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Abstract: Automated segmentation of retinal blood vessels is necessary for the diagnosis, moni-
toring, and treatment planning of the disease. Although current U-shaped structure models have
achieved outstanding performance, some challenges still emerge due to the nature of this problem
and mainstream models. (1) There does not exist an effective framework to obtain and incorporate
features with different spatial and semantic information at multiple levels. (2) The fundus retina
images coupled with high-quality blood vessel segmentation are relatively rare. (3) The information
on edge regions, which are the most difficult parts to segment, has not received adequate attention.
In this work, we propose a novel encoder–decoder architecture based on the multi-task learning
paradigm to tackle these challenges. The shared image encoder is regularized by conducting the
reconstruction task in the VQ-VAE (Vector Quantized Variational AutoEncoder) module branch
to improve the generalization ability. Meanwhile, hierarchical representations are generated and
integrated to complement the input image. The edge attention module is designed to make the
model capture edge-focused feature representations via deep supervision, focusing on the target edge
regions that are most difficult to recognize. Extensive evaluations of three publicly accessible datasets
demonstrate that the proposed model outperforms the current state-of-the-art methods.

Keywords: retinal vessel segmentation; VQ-VAE; edge attention

MSC: 68U10

1. Introduction

Disruptions to the structure of the retinal blood vessels are common side effects of
several disorders. Alterations in the anatomy of the blood vessels in the retina can lead
to vascular diseases, such as vascular stenosis, capillary sclerosis, and micro-adenomas, if
they go untreated [1]. To improve the prognosis of patients, it is necessary to intervene in
the early stage of the disease, and retinal vessel segmentation plays a significant role in the
diagnosis of eye-related diseases [2]. Usually, retinal blood vessels are manually segmented
by doctors. These morphological data were formerly obtained through eye inspections,
which were not only time-consuming and prone to human error but also subjective. Thus,
to solve the aforementioned problems, it is necessary to introduce an automatic retinal
vessel segmentation method, and this task has attracted numerous research interest [3,4].

In actual application scenarios, automatic retinal vessel segmentation is very chal-
lenging for the following reasons. First, the scale and shape of retinal vessels vary greatly.
The retinal vessel area occupies 1–20 pixels in the images. As a second point, the semantics
of the retinal arteries’ anatomy are complex. The optic disc, diseased regions, hemorrhage,
and exudates are all sources of potential confusion in retinal fundus imaging. Third, the low
contrast between retinal vessels and surrounding tissue makes it difficult for the model to
segment targets correctly.
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Abundant efforts have been dedicated to tackle the aforementioned challenges. Early
research focused on the use of various hand-crafted features to segment retinal blood vessels.
Huang et al. [5] created a vessel detection approach and incorporated the measurement
findings using Bayesian decision making to provide a confidence value for each blood
vessel segment in order to characterize the key properties of retinal vessels. However,
the strategy’s restricted representation capabilities of the hand-crafted features [6–8] make
it ineffective when dealing with very big datasets comprising multiple complex situations.

The dramatic advancements in hardware over the past few years have made deep
learning an immediate necessity [9–11]. Ronneberger et al.’s [12] U-Net model has had
the largest influence in the area of medical image segmentation. Subsequently, a plethora
of ideas was made to enhance performance by incorporating new types of deep supervi-
sion [13,14]. The symmetrical U-shaped structure that these models are based on allows
for the gradual extraction of contextual information via the continuous link between the
convolutional and down-sampling layers. For retinal blood vessel segmentation, U-shape
structure-based methods have become the mainstream at present. Researchers tried di-
verse models [15–19] to preserve local and global semantic information, prevent spatial
information loss, tackle varying scales, and segment tiny parts.

Although former U-shaped structure models have achieved outstanding performance
in many different scenes, some challenges still need to be handled for the specific retinal
blood vessel segmentation task. Challenge (1): Extraction of features from deep stages
provides high-level features with rich semantic information but insufficient resolution,
while extraction of features from shallow stages yields low-level features with rich spatial
details but insufficient global semantic information. Challenge (2): The fundus retina
images coupled with precise blood vessel segmentation are relatively rare and hard to
access. Because the manual segmentation of the blood vessels is time-consuming and labor-
intensive. Moreover, manual annotation is a subjective task, with accuracy impacted by the
physician’s clinical knowledge and personal bias. Challenge (3): Previous methods did not
pay enough attention to the edge information of the target, resulting in low segmentation
accuracy of the target edge region. Due to the low contrast and high geometric complexity
of the vessel edge, this area is the most difficult part to segment for the retinal blood vessel
segmentation task.

