
Citation: Park, Y.; Shin, Y. Gradual

OCR: An Effective OCR Approach

Based on Gradual Detection of Texts.

Mathematics 2023, 11, 4585. https://

doi.org/10.3390/math11224585

Academic Editors: Xiangtao Zheng,

Jinchang Ren and Ling Wang

Received: 4 October 2023

Revised: 30 October 2023

Accepted: 7 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Gradual OCR: An Effective OCR Approach Based on Gradual
Detection of Texts
Youngki Park 1 and Youhyun Shin 2,*

1 Department of Computer Education, Chuncheon National University of Education,
Chuncheon 24328, Republic of Korea; ypark@cnue.ac.kr

2 Department of Computer Science and Engineering, Incheon National University,
Incheon 22012, Republic of Korea

* Correspondence: yhshin@inu.ac.kr

Abstract: In this paper, we present a novel approach to optical character recognition that incorporates
various supplementary techniques, including the gradual detection of texts and gradual filtering
of inaccurately recognized texts. To minimize false negatives, we attempt to detect all text by in-
crementally lowering the relevant thresholds. To mitigate false positives, we implement a novel
filtering method that dynamically adjusts based on the confidence levels of recognized texts and their
corresponding detection thresholds. Additionally, we use straightforward yet effective strategies to
enhance the optical character recognition accuracy and speed, such as upscaling, link refinement,
perspective transformation, the merging of cropped images, and simple autoregression. Given our
focus on Korean chart data, we compile a mix of real-world and artificial Korean chart datasets
for experimentation. Our experimental results show that our approach outperforms Tesseract by
approximately 7 to 15 times and EasyOCR by 3 to 5 times in accuracy, as measured using a Jaccard
similarity-based error rate on our datasets.

Keywords: optical character recognition; gradual OCR; gradual text detection; gradual low-quality
filtering

MSC: 68T01

1. Introduction

Tesseract [1] and EasyOCR [2] are among the most prominent open-source OCR appli-
cations. Their multilingual capabilities have played a significant role in their widespread
adoption for OCR tasks in languages other than English, in both academia and industry.
For instance, Cho et al. [3] proposed a method to enhance the recognition of smaller Korean
texts using Tesseract OCR. Kim et al. [4] utilized both Tesseract and EasyOCR for OCR on
documents and electronic displays. Similarly, Hyeong et al. [5] employed EasyOCR for
OCR on Material Safety Data Sheets (MSDS), while Moon et al. [6] introduced an edutech
system that employed EasyOCR for children’s handwritten texts. Although many other
OCR models exist, to the best of our knowledge, no other open-source OCR approach
surpasses these in terms of accuracy, especially in supporting the Korean language.

However, these existing approaches often face difficulties when handling texts that are
noisy, small, or presented in a diverse range of fonts and uneven distributions. Korean chart
data, in particular, present a challenge due to their numerous text regions, varied font styles,
backgrounds, noise levels, and sizes. In this paper, we introduce a new OCR approach
to address this challenge. Our main intuition is that text recognition can be enhanced by
considering the manner in which its corresponding text regions are detected. Our approach
emphasizes two primary strategies: first, the “gradual detection” of texts using different
thresholds; second, the “gradual filtering” of inaccurately recognized texts based on their
detection thresholds and confidence scores. We also integrate other techniques to further

Mathematics 2023, 11, 4585. https://doi.org/10.3390/math11224585 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11224585
https://doi.org/10.3390/math11224585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7006-1402
https://doi.org/10.3390/math11224585
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11224585?type=check_update&version=1

Mathematics 2023, 11, 4585 2 of 20

enhance the OCR performance. Our experiments, conducted on both unique real-world
and artificially created data, show the potential of our method, which outperforms leading
open-source OCR solutions by approximately four times using the Jaccard similarity-based
error rate measure.

Our work stands apart from traditional chart-centric OCR methods. While many
studies target OCR for chart data [7–9] or focus on chart comprehension, including question
answering [10] and summarization [11], our primary aim is general OCR: extracting text
from images. Though we showcase its efficiency with Korean chart data, our method is
adaptable to a diverse range of datasets. The main contributions of our research include
the following.

• We introduce novel OCR datasets featuring Korean chart data. These datasets comprise
(a) real-world noisy chart data sourced from the web, (b) bar charts constructed with
various small fonts, and (c) bar charts featuring diverse small, rotated texts (Section 3).

• We unveil a novel and effective OCR approach built on a range of techniques. Specifi-
cally, we introduce the “gradual text detection” algorithm to reduce false negatives
and a distinct “gradual filtering” process to minimize false positives (Section 4).

