
Citation: Koike, M.; Onuma, R.;

Adachi, R.; Mineno, H.

Transformer-Based Water Stress

Estimation Using Leaf Wilting

Computed from Leaf Images and

Unsupervised Domain Adaptation for

Tomato Crops. Technologies 2024, 12,

94. https://doi.org/10.3390/

technologies12070094

Academic Editor: Juan

Gabriel Avina-Cervantes

Received: 24 April 2024

Revised: 19 June 2024

Accepted: 21 June 2024

Published: 25 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Transformer-Based Water Stress Estimation Using Leaf Wilting
Computed from Leaf Images and Unsupervised Domain
Adaptation for Tomato Crops
Makoto Koike 1, Riku Onuma 2, Ryo Adachi 2 and Hiroshi Mineno 2,3,4,*

1 Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu 432-8011, Shizuoka, Japan; koike.makoto.18@shizuoka.ac.jp

2 Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu 432-8011, Shizuoka, Japan; onuma.riku.20@shizuoka.ac.jp (R.O.);
adachi.ryo.21@shizuoka.ac.jp (R.A.)

3 College of Informatics, Academic Institute, Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu 432-8011, Shizuoka, Japan

4 Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu 432-8011, Shizuoka, Japan

* Correspondence: mineno@inf.shizuoka.ac.jp

Abstract: Modern agriculture faces the dual challenge of ensuring sustainability while meeting the
growing global demand for food. Smart agriculture, which uses data from the environment and plants
to deliver water exactly when and how it is needed, has attracted significant attention. This approach
requires precise water management and highly accurate real-time monitoring of crop water stress.
Existing monitoring methods pose challenges such as the risk of plant damage, costly sensors, and the
need for expert adjustments. Therefore, a low-cost, highly accurate water stress estimation model was
developed that uses deep learning and commercially available sensors. The model uses the relative
stem diameter as a water stress index and incorporates data from environmental sensors and an RGB
camera, which are processed by the proposed daily normalization. In addition, domain adaptation in
our Transformer model was implemented to enable robust learning in different areas. The accuracy
of the model was evaluated using real cultivation data from tomato crops, achieving a coefficient of
determination (R2) of 0.79 in water stress estimation. Furthermore, the model maintained a high level
of accuracy when applied to different areas, with an R2 of 0.76, demonstrating its high adaptability
under different conditions.

Keywords: deep learning; domain adaptation; smart agriculture; irrigation system; water stress

1. Introduction

In today’s era of agriculture, there is an increasing need to use new technologies, such
as the Internet of Things (IoT) and artificial intelligence (AI), to meet the growing global
demand for food quality and quantity. This new era of smart agriculture is characterized
by remote sensing through the IoT and automatic control by edge computers, which enable
the collection of diverse data on the spatial and temporal variability of production [1–3]. In
smart agriculture, the development of high-precision irrigation management systems is
an important research topic. Monitoring the environmental conditions and plant health
in fields not only prevents over- or under-irrigation and promotes optimal plant growth
but also conserves water resources and reduces labor costs associated with irrigation [4,5].
In addition, studies on tomatoes have shown that finely controlled irrigation to maintain
mild water stress can increase the soluble solids content (Brix, which indicates sweetness)
and improve the quality of tomato fruits [6,7]. As tomatoes are one of the most widely
cultivated vegetables globally [8], research into the development of precision irrigation
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systems for tomatoes could significantly contribute to water conservation and improved
crop quality.

The realization of high-precision irrigation monitoring systems requires technologies
that are able to accurately measure the indicators of water stress in plants. Water stress-
monitoring methods can be broadly categorized into direct and indirect measurement
techniques. Direct methods include sap flow sensors, bioristor sensors, dendrometers,
strain gauges, and laser displacement sensors [9–17]. These methods have the advantage
of accurately measuring the water content within plants. However, there are risks of
damaging the plants through invasive procedures such as inserting electrodes, or the high
cost of the devices can become an economic burden. Indirect measurement methods include
the use of soil moisture sensors, which indirectly assess plant water stress by measuring
volumetric soil water content. These methods have the advantage that the sensor devices
are inexpensive. However, the accuracy of soil moisture sensors is highly dependent on
the physical and electrical properties of the soil, which means that they may not accurately
reflect plant water stress [18,19].

As a method that encompasses both advantages, techniques using RGB camera devices
are also being explored [20–24]. Leaf wilting is one of the most commonly observed plant
responses to water stress. Under water stress, the turgor pressure in the leaves decreases,
causing them to move downwards, thereby reducing their leaf area [25]. This movement,
known as “leaf wilting”, is captured by a camera and quantified using computer vision
techniques. Takayama et al. [20] quantified changes in the projected leaf area using image-
processing software (Adobe Photoshop 6.0, Adobe Systems, San Jose, CA, USA) to isolate
only the leaf areas in images taken vertically from above the plant. Wakamori et al. [21]
used optical flow on images captured horizontally from the plant to quantify the vertical
movement of leaves at one-minute intervals. This method is non-destructive and can
be performed with inexpensive cameras, providing a cost-effective alternative to other
techniques. However, detection by optical flow also identifies movements other than
those of the leaves, such as the movement of clouds in the background or people at work.
Consequently, mask processing using the excess green (ExG) index was considered [26];
however, this issue has not yet been fully resolved. Furthermore, the degree of leaf
movement is a relative indicator of water stress that depends on the specific object being
observed, as it varies greatly with the cameras’ field of view and the size of the leaf.
Therefore, it is impossible to consistently scale data gathered from various sites.