In this work, we propose a novel encoder–decoder architecture based on the multi-task
learning paradigm to address these challenges and further improve the performance of
the vessel segmentation task. To cope with Challenge (1) and Challenge (2), the VQ-VAE
(Vector Quantized Variational AutoEncoder) module is incorporated into the U-shaped
structure, which can regularize the shared encoding process by reconstructing the input
image, elevating the generalization ability of the model when precisely annotated data
are relatively rare. Meanwhile, latent feature maps encoding multiple-level semantic
information are also generated and fused with the features obtained by the image encoder
to further enhance the feature representation. To tackle Challenge (3), an edge attention
module is proposed to make the model capture edge-focused feature representations via
deep supervision, concerning the target edge regions that are most difficult to recognize.
The perception of edge information is enhanced. We have performed comprehensive
experiments on DRIVE [20], CHASE-DB1 [21] and STARE [22]. The experimental outcomes
demonstrate the proposed method is useful in improving the performance of the model.

To summarize, the contributions and novelty of the present study are highlighted as
follows:

1. A novel encoder–decoder architecture based on the multi-task learning paradigm is
proposed. The VQ-VAE module branch reconstructs input images to regularize the
shared image encoder while generating and integrating hierarchical representations
of the input image. This module not only alleviates the challenge caused by limited
annotated data but also improves the representation ability of the model.
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2. An edge attention module is proposed to learn edge-focused feature representations
by deep supervision, which can induce the model to focus on the target edge regions
that are most difficult to segment and improve the perception of edge information.

3. Comprehensive experiments are conducted on three public datasets, and experimental
results show that our methods can achieve state-of-the-art performance.

The remainder of this study is structured as follows: Section 2 presents the results of
the literature review. Section 3 discusses the methodology. The experimental results and
analyses are presented in Section 4. Finally, the conclusion is presented in the last section.

2. Related Work

Experts in the field of image processing have devoted more and more attention to
the difficulty of segmenting retinal vascular pictures in recent years. Retinal imaging of
vascular segmentation is a field that has seen numerous techniques developed. In this
article, we provide a taxonomy and comparison of various methods for segmenting the
retinal vasculature.

With the successful application of CNN in classification tasks, some researchers sub-
sequently explored its potential for retinal blood vessel segmentation and achieved good
performance. Liskowski and Krawiec [23] introduced a six-layer convolutional neural
network (CNN) for vascular segmentation in the retina. Before training the model, the train-
ing samples were preprocessed with global contrast normalization (GCN) and zero-phase
component analysis (ZCA whitening). Samuel et al. [24] proposed a novel network for seg-
menting retinal blood vessels from retinal fundus images. The method is based on transfer
learning with a pre-trained VGG-16 model as its backbone network. Soomro et al. [25]
implemented a model for the retinal blood vessel segmentation task. To alleviate visual
complexity such as low contrast, uneven lighting, and noise, they applied a morphological
operation and principal component analysis (PCA) to preprocess the image. Additionally,
a novel post-processing technique was used to eliminate unwanted noise. Wu et al. [26]
also applied PCA at the preprocessing stage to reduce the dimension of the input images.
The framework was effective overall, but it lacked sophistication due to its lack of small
veins and poorly connected blood vessels.

To address the limitations of CNN architectures, Long et al. [27] proposed the fully
convolutional networks (FCN) for semantic image segmentation. This model and its
variants are widely applied in the field of medical image segmentation. Atli et al. [28]
designed an FCN model that up-samples before down-sampling to accommodate both
thick and thin blood vessels. To avoid losing contextual information in the training phase,
the technique additionally incorporated residual modules. Li et al. [29] built an FCN
with skip connections and included active learning. In this case, the proposed model’s
performance was enhanced through iterative training. In order to avoid the problem of
spatial loss of information, Luo et al. [30] developed a size-invariant FCN for retinal blood
vessel extraction from retinal images. FCN models have achieved outstanding success in
the segmentation of retinal blood vessels. FCN-based retinal vascular segmentation has
achieved promising results; however, its predictions often lack crisp boundaries and ignore
spatial coherence.