• We carry out detailed experiments to evaluate the performance of our approach.
Through the systematic application of the techniques that we propose, we gauge
the improvements in OCR performance. Our final model considerably outshines the
best open-source multilingual OCR applications on our datasets, as evidenced by the
Jaccard similarity-based error rate measure (Section 5).

Our research question is as follows:

• Can our approach significantly enhance the final text recognition results by gradually
altering the behaviors of the text detection and recognition models?

2. Related Work

At the time of writing, Tesseract [1] and EasyOCR [2] are two of the most popular
publicly available OCR software programs. Both support multiple languages, making
them suitable for Korean, which is the focus of our paper. It is widely acknowledged
that EasyOCR outperforms Tesseract in recognizing Korean texts in various formats, such
as documents, electronic displays, and handwritten notes [4,6]. EasyOCR employs the
CRAFT [12] text detection algorithm and the CRNN [13] text recognition algorithm. To the
best of our knowledge, there are no open-source, widely used approaches based on Vision
Transformers [13], such as TrOCR [14].

There are many approaches that attempt OCR for chart data. ChartOCR [7] is one
of the most renowned methods for this purpose. As in our experiments, ChartOCR can
recognize bar charts, pie charts, and line charts. Chart-RCNN [8] is designed to target line
charts, especially from camera images that may not be clean. Chart-Text [9] focuses on pie
and bar charts. While each approach utilizes different algorithms for the recognition of
various chart types, none of them take into account the recognition of the Korean language.

Rather than merely extracting information from charts, there are alternative ap-
proaches that abstractly summarize chart data. For instance, OpenCQA [10] aims to answer
open-ended questions based on chart question answering. Similarly, Chart-to-Text [11]
offers datasets for chart summarization tasks.

There are various approaches to OCR for the Korean language. Cho et al. [3] addressed
the challenge of recognizing small Korean texts by employing the SRCNN [15] in tandem
with Tesseract OCR. Kim et al. [4] focused on recognizing text in documents and electronic
displays using both Tesseract OCR and EasyOCR. Hyeong et al. [5] used EasyOCR to
recognize text from Material Safety Data Sheets (MSDS). Kim et al. [16] aimed to identify text
on the side covers of books placed on bookshelves by employing the Google Cloud Vision
API. Lastly, Moon et al. [6] developed a solution to recognize handwritten letters penned by
children for educational purposes. A common limitation among these approaches is their
heavy reliance on EasyOCR and Tesseract OCR. Although one method employs the Google

Mathematics 2023, 11, 4585 3 of 20

Vision API, such an API-based approach is not aligned with our research interests. Our
primary objective is to introduce a publicly available Korean model that does not depend
on APIs.

There are numerous super-resolution approaches that have been proposed. Among these,
we employ one of the most effective super-resolution methods to enhance our optical character
recognition task. To the best of our knowledge, Real-ESRGAN [17] is among the most efficient
and well-regarded techniques. It builds upon the work of ESRGAN [18]. Notably, it is reported
to outperform other methods, such as DAN [19], CDC [20], RealSR [21], and BSRGAN [22].

3. Dataset Construction

In this section, we describe the construction of three distinct datasets for our sub-
sequent experiments. Given our focus on Korean chart optical character recognition, we
collected and generated a diverse set of chart data. As detailed in Table 1, the first dataset
is composed of chart data sourced from the world wide web. In contrast, the second and
third datasets are composed of automatically generated chart data. A detailed description
of these datasets is provided below.

Table 1. Summary of the datasets constructed for our experiments. Dataset 1 comprises charts
collected from the web, while Dataset 2 and Dataset 3 both consist of artificially generated charts.

Dataset # of Images Description

Dataset 1 91 Collected Charts (Bar/Pie/Line/Scatterplot) from the Web
Dataset 2 500 Artificially Generated Charts (Bar Charts)
Dataset 3 500 Artificially Generated Charts (Bar Charts with Rotated Labels)

The first dataset was sourced from documents provided by governments or their affili-
ated departments and agencies. These documents are typically in the hwp or hwpx format,
which are commonly used in South Korea. From these, we randomly chose 100 charts.
After removing nearly identical charts, we were left with 91 distinct charts. The dataset
features a variety of chart types, including pie charts, line charts, bar charts, and labeled
scatterplots. While some of the charts are of high quality, a significant number are of very
low resolution. A few charts are so noisy that they are nearly indecipherable, even to
the human eye. This dataset is intended for the evaluation of the effectiveness of OCR
techniques using real-world data.

