to the farmer’s portable device
via Wi-Fi. Sajjad et al. [90] created a face recognition algorithm for police departments in
a smart city. A mobile wireless camera attached on a police officer’s uniform is utilized
to capture images, which are then transmitted to a Raspberry Pi3 for facial recognition.
The Viola-Jones algorithm is employed for face detection in images, followed by the ORB
algorithm (Oriented FAST and Rotated BRIEF), which extracts peculiarities from the faces
and offloads the data to an SVM classifier in the cloud to identify people and potential
criminals. Yet, the accuracy of facial recognition algorithms can be affected by various
factors such as lighting conditions, image quality, and occlusions. Errors in face detection
and feature extraction may lead to misidentification or false positives, which could have
serious consequences in law enforcement applications. These authors proposed an online
water-quality monitoring system within the water distribution system utilizing both edge
and cloud computing. Through testing various scenarios including edge computing alone
and cloud computing alone, they introduced a hybrid edge-cloud framework. This hybrid
model demonstrated improved accuracy in classification models while maintaining low
energy consumption rates. The research showcases the practical optimization and viability
of integrating edge and cloud computing in water quality monitoring systems. However,
there is potential for further reduction in power consumption [91]. Distributed edge-cloud
computing paradigm has demonstrated its potential in a variety of IoT applications, deliv-
ering numerous benefits such as enhanced privacy, reduced network traffic, and improved
real-time processing capabilities. The research studies discussed show that this architecture
can be successfully implemented in video recognition, farm management, and Smart City
face recognition, effectively addressing specific challenges in each domain. This approach
has the potential to transform a wide range of IoT applications by delivering more efficient,
secure, and scalable solutions.

4.3.4. Cloud-Device Joint Computation

While on-device computing, edge intelligence, and edge-cloud computing offer signif-
icant advantages, each approach has unique advantages and addresses specific challenges.
However, in today’s interconnected and data-driven world, the demand for seamless inte-
gration and efficient utilization of computing resources is more pressing than ever. This
is where the concept of joint computing comes as a compelling solution. By combining
the localized processing power of devices with the vast computational capabilities of the
cloud, joint computing fills the gap between edge and cloud computing, unlocking sev-
eral benefits. Several researchers have applied various techniques to make this approach
feasible. In this paper, the authors used a combination of cloud and device intelligence
in smart transportation [92]. They created an autonomous vehicle system by collected
data from various sensors and implemented a motion control system on an STM32F10
microcontroller. They also developed an intelligent detection system in the same vehicle by
deploying models on the embedded device EAIDK-310, which included a camera module.
Additionally, they utilized cloud services for data transmission and information exchange,
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enabling interaction with the collected data. Mrozek et al. [93] designed a new system called
Whoops which consists of two main elements: an iPhone 8 mobile IoT device equipped
with a triaxial-accelerometer, a triaxial-gyroscope and a local ML model (built using coreML
library for iOS devices) that can sense the surroundings, detect falling in older people,
pre-process the data and notify the caregiver in case of danger. then gather, analyse and
transmit the data for further processing. Also, a datacenter where the collected data is
analysed and processed in order to monitor numerous elderly people. After comparing
these 4 classifiers: RF, ANN, SVM, and Boosted Decision Tree (BDT), the authors came
across that BDT is the more suitable one due to its superior average accuracy, moderate
precision, and minimal standard deviation. Which was chosen for both cloud and mobile
processing. In order to validate these tests, the authors conducted a real-life experiments
to confirm the accuracy of the classification. They conducted an experiment involving
a participant, a 25-year-old equipped with a mobile device containing the Whoops app.
The participant performed a series of falls in different directions, along with various daily
activities such as walking, squats, and navigating slopes. The simulation involved falling
into a pool of sponges to reduce the danger of injury. They recorded just one false positive
in seventeen fall trials. In order to address the issue of air pollution. In this study, they
proposed an IoT-Cloud-based model for forecasting the Air Quality Index [94]. The IoT
devices were utilized to collect and preprocess real-time air pollution data, including var-
ious meteorological parameters such as temperature, humidity, and wind speed. These
data were then sent to the cloud environment for further processing and analysis using
LSTM and eXtreme Gradient Boosting. Barnawi et al. [95] introduced an IoT- UAV-based
scheme that detects, track and notify covid- 19 cases using aerial thermal imaging. These
authors used thermal onboard sensors to collect raw data (thermal images), captured in
a real-time scenario from thermal infrared cameras in a large crowd or massive cities.
The UAV performs preprocessing using the face recognition method to determine whether
the person has an elevated temperature or not. The collected data are then transmitted to
AI models (YOLO and DLiB) on a central server for temperature calculation, identification,
and face mask detection. Five different machine learning classifiers SVM, KNN, XGB, LR,
and MLP models were used to evaluate the proposed method.