In the field of medical image segmentation, the most commonly used framework is
the U-shape based network. It can produce fine segmentation results on small datasets, and
further, the local and global semantic information is preserved. Sathananthavathi et al. [31]
swapped out the convolutions for Atrous convolutions to broaden the receptive field and,
hence, reduce spatial loss of information. The attention gate technique was developed by
Li et al. [32] to protect the segmented retinal blood vessels from being masked by irrele-
vant foreground elements. Similarly, the authors of [33] also used the weighted attention
gate approach to filter out irrelevant information. To enhance thin vessel segmentation,
Mishra et al. [34] built a basic U-net and used data-aware deep supervision. The aver-
age input retinal vascular width was calculated and compared to the effective receptive
fields of the different layers to identify the ones that extract vessel features most strongly.
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Retinal artery segmentation in real-time using high-resolution images was proposed by
Laibacher et al. [35] using a network that makes use of bottleneck modules and bilinear
up-sampling to reduce the number of parameters. Adjusting the U-Net architecture with
the help of variable receptive fields, Jin et al. [36] were able to decrease vascular missing-
ness due to differences in vessel size, scale, characteristics, and shape in the retina. In [15],
Fu et al. introduced a brand new form of network they called Deep Vessel. In order to fully
comprehend these multi-level pictorial representations, a multi-layer, deep neural network
with a side-output layer was developed. Alom et al. [16] proposed an extension of the
U-shape architecture utilizing the power of U-Net, Residual Network, as well as a recurrent
convolutional neural network. The authors in [17] combined attention mechanisms and a
U-net framework to achieve better results in pancreas image segmentation. CE-Net [18] is
able to increase the receptive field and segment smaller blood vessels because it incorpo-
rates the residual multi- kernel pooling module and the dense atrous convolution module.
For the purpose of segmenting retinal images, Li et al. [37] presented a new approach
that is based on a topological vascular tree. To deduce the topological vascular tree from
retinal images, the method uses a global graph-based decision with pixel-wide separation
and a complete set of node connections. Liu et al. [38] proposed a light-weight network,
dubbed as FR-UNet. The model generates the full-resolution representation of features by
extending the parallel convolution layer horizontally, and a novel feature fusion module
is proposed to aggregate all-scale representations, finally generating the full-resolution
representation of features. In the same period, there were two more studies that achieved
state-of-the-art results, namely SGL [39] and RV-GAN [40], respectively. The authors of [39]
assume that the group truth of the training examples given by clinicians are incomplete
and noisy, resulting in a lack of annotations of some vascular fragments. A Study Group
Learning (SGL) method is proposed, which includes k-fold cross validation and knowledge
distillation, to improve the robustness of the model on noise data, and a learned enhance-
ment map can provide better visualization. A novel Volumetric Memory Network (VMN)
is proposed in [41]. The model can automatically segment 3D medical images interactively.
First, a user hints at the 2D slice and automatically generates the initial 2D segmentation,
then the VMN propagates it to all slices bidirectionally and refines the segmentation. The
authors in [42] provided a prototype view of semantic segmentation. A non-parameter
scheme based on a non-learning prototype is proposed. The model represents each class
as a set of non-learnable prototypes, which only depends on the average characteristics
of several training pixels in this class, rather than the previous method to learn the single
weight/query vector of each class in a fully parameterized way.

3. Method

The proposed model is described in detail below. First, the overall structure of the
whole network in Section 3.1 will be described. The specifics of our proposed methods are
then discussed in Sections 3.2 and 3.3.

3.1. Network Architectures Overview

The proposed model is designed based on an asymmetric U-shaped architecture,
which consists of the image encoding network, the segmentation decoder and two branches.
The backbone network is a modified Resnet-based network, and the workflow of the
proposed approach is displayed in Figure 1.
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Figure 1. Overview of the proposed model, Se denotes edge map, Ge denotes edge ground-truth map
and Gt denotes ground truth map.

There are two separate branches in the segmentation network, the edge attention
module and the VQ-VAE module. Combined with the segmentation decoder, all the
branches are trained in a multi-tasking paradigm. First, the retinal blood vessel images are
fed into the backbone network. Considering that low-level features retain abundant edge
information, the low-level features are fed into the edge attention module. Guided by the
gradient of annotated segmentation results, the model can be encouraged to focus on the
edge information of the target. Subsequently, the feature maps from the intermediate layer
are fed into the VQ-VAE branch to reconstruct the input images and regularize the shared
encoding procedure. To further enhance the semantic feature representation, VQ-VAE
combines the intermediate feature maps produced by the backbone network with the
top-level and bottom-level latent maps produced by VQ-VAE module. The model is trained
on three public datasets, i.e., DRIVE, CHASE-DB1 and STARE. Substantial experiments
have shown that the proposed approach works.