The second and third datasets were artificially generated using Python’s Matplotlib.
While these datasets are cleaner than the first, they present unique challenges. Specifi-
cally, the font sizes used are minuscule, and the datasets incorporate a wide variety of
fonts—48 different types of Nanum fonts (https://hangeul.naver.com/font, accessed on
25 September 2023), to be precise. Nanum fonts are widely used free fonts in South Korea.
Another challenge stems from the random representation of words. Without any discernible
pattern, word recognition becomes notably more difficult.

Further details of the datasets are as follows.

• They comprise bar charts, with each chart showcasing 5 to 10 vertical bars.
• Each vertical bar is assigned a random value ranging from 0 to 100, rounded to two

decimal places.
• The Okt package in KoNLPy [23] was employed to extract the top 500 most frequent

nouns that formed all the labels in the charts.
• Every vertical bar has a corresponding label composed of 1 to 4 Korean nouns.
• The x and y labels are randomly assigned between 3 and 6 Korean nouns.
• Chart titles are formed from a random assortment of 5 to 10 Korean nouns.
• The y-axis labels are vertically placed, while the x-axis labels are horizontally posi-

tioned in Dataset 2 and randomly rotated in Dataset 3.

https://hangeul.naver.com/font

Mathematics 2023, 11, 4585 4 of 20

For clarity, examples from Dataset 2 and Dataset 3 are illustrated in Figures 1 and 2,
respectively. It is important to note that the composition of words lacks semantic meaning.
Therefore, OCR techniques should identify each Korean letter independently, without re-
lying on post-processing capabilities such as using a language model. In Section 5, we
demonstrate how our methods, introduced in Section 4, effectively recognize these datasets.

Note that we chose chart data as our domain because of the challenges associated with
its accurate recognition. Furthermore, we specifically focused on Korean data because of
the complexity and diversity of its characters, which are often difficult to identify correctly.
We believe that if our approach is effective with such intricate datasets, it can likely be
generalized to many other domains. Although we did not gather a large dataset, we
observed consistent experimental results across different datasets. We discuss this in detail
in the experimental section.

Figure 1. Three bar chart examples from Dataset 2 that we generated. Labels on the bar charts are
randomly assigned using numbers and Korean characters. The sizes of the charts, font types, and font
sizes vary randomly.

Mathematics 2023, 11, 4585 5 of 20

Figure 2. Three bar chart examples from Dataset 3 that we generated. Unlike Dataset 2, in this dataset,
all the x-axis labels are rotated randomly.

4. Gradual OCR
4.1. Overview of Our Approach

Figure 3 illustrates the workflow of our proposed method. As depicted, our system
encompasses five primary components: (1) image preprocessor, (2) text detection module,
(3) text region processor, (4) TrOCR, and (5) filtering Module.

• Image Preprocessor: This component, while optional, upscales the input image before
the text detection or recognition steps. We anticipate an enhancement in recognizing
diminutive text, as found in Datasets 2 and 3, given that the existing literature indicates
a performance boost from super-resolution when dealing with small text [3].

• Text Detection Module: Before proceeding to text recognition, we employ a text detec-
tion module—a strategy commonly adopted in optical character recognition. Similar
to EasyOCR [2], we utilize the CRAFT algorithm [12] for text detection. Differing from
EasyOCR, we integrate a link refiner to optimize the results. Additionally, we intro-
duce our “gradual text detection” method, which iteratively performs text detection
and link refinement using varied thresholds.

Mathematics 2023, 11, 4585 6 of 20

• Text Region Processor: Following text detection, the conventional next step is text
recognition. However, we incorporate supplementary techniques. Considering that
text recognition modules are typically trained on unrotated images, our system trans-
forms detected text regions into unrotated ones to improve the recognition accuracy.
As an optional speed-enhancing step, we have designed a “batch decoding” method
that merges all text regions into a single region.

• TrOCR (Text Recognition Module): For each identified region, the TrOCR [24] model,
based on the Vision Transformer [14], is utilized for text recognition. This model is com-
posed of both the TrOCR encoder and decoder. We discovered that a straightforward
“autoregression” method yields optimal results in text recognition.

• Filtering Module: The output might contain false positives for various reasons. We in-
troduce an innovative method to pinpoint these inaccuracies by assessing the decoding
results’ quality. A basic filtering technique is employed to remove these errors. Con-
currently, we introduce the “gradual low-quality filtering” strategy, which synergizes
effectively with our “gradual text detection” method.