When considering the installation of irrigation systems in multiple fields or expansive
greenhouses, it is necessary to adjust the irrigation control parameters for each specific site.
For example, if the irrigation system adjusted for greenhouse A is extended to greenhouse
B, it may need to be adapted to local conditions in terms of sunlight hours, air circulation,
irrigation frequency, and ventilation methods. These differences are likely to lead to
variations in data distribution and are recognized as domain shift problems in the context
of machine learning. Currently, skilled farmers manually adapt the system to the respective
location. However, an automatic adjustment mechanism is desirable for easier handling
and more accurate control.

Although there are different methods for measuring plant water stress indicators, each
has its own advantages and disadvantages. Therefore, a water stress measurement method
that can directly reflect plant water stress, is easy to implement, and can be monitored with
low-cost equipment is desired. In this study, a deep learning-based model that estimates
the stem diameter as an indicator of water stress was developed using the leaf wilting
index and environmental data. Using an inexpensive camera and common environmental
sensors to estimate changes in stem diameter, which is a direct response to water stress,
a cost-effective and easy-to-use model for estimating water stress is proposed. Figure 1
provides an overview of this study.
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Figure 1. Overview of the model for estimating water stress using leaf wilting index and adaptation
in different areas.

Our contributions are threefold. First, a method to accurately quantify leaf wilting is
proposed that uses a combination of the Segment Anything Model (SAM) [27], which is a
foundation model for segmentation, and CoTracker [28], which is a foundation model for
tracking arbitrary points. To realize an accurate irrigation control system, leaf wilting should
be detected in real time. This approach is expected to reduce the effects of disturbances such
as background elements and enable highly accurate quantification of leaf wilting. Second,
a model for estimating water stress is proposed based on the Transformer architecture that
takes into account the correlation between multivariate data from quantified leaf wilting
and environmental data. Third, local normalization and unsupervised domain adaptation
were incorporated when training the model using data obtained from environmental
sensors [29–32]. Experiments have shown that this model can be easily adapted for use in
multiple fields or large greenhouses, even with multiple installations.

2. Related Works
2.1. Deep Learning in Agriculture

In recent years, advances in machine learning have led to a new movement toward
data-intensive approaches in the agricultural sector [33,34]. In particular, deep learning,
proposed by Hinton et al. [35] in 2006, has rapidly evolved and is now used for various
classification and estimation tasks in a wide range of fields, including the agricultural field.
Sladojevic et al. [36] developed a model using convolutional neural networks that can
recognize 13 types of plant diseases from healthy leaves with an average accuracy of 96.3%.
Peng et al. [37] developed a weed detection model for rice crop images using RetinaNet,
achieving accurate real-time detection and low machine costs. Rahnemoonfar et al. [38] de-
veloped an Inception-ResNet-based model for counting flowers and fruits, demonstrating
an average accuracy of 91% in experiments using images of tomato fruits. Nan et al. [39] de-
veloped HyperYOLO, which is capable of real-time lightweight object detection for remote
sensing, achieving a 76.72% mean average precision (mAP) in experiments. Liu et al. [40]
developed RemoteCLIP, the first vision–language foundation model for remote sensing. It
learns robust visual features with rich semantics and aligned text embeddings, which can
be transferred to various tasks such as zero-shot image classification, image-text retrieval,
and object counting in remote-sensing images.

In the research on water stress estimation, which is the scope of this study, Cai et al. [41]
proposed a deep neural network regression model trained on meteorological data and
soil moisture sensor data from Beijing, China, from 2012 to 2016 and showed that it could
predict soil moisture with a coefficient of determination (R2) = 0.98. Song et al. [42] proposed
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a model combining a deep belief network and a macroscopic cellular automaton based
on deep learning and showed a method for estimating the soil moisture content from the
meteorological data, leaf area index, and soil surface temperature data of a corn field. In
addition, in their research on stem diameter estimation, Wakamori et al. [14] showed that it
is possible to estimate stem diameter with an R2 = 0.43 by using a long short-term memory
(LSTM) model that learns from features extracted from leaf images, environmental data,
and data related to circadian rhythms.

The Transformer architecture [43] is a deep learning-based framework that has been
shown to be highly effective in various tasks such as natural language processing [44],
image recognition [45], and time series forecasting [46]. In this study, the Transformer
architecture was used to adapt the model configuration proposed in Vision Transformer
(ViT) for multivariate time series estimation tasks.

2.2. Domain Adaptation

In general machine learning theory, it is assumed that the data used for training and
testing come from the same distribution. However, in reality, the two distributions are not
identical. Tasks that involve learning models assuming a shift between training and testing
distributions are known as domain adaptation, which is a well-known research theme in
the field of machine learning [31]. The goal of unsupervised domain adaptation (UDA)
is to develop models that function effectively in the target domain by using labeled data
from the source domain and unlabeled data from the target domain during training [29,32].
One approach to domain adaptation involves the incorporation of adversarial training to
improve the robustness of a domain [30,47,48]. Ganin et al. [30] added a domain classifier to
the feature extraction network for classification for domain adaptation. This was achieved
by introducing a gradient inversion layer that multiplies the gradient by a certain negative
constant during training. This process adjusts the feature distribution between the source
and target domains extracted by the network so that they are similar (indistinguishable
by the domain classifier), resulting in domain-independent features. Another method
is domain adaptation based on moment matching [49,50]. Zellinger et al. [50] proposed
Central Moment Discrepancy, which is a new distance metric for the distribution of hidden
layer outputs of a feature extraction network. They achieved domain adaptation by adding
a regularization term to minimize the discrepancies in feature distributions between the
source and target domains.