3.2. Edge Attention Module

Many studies [43–45] have proved that edge information can provide effective con-
straints in the process of guiding the segmentation of targets. Due to the particularity
of retinal fundus images, the edge of vascular tissue is extremely complex and has low
contrast with the surrounding background, so the edge of blood vessels is the most difficult
to segment. Moreover, the training images of the retinal fundus datasets are very limited,
so complex modules may cause overfitting. Unlike [45], we only use the latent features
generated from shallow networks and edge ground truth maps, and supervised training is
conducted between them to regularize the shared network parameters. This module can
improve the sensitivity of the model to edge information by only increasing a very small
number of parameters.

It is universally acknowledged that the shallow features in the model contain a lot
of low-level information, such as color, texture, and edge information. Therefore, we
regularize the shallow shared parameters of the model to induce the model to pay more
attention to edge information. The low-level features with the appropriate resolution are fed
into the edge attention module to explicitly learn the edge-focused feature representations.
Specifically, the low-level features get through a convolution layer and generate edge
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maps (Se). Then, we utilize the standard binary cross entropy loss function to measure the
difference between the generated edge maps and the edge ground truth maps (Ge) derived
from the ground truth images (Gt). The whole workflow is detailed in Figure 1.

Ledge = −
w

∑
x=1

h

∑
y=1

[Ge log(Se) + (1− Ge) log(1− Se)] (1)

where (x, y) are the coordinates of each pixel in the predicted edge map Se and edge
ground-truth map Ge. The Se is calculated using the gradient of the ground-truth map Gt.
Additionally, w and h denote the width and height of the corresponding map, respectively.
The edge attention module can improve the sensitivity of the model to edge information
and effectively improve the performance of the model.

3.3. VQ-VAE Module

Training a trustworthy and effective segmentation model requires access to a large
number of high-quality annotations. Hand delineation for vascular tissue is often unable
to obtain appropriate high-quality annotations for medical image segmentation because
it is label-intensive and time-consuming. In order to reduce reliance on annotations and
improve generalizability, a modified VQ-VAE module is developed based on the input
image reconstruction task. Our module’s layout was inspired by the winning entry to
the BraTS 2018 challenge, submitted by Andriy et al. [46], who developed a Variational
Auto-Encoder (VAE) model that was able to overcome a deficiency in training data. The
proposed VQ-VAE module provides input reconstruction guidance to the training process,
imposing regularization on the shared encoder to produce representations containing
more image-intrinsic spatial and semantic structure patterns. Reconstructing the original
images requires a sequence of vector quantized codes. The VQ-VAE produces two layers
of latent codes, the first of which reflects broad features such as an object’s shape and
geometry, while the second represents finer details such as its texture. In addition, the two
levels of representation are combined into a single, more accurate one using up-sampling
and concatenation methods. To further improve the model’s performance, the fused
characteristics are then utilized in a subsequent network.

The VQ-VAE can be classified as the VAE family, which has an encoder, code, and de-
coder. The difference is that the code is not directly generated by the encoder, but is obtained
through vector quantization. Using fewer resources, the module can recreate images with
higher coherence and quality. While the model’s foundation is built on probability, it should
nevertheless be able to represent the full range of the true distribution and accommodate
various forms of input data. Moreover, the VQ-VAE module can generate high-level and
low-level latent code, which, respectively, contain the low-level characters (edge informa-
tion, colors, textures) and semantic knowledge of the input images. Making full use of
this automatically extracted knowledge can effectively improve the feature representation
ability of the model. Thus, the aforementioned concerns prompted us to implement the
VAE-based branch to enhance the model’s feature expression and robustness.

An encoder, decoder, and a shared codebook are all housed in the VQ-VAE branch.
To do this, the encoder transforms the data into a set of latent variables, which are then
used by the decoder to recover the original data. The distance between the input vector x
and the prototype vectors ek, k ∈ 1. . . K is quantized by the encoder’s nonlinear mapping,
yielding the quantized output vector E(x). Specifically, K possible vectors in the codebook
are generated by replacing each vector E(x) with the index of the nearest prototype vector
in the codebook. Finally, the indices are transmitted to the decoder, which still uses another
nonlinear function to map them back to the codebook vectors to which they originally
corresponded, thus reconstructing the data.

Quantize(E(x)) = ek where k = arg min
j

∥∥E(x)− ej
∥∥ (2)
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For the VQ-VAE, we use a three-term objective function, as proposed by [47]:

L(x, D(e)) = ‖x− D(e)‖2
2 + ‖sg[E(x)]− e‖2

2 + β‖sg[e]− E(x)‖2
2 (3)

Quantized code for the training example x is shown by e. The initial component,
which indicates the data fidelity term, guarantees accurate reconstructions with small
errors. The final two terms are an ingenious addition that brings the encoder’s output
into line with the codebook’s vector space. The second term is utilized in the codebook,
where sg[·] means stop gradient. It adjusts the output of the encoder, E(x), to be near to
the selected codebook, e. The final term keeps E(x) relatively close to the chosen codebook
vector and limits the parameter’s variance. In this paper, the β is set to 0.25.