4.2. Image Preprocessor

In the image preprocessing phase, we initially apply resizing—either 2 times (2×) or
4 times (4×). This resizing is executed using Python’s Pillow library, where the width is
increased by 2× or 4×, and the height is adjusted correspondingly. Subsequent to this, we
introduce two methods aimed at further enhancing the detection and recognition outcomes:
antialiasing and Real-ESRGAN [17]. For antialiasing, we utilize the “Image.ANTIALIAS”
parameter from the Pillow library. Optionally, users can select Real-ESRGAN, an advanced
version of ESRGAN [18], which has demonstrated superior performance compared to other
models, such as DAN [19], CDC [20], RealSR [21], and BSRGAN [22].

While prior research suggests that super-resolution can bolster the recognition re-
sults [3], we emphasize that this step is discretionary. This is because some text recognition
models have been trained on noisy images, meaning that the super-resolution process may
not necessarily enhance the final outcomes.

4.3. Text Detection Module

Text detection typically begins by identifying text regions prior to actual text recogni-
tion. We employ the CRAFT algorithm [12], primarily for its multilingual prowess, particu-
larly its demonstrated efficacy for the Korean language. This algorithm operates using three
foundational threshold values: text threshold, link threshold, and low text threshold. We
have chosen the default values T0 = (0.7, 0.4, 0.4). In contrast to EasyOCR [2], our algorithm
integrates a pre-trained link refiner from https://github.com/clovaai/CRAFT-pytorch,
accessed on 25 September 2023 to enhance the performance.

Figures 4 and 5 highlight the effects of different thresholds. The top images of Figures 4 and 5
adopt thresholds of T0. The second, third, and fourth images in these figures employ
thresholds sequentially reduced by a factor of 2:

Ti+1 =
Ti
2

(1)

This leads to

1. T0 = (0.7, 0.4, 0.4)
2. T1 = T0

2 = (0.35, 0.2, 0.2)
3. T2 = T1

2 = (0.175, 0.1, 0.1)
4. T3 = T2

2 = (0.0875, 0.05, 0.05)

https://github.com/clovaai/CRAFT-pytorch

Mathematics 2023, 11, 4585 7 of 20

Text Detection Module (CRAFT)

Image

Antialiasing
Real

ESRGAN

Merged Text Image for Batch Decoding (optional)

Recognized Texts

Image Preprocessor (optional)

Text Region Processor

Region 1 Region 2 Region 3 Region n...

Cropped
Image 1

...

Text Detection

Link Refiner

Gradual
Text

Detection

Warp Perspective

Rotation

Cropped
Image 2

Cropped
Image 3

Cropped
Image n

Text Recognition Module (TrOCR)

Filtering Module

TrOCR Encoder

TrOCR Decoder (Autoregression)

Low-Quality Filtering
Gradual

Low-Quality
Filtering

Figure 3. Overview of our gradual OCR framework, which incorporates novel methods like gradual
text detection and gradual low-quality filtering to optimize performance.

Mathematics 2023, 11, 4585 8 of 20

Figure 4. An illustration of how gradual detection techniques operate internally, varying the parame-
ter S from 0 to 3 (shown in the top four figures), and the corresponding merged results (presented in
the bottom figure).

Mathematics 2023, 11, 4585 9 of 20

Figure 5. Similar to Figure 5, this illustration presents another example of how gradual detection
techniques are applied. In the fourth chart, where S is 3, an empty rectangle is identified. We an-
ticipate that the gradual detection and gradual low-quality filtering will effectively eliminate such
irrelevant rectangles.

Mathematics 2023, 11, 4585 10 of 20

Elevated threshold values have the propensity to yield false negatives. As an illus-
tration, the top image in Figure 4 using thresholds at T0 omits the first two x-axis labels
and the bottom y-axis label. On the other hand, the fourth image in Figure 5, using thresh-
olds at T3, exhibits false positives. A non-text region is mistakenly marked, and the size
of the identified text regions is considerably larger than those pinpointed with higher
threshold values.

To address these challenges, we introduce the “gradual text detection” strategy.

• Initialize an empty list, L.
• Execute text detection and link refinement with thresholds T0 and incorporate the

resulting boxes into L.
• For a parameter S (indicating steps), repeat for S iterations:

1. In the ith iteration, apply Ti thresholds.
2. Reinitiate text detection and the link refiner using the updated thresholds.
3. For each newly identified text region r, if r has zero overlap with boxes in L,

incorporate r into L.

In this algorithm, we prioritize boxes from higher thresholds to minimize false posi-
tives. At the same time, we include boxes from lower thresholds to reduce false negatives.
For instance, the bottom figures in Figures 4 and 5 show all detected text regions with T0, T1,
T2, and T3. In our gradual text detection strategy, text regions with T0 (represented as red
boxes) are given the highest priority. The green, blue, and cyan boxes are then considered
in descending order of priority. However, a challenge with this approach is determining
the optimal parameter S. To address this limitation, we introduce the gradual low-quality
filtering technique in Section 4.6.