Inspired by the moment-matching approach, a domain adaptation method is proposed
that incorporates a regularization term to minimize the discrepancy in the distribution of
estimates at different times of the day, taking into account the circadian rhythms of plants.

3. Materials and Methods
3.1. Relative Stem Diameter (RSD) as Water Stress

Ohishi [13] analyzed the relationship between water stress and changes in stem
diameter in tomatoes grown in rockwool-based hydroponic systems and demonstrated a
non-destructive evaluation method for water stress based on stem diameter changes. They
measured the typical changes in stem diameter (SD (mm)) during the stem enlargement
phase of tomatoes grown under water stress on sunny days. They found that transpiration
increased from sunrise to noon, the relative stem water content decreased, leaf wilting
began, and the SD decreased. After this period, as transpiration decreased from the
afternoon to night, the RSW increased, leaf wilting recovered, and the maximum SD
increased owing to plant growth. Based on these results, the relative stem diameter (RSD
(%)) was defined, which represents the changes in SD due to water stress, adjusted for
growth-related enlargement. The RSD at a time t follows the following formula:

RSDt =

{
1.0 : SDt ≥ MSDt
SDt/MSDt : SDt < MSDt

(1)
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where SDt represents the stem diameter at a specific time t, and MSDt denotes the maxi-
mum stem diameter observed from the start of the measurement up to time t. The RSD
was used as an indicator of water stress. The start of the measurement is defined as time
t = 0, which corresponds to the sunrise of each day (when ambient light exceeds 20 lux),
and the RSD is calculated every 5 min, increasing the time t accordingly.

3.2. Dataset

The data used in this paper were collected in a greenhouse located in Fukuroi City,
Shizuoka Prefecture, Japan, where tomatoes (Solanum lycopersicum L. “Frutica”) are grown
using a hydroponic system. As shown in Figure 2, data were obtained from four cultivation
areas, each area having a different irrigation control. Each area was equipped with envi-
ronmental sensor nodes placed above the plants, a laser displacement meter (HL-T1010A,
Panasonic Corp., Osaka, Japan) placed between the 9th and 10th nodes of the plants, and
an RGB camera (GoPro HERO5 Session, GoPro Inc., San Mateo, CA, USA) placed near
the leaves. These devices collected data at five-minute intervals on temperature, relative
humidity, scattered light illumination, CO2 concentration, SD, and images of the plant
canopy. The data also contained time information, such as the elapsed time since sunrise
and the time of irrigation. The vapor pressure deficit (VPD) was calculated from the tem-
perature and relative humidity, and the RSD was calculated from the SD and scattered light
illumination. The images of the plant canopy captured by the RGB camera were resized
from full HD to a 342 × 456 resolution and saved in JPG format. The data collection period
was from the pinching stage to the end of the tomato harvest and covered the period from
23 October 2018 to 16 January 2019, excluding rainy days when no leaf wilting occurred.
The distribution of key data for each cultivation area is shown in Figure 3.
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The dataset was divided into four areas designated as {“A”, “B”, “C”, “D”}, with the
number of data points in each area as 4620 (44 days), 4410 (42 days), 4935 (47 days), and 3885
(37 days), respectively. Each day’s data included 105 data points measured at five-minute
intervals from sunrise to sunset, ensuring that each day was temporally independent. For
each area, 14 days of data were used as test data, while the remaining data were used
as training data, and cross-validation was performed. The split for cross-validation was
performed daily; therefore, data points from the same day were not included in both the
training and test datasets simultaneously. Additionally, when using datasets from different
areas for training and testing, the model was trained with the training dataset of area A and
tested with the test data from area C (A–C). Similarly, B–D, C–A, and D–B were performed.

3.3. Quantification of Leaf Wilting

A method is proposed to quantify leaf wilting from images of the canopy taken with a
camera. To do so, SAM, a foundation model for segmentation, and CoTracker, a foundation
model, were combined for arbitrary point tracking. In tomato cultivation, leaves are
removed at an appropriate frequency to improve sunlight exposure and ventilation to
in-crease yield. Therefore, it must be assumed that the monitored leaves can be removed on
a given day. To solve this problem, an algorithm was developed that automatically selects
leaves for wilting monitoring every morning. By selecting multiple leaves as monitoring
targets each morning, the continuity of monitoring is ensured, even if some leaves are
removed during the process.

First, the method for selecting multiple leaves to monitor from a canopy image is
explained. As depicted in Figure 4, an ExG mask was applied to the canopy image, and
SAM was used to create segmentation masks for potential leaf areas. As the segmentation
created by SAM also contained non-leaf elements, such as stems, fruits, and sensor devices,
the criteria were set to exclude non-leaf elements. Specifically, segmentation masks with an
area between 400 px2 and less than 10,000 px2 and aspect ratios between 0.3 and less than
3.0 were retained. Masks that did not meet these standards were discarded. The central
coordinates of the remaining segmentation masks were designated as tracking points for
CoTracker.
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Subsequently, the tracking point was tracked using CoTracker. Let N be the number
of tracking points and t be the elapsed processing time. The tracking process is performed
at five-minute intervals, starting at t = 0 and incrementing with each subsequent tracking
process. Next, let n = {0, 1, · · · , N} be the index of the tracking point and Pn

t be the
Y-coordinate of the n-th tracking point at time t. Therefore, the relative amount of leaf
wilting RLWt at time t can be calculated as follows:

RLWt =
1
N

N

∑
n=0

(Pn
t − Pn

0 ) (2)

where time t = 0 is the time of sunrise, similar to the RSD.
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3.4. Daily Normalization

Normalization of the environmental data and the RLW was performed as part of
the data preprocessing. Normalization is an important preprocessing step in machine
learning. Data series such as temperature (approximately 22–33 ◦C) and illuminance
(approximately 30–26,000 lux) often greatly vary in their range of maximum and minimum
values. Normalization equalizes the scale between variables with different magnitudes,
which is known to improve the performance of machine learning models, stabilize learning,
and reduce the time required for training. However, when data collected from multiple
cultivation areas contain “dataset shift”, such as differences in scale and distribution,
a simple normalization that amalgamates data might inadvertently distort the overall
distribution of the dataset [51].