Even though cloud-device joint computation provides numerous benefits, it also comes
with its own drawbacks. One significant drawback is increased latency due to the need to
offload data between devices and the cloud for processing. This latency can impact real-
time applications that require immediate decision-making. Additionally, joint computing
may raise concerns about data privacy and security, as sensitive information must be
transmitted over networks to cloud servers. Furthermore, reliance on cloud infrastructure
introduces dependency on external services, making the system vulnerable to outages
or disruptions in internet connectivity. A full comparison of multiple types of machine
learning methods and their applications in IoT is presented in Table 2.

Table 2. A Review of Machine Learning Algorithms and their Application in IoT Architectures.

Paper Application
Domain ML Model Framework /

Hardware Architecture Benefits Drawbacks

[74] Smart
Transportation Random Forest Raspberry Pi 3B +

Smartphone
On-Device
Computing Reduced Delay Low Privacy

[73] Smart Health
Logistic

Regression and
XGBoost

MSP 432 and
Smartphone

On-Device
Computing

High Accuracy
and Reduced

Data
Transmission

Requires
Balancing model
Complexity with

Lightweight
IoT Deployment

[77] Smart
Environment CNN-LSTM

TensorFlow Lite
with Raspberry Pi

model B+ and
Raspberry Pi 4

Model B

Edge Layer
Computing

Lightweight
Suitable for Edge

Deployment

Accuracy Degra-
dation



Technologies 2024, 12, 81 23 of 34

Table 2. Cont.

Paper Application
Domain ML Model Framework /

Hardware Architecture Benefits Drawbacks

[75] Smart Agriculture LSTM and
Encoder Decoder

TensorFlow with
Arduino (Mkr

and Uno),
Raspberry Pi 4
Model B and

NVIDIA Jetson
Nano

Edge Layer
Computing

Higher Prediction
and Low Time
Consumption

High Complexity
in Real-world De-

ployment

[76] Smart Agriculture Random Forest Raspberry Pi Edge Layer
Computing

High Accuracy
and Reduced

Data
Transmission

Costs and
Latency

Limited Scalabil-
ity

[88] Smart
Environment CNN

Caffe with Intel
Core i7 7770 CPU

and NVIDIA
Geforce GTX 1080

graphic card

Distributed Edge
and Cloud
Computing

Enhanced Privacy
and Reduced

Network Traffic

High
Computational
Cost and Lim-
ited Scalability

[89] Smart Agriculture H20
Drone enabled

with a Tetracam
ADC lite camera

Distributed Edge
and Cloud
Computing

Reduced Security
Risks and Low

latency
Compared to
Centralized

Systems

High Computa-
tional Cost

[90] Surveillance
Systems SVM Wireless camera

on a Raspberry Pi

Distributed Edge
and Cloud
Computing

Enhanced
Security

Accuracy
my Degrade

[93] Smart Health
Boosted Decision
Tree using local

ML model

Core ML with
IPhone 8

Distributed
Device and Cloud

Computing

Enhanced Safety
and Real-time

detection

Further
Validation is
Required to

Ensure Accu-
rate Classification

[95] Smart Health
SVM,KNN, Yolo3

and DLIB with
ImageNet

keras library with
UAV thermal and
infrared cameras

Distributed
Device and Cloud

Computing

Detection with
Reduced

Response Time

Accuracy Could
be Improved

[96] Smart Health ANN, CNN and
RNN

Mobile Phone
and sensors

On-Device
Computing

High Accuracy
and Real-Time

Analysis

Does not Address
IoT

Device Diversity

[97] Smart Health Reinforcement
Learning

Wearable devices
and sensors

Edge Layer
Computing

Improved Data
Privacy

High Model Com-
plexity

[78] Smart Health MobileNetV2
(CNN)