The VQ-VAE module can not only improve the performance of the model but also
reduce the dependence of the model on annotations. The reason is that in the process of
reconstruction, the encoder implicitly obtains more patterns, while promoting the model to
generate more representative features. This module helps the model to consistently achieve
good training accuracy for any random initialization and maintains the characteristics
generated by the model invariant.

4. Experimental Results

In this section, we detail the experiments of the proposed methodology on three freely
available datasets. The available datasets, metrics for measuring progress, and technological
issues are briefly outlined before going into the details of the implementation. In addition,
studies of ablation are conducted to guarantee that the proposed technique is effective.
The experimental findings support the idea that our proposed method is comparable to
state-of-the-art models.

4.1. Evaluation Datasets

The proposed retinal vascular segmentation model is evaluated by using data from
three publically available databases (DRIVE, STARE, and CHASEDB1). Since FoV masks are
not provided by CHASEDB1 and STARE, we built them by ourselves to ensure uniformity
across all experiments [48].

• DRIVE: 40 fundus retinal images are included in this dataset. All images were collected
by a Canon CR5 nonmydriatic 3CCD camera with a 45-degree field of view (FOV) and
cropped from 565× 584 pixels to 448× 448 pixels. The dataset contains seven retinal
fundus images of diabetes patients. Moreover, the dataset is split into two subsets,
that is, training set (20 images) and testing set (20 images).

• CHASEDB1: Each image in this dataset of 28 pictures depicts a vascular patch and has
a resolution of 999× 960 pixels. Fourteen kids’ left and right eye retinal fundus images
are stored in the database. All images were taken from a 30 degree FOV. The first 20
photos are used as a training set, while the last 8 are utilized as a test set, as stated
in [49].

• STARE: In this dataset containing 20 retinal fundus images, half of them have patho-
logical signs. The resolution of the images is 700× 605. We used 20% of the images as
the validation and test sets.

4.2. Evaluation Metric

To evaluate our model more comprehensively, five metrics are introduced for evalua-
tion, including sensitivity (SE), specificity (SP), accuracy (ACC), and the area under the
ROC curve (AUC), which are calculated by the following equations:

SE =
|TP|

|TP + FN| (4)

SP =
|TN|

|FP + TN| (5)
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ACC =
|TP + TN|

|TP + TN + FN + FP| (6)

True positive (TP) means that the positive sample is correctly classified; false negative
(FN) means that the positive sample is wrongly classified as a negative sample; false
positive (FP) indicates that the negative samples are wrongly classified as positive samples;
true negative (TN) indicates that negative samples are correctly classified as negative
samples. In addition, the area under the curve (AUC) of the receiver operating characteristic
curve (ROC) is used to evaluate segmentation accuracy based on recall and precision.
When a method’s area under the curve (AUC) becomes closer to 1, it performs better in
segmenting blood vessels.

4.3. Implementation Details

We implemented our network in the Pytorch framework and trained models on
an NVIDIA Quadro P5000 GPU with 12 GB memory. Moreover, we utilized the binary
cross-entropy loss as the objective function. The Adam optimizer with an initialization
learning rate of 1 × 10−3 was applied in the training phase, and the weight decay was set
to 0.001. The batch size was set to 2 in the experiments. In order to prevent the gradient
from exploding or disappearing during training, we adopted the method proposed by
He et al. [50] to initialize the whole network. Moreover, the network was trained for
50 epochs.

Due to the particularity and scarcity of medical image data, some sampling and
data augmentation strategies were introduced to prevent overfitting and induce a more
generalized network. All three datasets’ images were converted into grayscale images and
resized to 512× 512. Moreover, we conducted uniform normalization on all images, and a
48× 48 sliding window with a stride of 6 was introduced to generate patches from vessel
images. Then, we conducted horizontal flipping, vertical flipping, and random rotation
in the training phase to prevent the model from overfitting and increase the diversity of
training samples. In particular, we also used random erase to induce the model to be more
sensitive to boundary information. Note that there is no patch extraction operation during
the test phase, but full-size images were used as input.