Data from greenhouse environments and plant physiology in agriculture are likely
to be affected by various disturbances during data collection. In this case, the four areas
from which data were collected showed biases in the distribution of environmental data
even within the same greenhouse, owing to differences in location, orientation (sunlight
exposure), air circulation, and irrigation frequency. In addition, the RLW calculated from
image data can significantly vary in scale owing to variations in camera placement and
field of view. Furthermore, agricultural practitioners know that a plant’s response to water
stress in the form of stem contraction can diminish owing to individual differences, age,
and growth stages. This can be interpreted as a “concept shift”, where the distribution
of independent and dependent variables changes over time. In this case, in addition to
normalization for each domain, it is also necessary to consider normalization along the
temporal axis.

Therefore, we propose daily normalization. A day was defined from sunrise (t = 0)
to sunset (t = TSUNSET), and after calculating the difference from sunrise for each dataset
collected during this time, it was divided by the standard deviation within each area. The
normalized RLW at time t (nRLWt) was calculated as follows:

nRLWt = (RLWt − RLW0)/STD
(

RLWTGT
)

(3)

where STD(·) is a function that calculates the standard deviation, and RLWTGT repre-
sents the RLW observed in a given area TGT up to the previous day. Assuming that
other data series were normalized in the same way, the standard deviation of each data
series was summarized, and the normalization parameter σTGT = {STD(TemperatureTGT),
STD(HumidityTGT), · · ·} was used in normalizing each series data.

By applying this normalization, the differences in scale between areas for daytime
environmental data and RLW became uniform. In addition, by accounting for differences
based on sunrise, the application of a daily time window and canceling shifts in the time-
series data caused by plant age and growth could be taken into account. This approach
is based on the assumption that although the scale and trend of data from each area and
plant may vary, the response of plants to water stress is consistent over the daytime period.

3.5. Water Stress Estimation Model

The architecture of the model for estimating RSD as an indicator of water stress is
shown in Figure 5. The RSD estimation process involves a pipeline of sequential opera-
tions: input data from environmental sensors and the RLW computed from images. Daily
normalization is performed, which is processed by a Transformer-based model M, and
then denormalization is performed.
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Model M, which estimated the normalized RSD, was constructed using a transformer
encoder similar to that used for ViT [45]. However, it was modified with variable-token
embeddings (Section 3.6) and an MLP head to perform estimation tasks with time series
data instead of classification tasks. The MLP head of model M consists of a single linear
layer that estimates the normalized RSD from the feature vector output of the Transformer.
Let xt ∈ RK represent the data obtained from environmental sensors and RLW at a given
time t, where K is the number of series, and in this case, K = 7 (temperature, relative
humidity, VPD, scattered illumination, CO2 concentration, irrigation status, and RLW). The
estimation of the normalized RSD uses data from the past S time points. Therefore, the
input for model M is Xt = {xt, xt−1, · · · , xt−S} ∈ RK×S, and the output of model M is the
normalized RSD.

Finally, the scale of the normalized RSD was returned to the original RSD. The esti-
mated RSD at time t: RSDt using this pipeline is expressed as follows:

RSDt = M
(

DailyNorm
(

Xt

∣∣∣σTGT
)∣∣∣θSRC

)
∗ STD

(
RSDTGT

)
+ 1 (4)

Here, Dailynorm(·) is the daily normalization mentioned above. θSRC is a learning param-
eter of the model, which was trained only with data obtained from a certain area SRC. The
STD

(
RSDTGT

)
used for denormalization is the standard deviation of the RSD obtained in

the past in the area TGT where the operation is performed, which must be determined in
advance. The final term of the equation is RSD0 = 1.

3.6. Embedding Variable Tokens

In Transformer-based time series prediction models [46,52], it is common to sequen-
tially embed data into variable tokens for autoregressive learning. Conversely, a study on
an inverted Transformer model aimed at predicting multivariate time series has shown
that embedding each series independently into variable tokens to capture correlations
between multiple variables can improve prediction accuracy [53]. Both approaches were
used. Let Xt ∈ RK×S represent the time series tokens at a given time t before embed-
ding. The series tokens are represented by IXt ∈ RS×K, which is the transpose of the
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time series tokens Xt. In addition, similar to ViT, a class token (CLS) was added for use in
the MLP-based estimation. The embedding of the variable tokens used linear projection
(LP) and position embedding (PE) as employed in the ViT. In addition, for time series
tokens, global time stamp embedding (GTSE), which was proposed in the informer model,
was incorporated for time series predictions [46]. The PE adds information about the
position within the token (local time stamp), and GTSE adds more global timestamp infor-
mation, such as the day of the week or holiday information. Drawing on the concept of
GTSE, the time elapsed since sunrise and since the last irrigation was used as global time
stamps—TSt = {(irrit, sunsett), · · · , (irrit−S, sunsett−S)} ∈ R2×S—and embedded into
the time series tokens. Therefore, with the embedding vector dimension d = 256, the tokens
after embedding XENC

t ∈ R256×(S+K+1), can be expressed as follows:

XENC
t = {(LP(Xt) + GTSE(TSt)), LP(IXt), CLS}+ PE(S + K + 1) (5)

3.7. Domain Adaptation Considering the Circadian Rhythm

It is well-known that most organisms, including plants, have circadian rhythms.
Tomatoes exhibit a circadian rhythm in which stem diameter begins to decrease in the
early morning, as transpiration and photosynthesis become more active at sunrise, recover
in the evening, and increase during the night [13,54]. Although the absolute changes
in stem diameter based on this circadian rhythm may vary due to local field conditions
and irrigation status, the distribution of relative daily changes is thought to be largely
consistent. Figure 6 shows the distribution of the RSD for areas A and C and the normalized
RSD distribution for each area. The time intervals were divided into four segments from
sunrise to sunset, the period when data collection began. In Figure 6, it is evident that the
distribution of normalized RSD for each time interval in the areas is largely consistent, even
though the areas are different.
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Therefore, it is assumed that the distribution of normalized RSD by time period
roughly coincides in different areas treated as domains, and a domain adaptation approach
is proposed based on matching the distribution for different time periods. Using the
timestamp information attached to the data collected by each sensor, the time zone is
defined as tz = {0, 1, · · · , TZ}, which indicates the time zone in which each data point
was collected. Let the dataset of the particular area be the source domain dataset DSRC,
and let the label data for each time period tz contained in the dataset be YSRC

tz ∈ DSRC.
Similarly, let the dataset in the area different from the source domain be the target domain
dataset DTGT , and let the training data for each time period tz contained in the dataset be
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XTGT
tz ∈ DTGT . By defining the water stress estimation model M, the loss function Ldm for

domain adaptation can be expressed as follows:

Ldm =
1

TZ

TZ

∑
tz=0

KL
(

φ
(

YSRC
tz

)∥∥∥ φ
(

M
(

XTGT
tz

)))
(6)

Here, φ(·) represents the transformation to a normalized distribution that enables back-
propagation, and KL(·∥·) represents the KL divergence. Therefore, the loss function L
during model training can be expressed as follows:

L = λ ∗ Lmse + (1 − λ) ∗ Ldm (7)

Here, Lmse is the mean squared error loss for RSD estimation, and λ is a hyperparameter
and takes a value between 0.0 and 1.0.

3.8. Evaluation Methods

The experiments were conducted on a desktop PC equipped with an Nvidia RTX3090
GPU and an Intel i9-10900 K CPU at 3.7 GHz with 64 GB of memory. The parameters for
the Transformer model used in the experiments were as follows: the feature dimension
was set to 256, the number of heads in the multi-head self-attention task was eight, the
number of layers was three, and the dropout rate was 0.05. These parameters were derived
from the Informer model referenced in the token embedding and were used in all folds of
cross-validation without hyperparameter tuning. The model was implemented in Python
using the PyTorch ver.2.2.2 library. The Adam optimizer with a learning rate of 1 × 10−4

and 100 epochs was used to train the model to ensure that the loss converged in all
training sessions.

In the leaf wilting quantification experiment, we used images of tomato canopies
taken with an RGB camera. For comparison, the experiment was conducted using the
existing optical flow method and the proposed method. In addition, two different methods
for selecting tracking points were compared in the proposed method: random selection
and selection with SAM. In the random selection, the tracking point coordinates were
randomly selected from within the image. This comparison aimed to verify the effect of
the choice of leaves to be tracked on the quantification accuracy. The metric used for the
quantification accuracy was the correlation coefficient with the RSD, an index of water
stress. Leaf wilting and RSD exhibit a positive correlation; therefore, a higher correlation
with the RSD indicates a more accurate quantification of leaf wilting.

In the investigations on daily normalization and token embedding, comparative
experiments were conducted using the following three normalization methods to evaluate
the estimation accuracy due to differences in the normalization methods.

• Global normalization:
The data were normalized to the statistical values of the entire dataset. Standardization
was performed using the average and standard deviation of all data.

• Domain-specific normalization:
The data were normalized based on the statistical values for specific groups or domains.
In this experiment, standardization was performed for each area using the average
and standard deviation.

• Daily normalization:
The method described in Section 3.4 was used for normalization. Normalization
was performed for each day using the difference between sunrise and the standard
deviation for each area.

The normalization parameter σ was calculated from the data of the last 20 days in the
target area. The number of time points of the explanatory variables input entered into the
model was set to S = 6, and the task of estimating the RSD from the environmental data
of the last 30 min (every 5 min × 6 time points) and the extent of leaf wilting was learned.
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After performing normalization and model learning using the dataset for each area, there
were cases where an accuracy evaluation was performed using test data from the same
area and test data from different areas. The metrics used for the estimation accuracy were
the mean absolute error (MAE), mean squared error (MSE), and R2.

In the experiments on normalization parameter adaptation and domain adaptation,
the focus was on evaluating a model trained in one area when applied to another area.
To obtain the normalization parameter σ, it is necessary to measure the RSD with a laser
displacement meter in the target area over a certain period. However, it is desirable that the
model adjusts within the shortest possible time period. Therefore, the model’s estimation
accuracy was calculated based on the number of days needed to calculate the normalization
parameter. In the domain adaptation experiment, a comparative study was conducted
between the existing method, unsupervised domain adaptation by backpropagation [30]
(UDAB), the proposed method, i.e., domain adaptation considering the circadian rhythm
(DAC), and a combination of UDAB and DAC. The time zone parameter TZ = 4 was set
by dividing the day into four segments, and the loss function was adjusted to ensure that
the distribution of estimates matched each time segment. The hyperparameter λ of the loss
function for domain adaptation was set to 0.8.