TensorFlow,
Keras and

OpenCV with
NVIDIA Jetson

Nano and
Logitech USB
camera C920e

On-Device
Computing

Reduced Load to
Cloud and Low

System Cost

High Model
Deploy-

ment Complexity

[98] Smart Agriculture LSTM

TensorFlow and
Keras with

Raspberry Pi 4
Model B

On-Device
Computing Load Reduction Lower Accuracy

[81] Smart Agriculture ResNet-50 (CNN)

TensorFlow,
Keras and

OpenCV with
NVIDIA Jetson

Nano and
Logitech
WebCam

On-Device
Computing

High Accuracy
with Real-Time

Detection

Does not
Consider

Data Diversity
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Table 2. Cont.

Paper Application
Domain ML Model Framework /

Hardware Architecture Benefits Drawbacks

[91] Smart
Environment

Multilayer
perceptron (MLP) Simulation

Distributed Edge
and Cloud
Computing

High Accuracy
and Low Energy

Consumption
Rates

Further
Reduction in

Power
Consumption

is needed

[10] Smart Agriculture CNN-SVM
TensorRT with
NVIDIA Jetson

TX1

On-Device
Computing

Rapid
Decision-Making

and High
Accuracy

Scalability
Not Addressed

[83] Smart
Aquaculture YOLOv4

Kubernetes and
DeepStream with
Nvidia Jetson Nx
and Jetson Nano

Edge Layer
Computing

Reduced latency
and Enhanced

Privacy

Heterogeneity of
IoT Devices is

Not Considered

[79] Smart Agriculture LSTM and GRU

TensorFlow Lite
and Pytorch with

Sensors and
Raspberry Pi 3 B+

On-Device
Computing

Improved
Decision-Making

and Enhanced
Sustainability

High Model
Complexity and
Security Risks

[87] Smart Health RF Azure IoT Edge
with STM32

Distributed Edge
and Cloud
Computing

Enhanced
Workload

Data Privacy and
Security Concerns

[85] Smart
Environment BPNN Sensors Edge Layer

Computing
Efficient Decision

Making
Accuracy Needs
to be Improved

[92] Smart
Transportation

YOLOv4 and
ORB

Tengine with
EAIDK-310,
STM-32 and

various sensors

Distributed
Device and Cloud

Computing
Improved Safety High Cost

[94] Smart
Environment

LSTM and
eXtreme Gradient

Boosting
Sensors

Distributed
Device and Cloud

Computing

High Accuracy
and Real-Time

Monitoring
High Model Cost

5. Open Challenges

Despite the advancements introduced by researchers in previous sections, deploying
machine learning on the edge still faces significant challenges, with various factors influ-
encing the performance of edge-based smart applications. In this section, we explore and
outline the issues regarding the design and deployment of machine learning at the edge.

5.1. Security and Privacy Issues

Managing data processing at the edge layer remains a significant challenge for nu-
merous global applications. While edge computing has effectively addressed various
processing issues through preprocessing and decentralizing processing to the network’s
edge, instead of solely relying on central processing (cloud computing), several critical
issues persist.

One primary challenge is the establishment of robust encryption mechanisms for
both data in transit and data at rest to maintain security and privacy standards. Ensuring
the confidentiality of data at rest is particularly essential in scenarios where a device
could be compromised, such as theft or physical attacks, as this could expose sensitive
user information connected to an edge device. Different heterogeneous edge devices and
servers are required to run different AI models to provide computing power in order
to implement edge intelligence. The extensive data generated by edge devices can pose
privacy concerns as they may include sensitive information such as user location, health
records, activity logs, or proprietary manufacturing data. Also, malicious data can be
used to attack machine learning approaches for IoT, compromising the trust of IoT users.
The privacy of user data is a fundamental concern of any machine learning scheme that must
be considered during classification. Authentication and identification of each node within
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the edge network pose significant challenges. It is crucial to guarantee that each device
is granted only the necessary permissions to prevent scenarios where a compromised
edge device could potentially access critical system components, including those not
essential for regular operations. Privacy-preserving methodologies in machine learning,
like federated learning [99,100] and secure model aggregation, enable the training of ML
models on dispersed edge devices while safeguarding raw data from exposure. Access
control measures, authentication protocols, and privacy policies are implemented to restrict
data access and manipulation solely to authorized users and devices. Additionally, consent
management frameworks empower users to maintain control over their personal data.