4.4. Segmentation Results

In this work, our model was experimented on three public datasets, including DRIVE,
CHASEDB1, and STARE. Results from U-Net [12], DeepVessel [15], R2U-Net [16], AttU-
Net [17], CE-Net [18], IterNet [37], SGL [39], and RV-GAN [40] are compared with the
proposed method to verify the effectiveness of our method. The outcomes are shown in
Table 1.

To quantitatively analyze the experimental results, we perform a statistical compari-
son based on several important metrics, including SE, SP, ACC, and AUC to evaluate the
proposed method and compare it with eight state-of-the-art methods on all three datasets.
In addition, we also display the number of parameters of each model in Table 2. As can
be seen from Table 1, SGL, RV-GAN, and our method achieved the highest scores on
some evaluation metrics, respectively. It shows that our method can achieve comparable
performance to state-of-the-art methods. As can be seen in Table 1, the proposed method
outperforms most models in four metrics. It achieves a SE of 83.86% in the DRIVE dataset.
Some studies [3,39] have verified that higher SE indicates the model is more sensitive
to edge information, which further demonstrates that the proposed method has a great
ability to focus on microvascular structures. Among the models, RV-GAN as a generative
adversarial framework achieves the highest SP, ACC, and AUC on DRIVE and highest
SE, and AUC on STARE. The architecture introduces two generators and two multi-scale
autoencoding discriminators for better microvessel localization and segmentation. How-
ever, due to the complexity of the architecture, it takes a longer time and more computing
resources for training to converge the model. The parameters of the network are about
14.8 M, which is about 1.7 times that of our method. Furthermore, the experiments were
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conducted on the CHASEDB1 dataset, and the comparison results of different methods
are shown in the middle of Table 1. The proposed method obtained the highest value on
the SP and ACC with 98.65%/97.80% and a comparable AUC of 98.98%, which is good
proof of the validity of the proposed method. It is worth mentioning that SGL achieves the
highest SE and AUC on CHASEDB1. The authors proposed a Study Group Learning (SGL)
framework to improve the generalization ability of the learned model and better address
the missing annotation problems in the training set. It applies the cascade method and
cross-validation-based pseudo-label generation strategies, which greatly increases model
complexity and training time. Like RV-GAN, the number of parameters of SGL is also large,
which is 1.8 times of our model. However, the performance of the proposed method is
extremely close to SGL and RV-GAN. Last, the performance comparisons on the STARE
dataset are summarized at the bottom of Table 1. The proposed method surpasses other
state-of-the-art models in terms of SP and ACC. As can be seen in Table 2, although the
number of the proposed method parameters is similar to U-Net, R2U-Net, and AttU-Net, it
can obtain much better results. In conclusion, compared with state-of-the-art methods, our
model can not always obtain the best result, but it can provide a good trade-off between
model complexity and segmentation performance.

Table 1. Comparison with state-of-the-art methods on three classical datasets: DRIVE, CHASEDB1,
and STARE.

DRIVE Dataset

Methods SE (%) SP (%) ACC (%) AUC (%)

U-Net [12] 79.15 ± 0.23 98.08 ± 0.31 96.40 ± 0.13 97.64 ± 0.08
DeepVessel [15] 78.83 ± 0.18 98.13 ± 0.23 96.09 ± 0.12 97.83 ± 0.05
R2U-Net [16] 79.23 ± 0.56 98.03 ± 0.35 96.54 ± 0.07 98.02 ± 0.08
AttU-Net [17] 78.82 ± 0.17 98.48 ± 0.35 96.49 ± 0.19 98.03 ± 0.07
CE-Net [18] 80.15 ± 0.22 98.16 ± 0.19 96.59 ± 0.16 98.11 ± 0.09
IterNet [37] 79.95 ± 0.26 98.26 ± 0.08 96.57 ± 0.17 98.13 ± 0.06
SGL [39] 83.80 ± 0.09 98.34 ± 0.08 97.05 ± 0.13 98.86 ± 0.04
RV-GAN [40] 79.27 ± 0.10 99.69 ± 0.11 97.90 ± 0.15 98.87 ± 0.05
Ours 83.86 ± 0.13 98.37 ± 0.28 97.35 ± 0.08 98.82 ± 0.05

CHASEDB1 Dataset

Method SE (%) SP (%) ACC (%) AUC (%)