4. Results
4.1. Experiment on Leaf Wilting Quantification

Table 1 shows the experimental results with the correlation coefficients between
the wilting indices calculated by each method and the RSD. The results showed that
CoTracker + SAM had the highest correlation between the images from all areas. Figure 7
depicts some characteristic examples of the daily changes in RSD together with the daily
variations in the wilting index calculated using optical flow and CoTracker + SAM. A
typical change in the RSD on a sunny day was characterized by a rapid decrease around
noon, followed by a slight increase in the evening (Figure 7, left). On days with significant
humidity fluctuations, the RSD exhibited more pronounced oscillations (Figure 7, upper
right). Conversely, on cloudy days with minimal wilting, the RSD decreased at around
noon but reverted to its original state by evening (Figure 7, lower right). Although the
CoTracker + SAM generally followed the RSD trend, significant deviations were observed
in optical flow. When reviewing these instances in the images, it was found that changes
in shadows were detected due to moving clouds and movements in the background that
were not adequately masked by the ExG. Moreover, only CoTracker + Random showed
lower accuracy compared with the baseline optical flow method. With the random method,
tracking points may stochastically select coordinates outside of leaf areas, and in some
cases, all tracking points may fall outside the leaf area that moves in response to water
stress, thereby reducing the accuracy. These results confirm that leaf selection for tracking
is a critical factor in methods using CoTracker.

Table 1. Correlation coefficient by area for each leaf wilting method.

Method Correlation Coefficient with RSD
Area A Area B Area C Area D Average

Optical flow 0.841 0.688 0.572 0.820 0.753
CoTracker + Random (ours) 0.804 0.602 0.582 0.776 0.708
CoTracker + SAM (ours) 0.863 0.803 0.738 0.834 0.817
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4.2. Daily Normalization Experiment

Table 2 shows the results for the same areas, and Table 3 shows the results for different
areas. Table 4 shows the aggregated results for all areas. It was confirmed that daily nor-
malization and domain-specific normalization had better accuracy compared with global
normalization. When comparing daily normalization and domain-specific normalization,
the estimation accuracy was approximately the same when training and testing took place
in the same area. However, when training and testing took place in different areas, the
R2 improved by approximately 0.03. Daily normalization had an accuracy of more than
R2 = 0.7, both when the test areas were the same and different. This confirms that the
estimated value of the proposed model can explain approximately 71.9% of the variation in
the RSD in the test area.

Table 2. RSD estimation results by normalization in the same areas (MAE and MSE).

Normalization
Method

Same Areas
Area A Area B Area C Area D

MAE MSE MAE MSE MAE MSE MAE MSE

Global 2.242 × 10−2 0.947 × 10−3 2.881 × 10−2 1.582 × 10−3 2.036 × 10−2 0.753 × 10−3 3.267 × 10−2 2.056 × 10−3

Domain-
specific 1.794 × 10−2 0.760 × 10−3 2.153 × 10−2 0.848 × 10−3 1.484 × 10−2 0.409 × 10−3 2.363 × 10−2 1.017 × 10−3

Daily (ours) 1.696 × 10−2 0.520 × 10−3 2.123 × 10−2 0.847 × 10−3 1.430 × 10−2 0.391 × 10−3 2.340 × 10−2 1.055 × 10−3

Table 3. RSD estimation results by normalization in different areas (MAE and MSE).

Normalization
Method

Different Areas
Area A–C Area B–D Area C–A Area D–B

MAE MSE MAE MSE MAE MSE MAE MSE

Global 2.859 × 10−2 1.429 × 10−3 3.539 × 10−2 2.511 × 10−3 3.326 × 10−2 2.265 × 10−3 3.039 × 10−2 1.731 × 10−3

Domain-
specific 1.773 × 10−2 0.550 × 10−3 2.713 × 10−2 1.367 × 10−3 2.172 × 10−2 0.735 × 10−3 2.812 × 10−2 1.458 × 10−3

Daily (ours) 1.657 × 10−2 0.462 × 10−3 2.637 × 10−2 1.324 × 10−3 1.933 × 10−2 0.667 × 10−3 2.409 × 10−2 1.099 × 10−3
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Table 4. RSD estimation results by normalization in the same/different areas (MAE, MSE, and R2).

Normalization
Method

Same Areas Different Areas
MAE MSE R2 MAE MSE R2

Global 2.708 × 10−2 1.442 × 10−3 0.589 3.145 × 10−2 2.038 × 10−3 0.441
Domain-specific 1.971 × 10−2 0.730 × 10−3 0.784 2.369 × 10−2 1.056 × 10−3 0.687
Daily (ours) 1.969 × 10−2 0.741 × 10−3 0.788 2.268 × 10−2 0.989 × 10−3 0.718

4.3. Experiment on the Adaptation of Normalization Parameters

Table 5 lists the experimental results obtained. The 0 days scenario refers to the case
where the normalization parameter σ, calculated from the area used to train the model,
was applied directly to the target area. The results indicate that using data from the target
area for more than 10 days made it possible to achieve an accuracy with an R2 above 0.7.
Furthermore, it was found that even with only one day of data, the accuracy reached an R2

of approximately 0.6.

Table 5. RSD estimation accuracy for each number of σ calculation days in the target area.