5.2. Resource Management

Edge devices and nodes that provide intelligence at the edge functionality are scat-
tered across various geolocations and territories due to the decentralized nature of edge
computing. Different AI models and specific AI tasks may be run on different edge de-
vices and nodes. As a result, it’s critical to create effective service discovery protocols to
enable users to quickly identify and locate the appropriate EI service providers to meet
their needs. Partitioning complex edge AI models into smaller subtasks and effectively
distributing these tasks among the edge nodes and devices for collaborative executions are
also required to fully utilize the disperse resource across edge nodes and devices [101]. Dis-
tributed learning comes as a solution to resource utilization challenges in edge computing.
By distributing computational tasks across edge devices, it optimizes resource allocation,
alleviating the burden on individual devices and enhancing overall system scalability and
performance [102]. This approach not only leverages idle capacity efficiently, but also
ensures optimal resource allocation based on workload demands, minimizing wastage
and reducing costs. The flexibility and geographical distribution inherent in distributed
computing further bolster system responsiveness, enabling organizations to adapt to evolv-
ing requirements while maximizing resource utilization. This ensures that AI tasks are
executed in a timely and cost-effective manner, harnessing the collective computational
power of edge resources to meet diverse user needs effectively.

5.3. Energy

Energy consumption presents a significant challenge in edge computing, particularly
for devices reliant solely on batteries or lacking consistent access to power [103]. Both com-
putation and communication processes consume considerable energy during decentralized
DNN model training. Therefore, minimizing machine learning’s energy consumption is
crucial for battery-powered edge devices, which operate under strict energy constraints
compared to cloud servers. It’s imperative that both the training and inference processes
of the model adhere to the energy limitations of the edge node. Achieving a balance be-
tween energy consumption and model accuracy is essential for prolonging battery life and
ensuring the sustainability of edge devices in resource-constrained environments. Various
ongoing efforts are aiming to address this pressing issue. Computation offloading is one
way to address the issue of energy consumption. A number of computations are redirected
to edge devices that are more suited to handle them, such as those with GPUs, or to devices
with bigger energy reserves, or even directly to the cloud. These edge systems are equipped
to monitor energy usage and can intelligently distribute tasks to suitable edge devices
using offloading algorithms, often integrating machine learning methods for optimized
decision-making [102,104].

6. Discussion of Published Papers

The goal of this study is to measure the number of research papers published as either
conference papers or journal articles in the domains of machine learning and IoT. We opted
to utilize the APIs provided by IEEE Xplore, an academic database, primarily due to their
availability and open access to scholarly publications, making it an efficient choice for data
collection. While other academic databases or search engines such as ACM Digital Library
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or Elsevier could serve the same purpose, the accessibility of the IEEE API streamlined
our data collection process. All records matching the keywords “Machine Learning” and
“Internet of Things” or “IoT” were retrieved, ensuring comprehensive coverage of relevant
research within the specified domains. From the result queries, we collected essential
information, including title, abstract, date, and key terms. Despite the potential for utilizing
alternative APIs, over 1000 publications containing both machine learning and IoT terms
in their titles or abstracts were retrieved from IEEE Xplore. Notably, the publication year
trends depicted in the graph below Figure 7 illustrate a significant increase in publications
in the past few years, with the number of IoT publications growing faster than those related
to machine learning.

Figure 7. Analysis of published papers in machine learning and IoT.