U-Net [12] 76.17 ± 0.86 98.61 ± 0.69 97.16 ± 0.25 97.92 ± 0.15
DeepVessel [15] 75.84 ± 0.54 98.34 ± 0.54 97.18 ± 0.14 97.85 ± 0.13
R2U-Net [16] 81.45 ± 0.71 98.40 ± 0.71 97.21 ± 0.13 98.01 ± 0.07
AttU-Net [17] 77.21 ± 1.01 98.50 ± 0.98 97.26 ± 0.18 98.07 ± 0.06
CE-Net [18] 80.42 ± 0.39 98.39 ± 0.33 97.23 ± 0.36 98.06 ± 0.09
IterNet [37] 79.97 ± 1.55 98.47 ± 1.05 97.31 ± 0.24 98.26 ± 0.12
SGL [39] 86.90 ± 0.24 98.43 ± 0.23 97.71 ± 0.19 99.20 ± 0.08
RV-GAN [40] 81.99 ± 0.07 98.06 ± 0.13 96.97 ± 0.24 99.14 ± 0.03
Ours 83.29 ± 0.64 98.65 ± 0.37 97.80 ± 0.07 98.98 ± 0.10

STARE Dataset

Method SE (%) SP (%) ACC (%) AUC (%)

U-Net [12] 78.39 ± 1.36 98.71 ± 0.96 96.88 ± 0.48 97.93 ± 0.15
DeepVessel [15] 78.83 ± 0.94 98.14 ± 0.81 97.13 ± 0.41 98.14 ± 0.11
R2U-Net [16] 78.69 ± 0.99 98.62 ± 0.56 96.97 ± 0.33 98.09 ± 0.09
AttU-Net [17] 79.03 ± 1.06 98.56 ± 0.74 97.22 ± 0.45 98.22 ± 0.10
CE-Net [18] 79.16 ± 0.86 98.53 ± 1.11 97.15 ± 0.25 98.17 ± 0.07
IterNet [37] 80.86 ± 0.53 98.46 ± 0.68 97.23 ± 0.36 98.29 ± 0.07
RV-GAN [40] 83.26 ± 0.27 98.64 ± 0.37 97.54 ± 0.15 98.87 ± 0.06
Ours 81.35 ± 0.85 98.74 ± 0.48 97.54 ± 0.19 98.84 ± 0.05
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Table 2. Parameter comparison with state-of-the-art methods.

Model U-Net [12] R2U-Net [16] AttU-Net [17] CE-Net [18] IterNet [37] SGL [39] RV-GAN [40] Ours

Parameters (M) 7.8 8.3 7.2 14.4 8.6 15.5 14.8 8.8

The example segmentation results on three databases are also shown in Figure 2. It
can be observed that the proposed method is sensitive to the edge region of the blood
vessels with low contrast and has achieved good segmentation results. In particular, we
also display the bad segmentation examples in Figure 3. The whole training phase is
a multi-task learning process; one task is semantic segmentation, and the other is the
reconstruction task. In the experiment, we found that if the number of epochs is set too
large, the performance of segmentation will decline significantly, and the entire model is
more suited to reconstruction task as it even fails to converge. Thus, the number of epochs
is set to 50. To obtain a better view of our model, we also drew the loss curve and ROC
curve in Figure 4. As can be observed, the model converges well within 50 epochs.

Figure 2. Example segmentation results on three databases.
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Figure 3. Bad segmentation examples on three databases.

Figure 4. Loss curve and ROC curve on three datasets.

4.5. Ablation Study

In this section, the proposed VQ-VAE module and edge attention module are ana-
lyzed in detail. The VQ-VAE module regularizes the encoder parameters in the network
while reconstructing the input images. It makes the encoder more robust and can generate
features that are more representative. Furthermore, the high and low-level latent features
are fused with the intermediate features of the backbone network to enhance the feature
representation. Since the low-level features contain rich edge information, we utilize it
to generate edge maps and feed it into the edge attention module to explicitly induce the
model to learn features that focus on edges. The ablation study validates the proposed
methods, and the results are presented in Table 3. The baseline is the backbone network,
which removes the VQ-VAE module and the edge attention module. As shown in Table 3,
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compared with ‘Baseline’, ‘Baseline + VVM’ improves the performance from 79.35%/96.16%
to 82.31%/97.24% in terms of SE/ACC. Compared with the ‘Baseline’, the proposed EAM
module (referred to as ‘Baseline + EAM’) increases the SE/ACC by 1.79%/0.71% (from
79.35%/96.16% to 81.14%/96.87%). Finally, we add the VQ-VAE module and edge attention
module to the Baseline. The results show that the proposed methods obtain the best results
on the three metrics. Many statistical comparisons and component analyses have visual rep-
resentations in Figure 5. The effectiveness of the proposed modules in segmenting vessels
of varying scales, including some miniature vessels that the baseline network cannot handle
efficiently, is illustrated with an example from retinal vascular segmentation. In conclusion,
the proposed method has the potential to significantly enhance the model’s efficiency.