Days Required for Adaptation Different Areas
MAE MSE R2

0 days 2.806 × 10−2 1.466 × 10−3 0.582
1 day 2.469 × 10−2 1.184 × 10−3 0.662
5 days 2.420 × 10−2 1.147 × 10−3 0.673
10 days 2.311 × 10−2 1.019 × 10−3 0.709
20 days 2.268 × 10−2 0.989 × 10−3 0.718

4.4. Experiment on Variable Token Embedding

Table 6 lists the experimental results obtained. Regardless of whether the normal-
ization method was global or daily, the proposed method generally showed the highest
estimation accuracy. In particular, when global normalization was applied, significant
improvements were observed in different areas. Considering that R2 dropped by 0.283
when only temporal tokens were used, compared with a decrease of 0.163 when only series
tokens were used, it can be concluded that the characteristics of the correlations between
series contributed to the improved estimation accuracy in cases where the scale differed
between different areas. Conversely, in daily normalization, where the scale was adjected
between areas, a greater improvement in accuracy was observed within the same area than
in different areas.

Table 6. RSD estimation accuracy using the variable token-embedding method.

Normalization
Method

Tokens Same Areas Different Areas All Areas
MAE MSE R2 MAE MSE R2 MAE MSE R2

Global Temporal 2.716 × 10−2 1.439 × 10−3 0.589 3.415 × 10−2 2.431 × 10−3 0.306 3.065 × 10−2 1.935 × 10−3 0.448
Series 2.905 × 10−2 1.640 × 10−3 0.532 3.313 × 10−2 2.099 × 10−3 0.369 3.107 × 10−2 1.868 × 10−3 0.453

Both (ours) 2.708 × 10−2 1.442 × 10−3 0.589 3.145 × 10−2 2.038 × 10−3 0.441 2.935 × 10−2 1.751 × 10−3 0.511

Daily Temporal 2.065 × 10−2 0.821 × 10−3 0.766 2.403 × 10−2 1.073 × 10−3 0.708 2.235 × 10−2 0.948 × 10−3 0.736
Series 2.341 × 10−2 0.998 × 10−3 0.715 2.472 × 10−2 1.090 × 10−3 0.689 2.407 × 10−2 1.044 × 10−3 0.703

Both (ours) 1.969 × 10−2 0.741 × 10−3 0.788 2.268 × 10−2 0.989 × 10−3 0.719 2.118 × 10−2 0.863 × 10−3 0.754

4.5. Experiment on Domain Adaptation

Table 7 lists the experimental results. The results show that both UDAB and DAC
improved the estimation accuracy compared with scenarios without domain adaptation.
The highest accuracy was achieved when both UDAB and DAC were applied. Compared
with the non-adaptation scenario, there was an improvement of 0.105 in the R2 with global
normalization and 0.037 with daily normalization. Figure 8 shows a histogram of the
normalized estimated RSD values compared with the true values of the target domain.
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When looking at the distribution of the estimates for the target domain, it was found that
using the DAC reduced the KL divergence from 0.225 to 0.198, bringing it closer to the
true value distribution. In addition, the reduction in KL divergence was correlated with
improved estimation accuracy.

Table 7. RSD estimation accuracy by the domain adaptation method in different areas.

Normalization Domain Adaptation
Method

Different Areas
MAE MSE R2

Global Without DA 3.243 × 10−2 2.066 × 10−3 0.411
UDAB 3.270 × 10−2 2.062 × 10−3 0.412

DAC (ours) 2.962 × 10−2 1.705 × 10−3 0.513
UDAB + DAC (ours) 2.948 × 10−2 1.696 × 10−3 0.516

Daily Without DA 2.268 × 10−2 0.989 × 10−3 0.718
UDAB 2.194 × 10−2 0.917 × 10−3 0.728

DAC (ours) 2.080 × 10−2 0.843 × 10−3 0.750
UDAB + DAC (ours) 2.063 × 10−2 0.828 × 10−3 0.755
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Next, Table 8 shows the estimation accuracy when the time zone parameter TZ was
varied from one to six. Of the results obtained, the TZ = 4 case showed the highest
accuracy, with an R2 of 0.75. The lowest accuracy was observed in the case without division
into time zones based on circadian rhythms, TZ = 1, where considering the circadian
rhythms led to an improvement of 0.027 in the R2.

Table 8. RSD estimation accuracy by time zone parameter TZ.

Method TZ
Different Areas

MAE MSE R2

DAC 1 2.362 × 10−2 1.054 × 10−3 0.723
2 2.146 × 10−2 0.880 × 10−3 0.739
3 2.146 × 10−2 0.880 × 10−3 0.739
4 2.080 × 10−2 0.843 × 10−3 0.750
5 2.163 × 10−2 0.871 × 10−3 0.742
6 2.148 × 10−2 0.875 × 10−3 0.740
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5. Discussion

A new method was developed for estimating water stress in tomatoes that considers
the transferability of the model. Experiments confirmed the effectiveness of (1) a new
technique to quantify leaf wilting from images of tomato canopies and (2) an RSD estimation
model based on daily normalization and a Transformer architecture. In addition, (3) it
was shown that a model trained in one area can be adapted to another area without
compromising accuracy by using domain adaptation that considers circadian rhythms.