6.1. The Classification Process

To efficiently handle the large number of papers retrieved from IEEE’s Dynamic Query,
we employed classification techniques using various ML algorithms. Initially, we manually
labeled 450 papers from the query by carefully examining their titles, abstracts, and key
terms if available. These labels encompassed various topics such as edge computing, cloud
privacy, security, and activity recognition, etc. Reflecting the diverse research areas within
the domains of machine learning and IoT. Subsequently, we divided the labeled data into
two sets, for training our classifiers and for testing their performance (Figure 8). This
approach allowed us to evaluate the effectiveness of our classification models accurately.
Through iterative tuning and optimization of the classifiers using the training data, we
aimed to enhance their predictive capabilities. Once our classifiers were adequately trained
and validated, we utilized them to predict the field of the remaining 550 papers retrieved
from the dataset. Leveraging features such as title, year, and abstract of each paper,
our classifiers inferred the corresponding field or topic, providing a systematic way to
categorize and analyze the extensive collection of research publications. This methodology
not only enabled us to efficiently process a large volume of papers but also provided
a structured approach to classify and interpret the content based on machine learning
algorithms. By leveraging the power of automation and classification, we could uncover
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patterns and insights within the dataset, ultimately contributing to a more comprehensive
understanding of the research landscape in machine learning and IoT.

Figure 8. The accuracy predictions of each field using SVM, RF, and decision tree classifiers.

Feature Selection

To extract the necessary features for our classifiers, given that we are dealing with
text data, we utilized several techniques in natural language processing. Specifically,
we calculated the total occurrences of each keyword in both the title and abstract of the
papers. This involved tokenization, stemming or lemmatization, and the use of TF-IDF
vectorization. Tokenization involved breaking down the text into individual words or
tokens, which served as the basis for further analysis. Stemming or lemmatization was
employed to reduce words to their root form, thereby normalizing variations of the same
word. TF-IDF vectorization, short for the term frequency-inverse document frequency,
assigns weights to each word based on its frequency in a document relative to its frequency
across all documents in the corpus. This technique helps to emphasize words that are more
unique to a particular document while downplaying common words. Figure 9 illustrates
our process of analyzing the published papers using multiple classifiers, including SVM,
RF, and decision trees (DT). These classifiers were trained on the extracted features to
predict the field or topic of each paper based on its textual content. By employing a
combination of feature extraction techniques and machine learning algorithms, we aimed
to accurately classify and interpret the content of the research papers, contributing to a
deeper understanding of the topics within the domains of machine learning and IoT.

Figure 8 illustrates the accuracy achieved by each classifier across all created fields.
It is evident that SVM and DT outperform RF, with an accuracy of 91%. We opted to use
the accuracy metric to evaluate the classifiers’ performance, as it is widely recognized and
applied in assessing the efficacy of machine learning models. In Figure 9, we further delve
into the classification accuracy for each class. Notably, the reinforcement class exhibits a
remarkable accuracy of 100%, attributed to its specific and distinct index terms. Conversely,
classes such as edge, fog, cloud, and QoS display lower accuracies at 72%, 77%, 81%,
and 72%, respectively. This discrepancy arises from the varied usage and interpretation of
terms like fog computing, edge computing, cloud computing, and QoS (sometimes used as
a quality of service), which occasionally confound the classifiers’ predictions. However,
the remaining classes maintain an average accuracy of 95%.
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Figure 9. Using machine learning to classify The IEEE’s published papers that include both ML
and IoT.

These insights underscore the nuanced challenges inherent in classifying research
papers within the domains of machine learning and IoT, particularly concerning termi-
nology ambiguity and context sensitivity. Despite these challenges, our classifiers exhibit
commendable accuracy across most classes, providing valuable tools for analyzing and
categorizing scholarly publications in these dynamic fields.

6.2. Summary

The labels extracted for analysis encompass a broad range of topics, reflecting the
diverse landscape of machine learning-enabled IoT research. These include Big Data, Sur-
vey (encompassing reviews, overviews, keynotes, and tutorials), Industry, Smart Home,
Fog, Cloud, Edge, Multimedia (covering video, image, and sound), Security, Health, Smart
City (encompassing traffic management, smart buildings, pollution monitoring, navigation
systems, etc.), Smart Agriculture, Smart Cars, QoS, Reinforcement, Activity Recognition
(including gesture recognition and assisted living), Privacy, and Device (encompassing pa-
pers that do not fit into any other class). To provide a focused analysis of trends in machine
learning-enabled IoT literature, we specifically selected a subset of classes for examination.
Our analysis encompasses papers published between 2018 and 2023, as the integration
of machine learning in IoT has emerged as a prominent topic since approximately 2015,
as depicted in Figure 7. Figure 10 illustrates the trends observed within these selected
classes over the specified time frame. Notably, applications in Security, Cloud, and Edge
have demonstrated substantial growth in recent years, with Security and Edge emerging as
the highest trending areas. However, it is important to acknowledge fluctuations in interest
observed in Smart City since 2020, contrasting with the relatively stable attention received
by Smart Home. This analysis underscores the dynamic nature of research within the realm
of machine learning-enabled IoT, highlighting areas of rapid growth and shifts in scholarly
interest. By focusing on select classes and examining trends over time, we gain valuable
insights into the evolving landscape of this interdisciplinary field, facilitating informed
decision-making and future research directions.
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Figure 10. Applications trend of ML in IoT usage.