Table 3. Comparison of ablation studies on DRIVE dataset. VVM stands for VQ-VAE module, EAM
denotes the eage attention module.

Methods SE (%) SP (%) ACC (%) AUC (%)

Baseline 79.35 ± 0.09 97.95 ± 0.11 96.16 ± 0.04 97.84 ± 0.03
Baseline + VVM 82.31 ± 0.18 98.43 ± 0.25 97.24 ± 0.09 98.55 ± 0.06
Baseline + EAM 81.14 ± 0.15 98.11 ± 0.15 96.87 ± 0.09 98.19 ± 0.04
Baseline + VVM + EAM 83.86 ± 0.13 98.37 ± 0.28 97.35 ± 0.08 98.82 ± 0.05

Figure 5. Some typical visual results for different methods in our ablation study on the DRIVE
dataset. (a) Original image, (b) detailed view, (c) Baseline, (d) Baseline + VVM, (e) Baseline + EAM,
(f) Baseline + VVM + EAM, (g) ground truth.

4.6. Effectiveness of the VQ-VAE Module

The VQ-VAE module reconstructs the input images while regularizing the shared
parameters of the encoder and generating the high-level features and the low-level features.
The reconstruction process induces the model to generate more representative features and
enhances the robustness of the model. The two level features and the features generated by
the encoder are fused to further improve the feature representation ability of the model.
In this section, we mainly conduct experiments to verify that the VQ-VAE module can
reduce the dependence of the model on annotations. First, we randomly select half of the
training data in the DRIVE dataset as the training set, and the test set remains unchanged.
Then, the ‘Baseline’ and ‘Baseline + VVM’ are trained on the modified training set and
validated on the standard test set, respectively. The results are shown in Table 4. As can
be observed, after reducing the training data, all metrics of the baseline network declined
significantly. However, the baseline network with the VQ-VAE module still achieves com-
petitive results without significant degradation. It demonstrates that the proposed method
can reduce the dependence of the model on the training data and improve its robustness.
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Table 4. Statistical comparison of the effectiveness of the VQ-VAE module.

Data amount = Full

Methods SE (%) SP (%) ACC (%) AUC (%)
Baseline 79.35 ± 0.09 97.95 ± 0.11 96.16 ± 0.04 97.84 ± 0.03

Data amount = 1/2

Methods SE (%) SP (%) ACC (%) AUC (%)
Baseline 74.42 ± 0.39 95.74 ± 0.31 93.78 ± 0.19 95.92 ± 0.08
Baseline + VVM 78.62 ± 0.18 96.75 ± 0.23 95.28 ± 0.12 97.11 ± 0.07

4.7. Limitations

There is a serious class imbalance problem in medical images, especially when the TP
class (vessels) is significantly smaller than the TN class (the rest of the image) in the retinal
images. The targets we focus on only account for a small part of the whole image, resulting
in large regions dominating small regions. Thus, we should pay more attention to the small
targets (thin vessel). In addition, the whole framework performs two sub-tasks; one is
reconstruction, and the other is semantic segmentation. In the experiment, we found that
when the number of epochs increases to a high level, the image segmentation performance
will decline rapidly, and the model will pay more attention to the reconstruction sub-task.
For this, we display some failure cases in Figure 3. In future work, we should solve the
class imbalance problem and make the model training process more stable.

5. Conclusions

In this paper, we present a novel multi-task learning-based network to comprehen-
sively address three challenges that remain in retinal vessel segmentation. The whole
network consists of four parts: the image encoding network, the segmentation decoder,
the VQ-VAE module, and the edge attention module. The edge attention module is ca-
pable of effectively inducing the encoder to capture the edge information of the target
and explicitly concern the edge area of the target by deep supervision, which is important
for retinal blood vessel segmentation. The VQ-VAE module conducts the input image
reconstruction task to regularize the parameters of the encoding network, generating and
fusing multi-level spatial and semantic features to incorporate local and global information.
It not only improves the model’s performance but also helps consistently achieve good
training accuracy for any random initialization. Furthermore, the process of regularization
can improve the generalization ability and reduce the dependence on sufficient accurate
annotated training data. By using three publicly available retinal fundus datasets (DRIVE,
CHASEDB1 and START) for in-depth comparative analysis, it is shown that the proposed
method can be compared with the state-of-the-art method. We believe the proposed ap-
proaches are readily transferable to other medical image segmentation scenarios where few
training data and complex anatomical semantics pose significant challenges.
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