When quantifying leaf wilting using images, the combination of CoTracker and SAM
successfully produced an indicator that had a high correlation coefficient of approxi-
mately 0.82 with the RSD, which indicates water stress. This is an improvement compared
with the previous study using optical flow in which the average correlation between the SD
and leaf wilting index was 0.6. Optical flow is designed to detect motion at the pixel level
and may inadvertently detect unrelated motion such as the movement of cloud shadows
and objects in the background that ExG cannot adequately mask. In contrast, the method
using CoTracker, similar to object detection, uses the image features of the tracked object,
allowing accurate detection of only the movements of leaves, which are the intended targets
for wilt detection. However, even when using CoTracker, the random selection of tracking
points resulted in a lower correlation than with optical flow. When reviewing images of
cases where accuracy decreased, it was found that the problems arose from the tracked
leaves either moving out of the camera’s field of view or overlapping with other leaves,
causing CoTracker to lose track. Therefore, the selection of leaves to be tracked is crucial
for quantifying leaf wilting with CoTracker. This result supports the effectiveness of using
SAM for segmentation and selecting tracking targets based on the area and aspect ratio. In
this study, simple criteria based on the area and aspect ratio were used to select leaf-like
objects. Furthermore, improvements, such as using the foundational model for depth
estimation to select leaves closer to the foreground, or selecting leaves closer to the center of
the image to prevent them from moving out of the camera’s field of view, could potentially
increase the accuracy of quantification.

For the RSD estimation model applying daily normalization, it was shown that the
model could estimate the RSD with high accuracy, achieving an R2 of approximately 0.79
when training and testing were performed within the same area. Although a direct compari-
son is difficult owing to differences in the datasets, this represents a significant improvement
over a previous study that used an LSTM model to estimate the stem diameter (R2 = 0.43).
Moreover, this study proposed the normalization and token embedding methods and
reused existing model architectures. Therefore, detailed comparative experiments of water
stress estimation algorithms, including model architectures, were not conducted. However,
it is considered beneficial for future research to compare the accuracy with existing water
stress estimation algorithms and to verify the effect of applying daily normalization as a pre-
processing step to existing algorithms. From the perspective of model transferability, daily
normalization enabled the transformation of data offsets and distributional differences
caused by the physical location of the fields, environmental conditions, and individual
plant differences into normalized residuals relative to sunrise. This transformation allows
the Transformer model to effectively learn variations in RSD from changes in environmental
conditions and leaf wilting, regardless of the source of data collection. In addition, the
model can be adapted to different areas without the need for expert adjustments by simply
collecting data for approximately 10 days from the target area, with less loss of accuracy.
Furthermore, considering that the diurnal response of plants under water stress is common,
our method may be applicable to various crops by applying daily normalization.

In domain adaptation considering circadian rhythms, when adapting a water stress
estimation model with an R2 of approximately 0.79 to different areas, the accuracy, which
would drop to approximately 0.72 without domain adaptation, was maintained at approxi-
mately 0.75 by the proposed domain adaptation. This improvement can be attributed to
the effective combination of daily normalization and DAC. This allows the incorporation
of knowledge of the basic diurnal changes in plants, known as circadian rhythms, into
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the estimation process. This regularization of the estimates ensures that the distribution
of estimates remains reliably within the range of circadian rhythms, thereby reducing the
decline in estimation accuracy. Additionally, it was confirmed that the effect of domain
adaptation is further enhanced when both DAC and UDAB are used. Because UDAB and
DAC are independent domain adaptation methods, both can be used simultaneously. Using
both methods together leverages the strong regularization achieved by DAC’s matching
of output distributions and UDAB’s matching of distributions in the latent feature space,
thereby improving the estimation accuracy in the target domain compared with using
either method alone. Regarding the question of how finely the time zone parameter is
subdivided, the results in Table 8 show that TZ = 4 provides the best accuracy, and further
subdivisions tend to reduce accuracy. These results suggest that the granularity at which
circadian rhythms are applied is a hyperparameter and that the use of strong regularization
at a finer granularity may be counterproductive. Additionally, they suggest that adopting
more detailed and flexible time zone parameters aligned with the circadian rhythm of
tomatoes could potentially improve the estimation accuracy.

6. Conclusions

A highly accurate water stress estimation model was proposed that supports the
automation of precision irrigation control and can be adapted to different domains. A
laser displacement sensor is temporarily required for calibration for normalization, but
after calibration, the water stress estimation model can be operated with only affordable
environmental sensors and an RGB camera. First, to quantify leaf wilting, which represents
water stress, two foundational models were used, the CoTracker model for any point
tracking and the SAM model for object segmentation, from tomato canopy images captured
by an RGB camera. As a result, we succeeded in quantifying leaf wilting with a correlation
coefficient of 0.82 with the RSD. Second, daily normalization was suggested as a means
to cope with data domain shifts, and environmental and leaf wilting data were used to
estimate the RSD as a water stress index. An experiment was conducted to evaluate the
estimation accuracy of the model using actual environmental and canopy image data
collected from tomato fields, and we demonstrated that it could be estimated with an R2

value of 0.79. Third, to enable the application of the developed model across multiple fields,
domain adaptation was proposed, which considered the circadian rhythms of tomatoes,
and we combined it with unsupervised domain adaptation by backpropagation. This
approach was tested with data from different areas and proved to be adaptable, with an
R2 of 0.76.

However, this study has several limitations. The data used in the evaluation exper-
iments were limited to cultivation data from October 2018 to January 2019. Therefore, it
is necessary to collect cultivation data from other years and seasons to conduct a compre-
hensive evaluation. In addition, detailed accuracy comparisons between the developed
water stress estimation model and existing water stress estimation algorithms should be
performed. Further research will involve connecting the developed water stress estimation
model to an automatic irrigation system, conducting field trials in tomato cultivation, and
evaluating the subsequent impact on fruit quality.
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