7. Future Research Directions

The landscape of edge computing is rapidly evolving, driven by a blend of technologi-
cal advancements and evolving business needs. However, several open issues persist in the
current research that need to be addressed to fully realize the potential of edge computing,
especially in the context of IoT devices. The following section elaborates on these open
issues and proposes directions for future research.

• The lack of standardized IoT architecture presents significant challenges in achieving
interoperability, scalability, and security across diverse IoT systems. This fragmen-
tation results in difficulties when integrating devices from different manufacturers
and platforms. A Standardization effort should concentrate on defining common
communication protocols, data formats, and security mechanisms to foster seamless
integration and communication between diverse IoT devices and platforms.

• The advent of 5G technology promises ultra-low latency and high-bandwidth com-
munication, which is crucial for enabling real-time applications such as autonomous
vehicles and smart cities [105]. With the evolution towards 6G technology on the
horizon, 5G/6G networks will enhance the capability of edge computing by providing
faster and more reliable data transmission, thus supporting the real-time processing
needs of critical applications [106]. Similarly, blockchain technology offers robust
security and transparency, which can be leveraged to secure edge devices and ensure
data integrity. Blockchain can enable decentralized and secure data management,
which is essential for the growing number of interconnected IoT devices [107].

• The distributed nature of edge computing introduces significant security and privacy
challenges. Ensuring that sensitive data remains protected while being processed at
the edge is a complex task. Advanced encryption techniques and security frameworks
that can be efficiently implemented on edge devices are needed. Additionally, privacy-
preserving technologies such as homomorphic encryption and differential privacy
should be investigated to secure data processing and sharing [108].

• Innovative solutions for efficient ML deployment in edge computing paradigms will
play a crucial role. This involves exploring novel edge computing frameworks, algo-
rithms, and architectures that optimize the distribution of computational tasks across
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edge devices, fog nodes, and cloud servers. Advanced edge computing paradigms
such as federated learning [109], distributed learning [110], and multi-agent reinforce-
ment learning [111] are being investigated to enhance efficiency and effectiveness in
edge computing environments. These paradigms enable collaborative learning across
multiple devices without the need to centralize data, thus preserving privacy and
reducing bandwidth consumption.

• The development of edge-native applications and services tailored for specific use
cases and industries is set to accelerate. These applications are designed to lever-
age the unique advantages of edge computing, such as low latency and local data
processing, to deliver high-performance experiences to end users. For instance, edge-
native applications in healthcare can enable real-time monitoring and diagnostics,
while those in manufacturing can support predictive maintenance and quality control.
The customization of applications to meet the specific needs of different industries will
drive the adoption of edge computing and unlock new opportunities for innovation.

8. Conclusions

The traditional cloud computing paradigm is no longer meeting the varying demands
of IoT applications due to the massive growth of data collected from IoT devices. Deploying
machine learning on different processing layers reduces network congestion, latency, and
power consumption and secures the data by performing the computation closer to the
source. The goal of this paper is to provide a comprehensive overview of all the key
techniques for ensuring the successful execution of machine learning models, starting with
the algorithms that can be used, frameworks, and even hardware selection. This paper
presents a comprehensive review of machine learning algorithms, architectures, and criteria
for solutions that implement ML on IoT devices at various processing layers, with the
primary goal of defining the current state of the art and anticipating emerging needs.
We have used a classification tool to identify the application field for each publication.
According to the research results, the articles on security, edge computing, and cloud
computing has increased recently, whereas smart city and smart home has decreased
slightly. We also highlight the main research directions for effective machine learning
deployment at the IoT edge.
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