4.4. Text Region Processor

Each detected text region might be tilted, so we apply “perspective transformation”
using OpenCV (https://opencv.org/, accessed on 25 September 2023). First, we calculate
the width and height of the detected quadrilateral, referred to as a “box”, by measuring the
Euclidean distance between the box’s vertices. The width W is determined by the maximum
horizontal distance between the opposing vertices of the quadrilateral:

W = max(‖box0 − box1‖2, ‖box2 − box3‖2) (2)

Similarly, the height H is determined by

H = max(‖box0 − box3‖2, ‖box1 − box2‖2) (3)

Based on these dimensions, we define a new rectangle with vertices at [0, 0], [W− 1, 0],
[W− 1, H− 1], and [0, H− 1]. Using this rectangle, we calculate the transformation matrix
with the OpenCV function cv2.getPerspectiveTransform(). With this matrix, we then obtain
the corrected text region using the cv2.warpPerspective() function.

The next step involves rotating the image 90 degrees clockwise if its width is smaller
than its height. This adjustment ensures that vertically oriented text, often found in chart
data, is accounted for. We achieve this rotation using OpenCV’s cv2.transpose() and
cv2.flip() functions. Following this, we crop the images based on detected text regions.

While we now have cropped images for each text region, recognizing each cropped
image individually could be time-consuming. Thus, we offer an option to merge all the
cropped images into a single image for expedited recognition, a process that we refer to
as “batch decoding” in this paper. This consolidation means that only one recognition
process is necessary, potentially increasing the speed considerably. However, since each
cropped image varies in size, we resize smaller images to match the size of the largest
image, maintaining their width-to-height ratio. It is worth noting that this merging process
does not always ensure optimal recognition quality, as many text recognition models are
not trained on such merged images.

https://opencv.org/

Mathematics 2023, 11, 4585 11 of 20

4.5. TrOCR

The subsequent step involves recognizing texts from detected text regions. For this
task, we employ TrOCR [24], which is built upon the Vision Transformer [14], one of the
most effective text recognition methods available. TrOCR comprises a TrOCR encoder and
a TrOCR decoder. Clearly, the types of TrOCR encoder and decoder utilized play a pivotal
role in achieving a highly accurate model. There are a variety of encoder and decoder types
that can be employed, and they can be fine-tuned using different datasets.

At the time of writing, there are three publicly available TrOCR Korean models. We
refer to these models as TrOCR1, TrOCR2, and TrOCR3, respectively, and we incorporate
them in our experiments. Below are the model specifications.

• TrOCR1: team-lucid/trocr-small-korean (https://huggingface.co/team-lucid/trocr-
small-korean, accessed on 25 September 2023). This model’s TrOCR encoder is based
on DeiT, while the TrOCR decoder derives from RoBERTa. The model was trained
using six million images generated by synthtiger [25].

• TrOCR2: daekeun-ml/ko-trocr-base-nsmc-news-chatbot (https://huggingface.co/daekeun-
ml/ko-trocr-base-nsmc-news-chatbot, accessed on 25 September 2023). In this setup, the
”facebook/deit-base-distilled-patch16-384” model acts as the TrOCR encoder, while the
“klue/roberta-base” model functions as the decoder. The training data encompass a range of
sources, including a news summarization dataset.

• TrOCR3: ddobokki/ko-trocr (https://huggingface.co/ddobokki/ko-trocr, accessed on
25 September 2023). For this model, microsoft/trocr-base-stage1 is the chosen TrOCR
encoder, and snunlp/KR-BERT-char16424 is the decoder. The OCR training data were
sourced from AI-Hub (https://www.aihub.or.kr/, accessed on 25 September 2023).

We also employ a naive autoregression technique, instead of TrOCR’s default “gen-
erate” function, for inference. Although our autoregression approach is slower, it offers
superior performance compared to the generate() function. We set the maximum decoding
length to 512.

4.6. Filtering Module

In our text detection method, using low threshold values can increase the likelihood of
false positives. To address this, we introduce a novel filtering technique that leverages the
recognition confidence of each identified text segment. The confidence is computed from
the average confidence of its constituent letters.

For a specific recognized text segment, its recognition confidence, RCtext, is defined by

RCtext =
1
n

n

∑
i=1

ci (4)

Here, n denotes the number of letters in the recognized text, while ci represents the
recognition confidence of the i-th letter.

Our preliminary filtering algorithm, termed “low-quality filtering”, operates as follows:
for each recognized text, if its recognition confidence falls below a filtering threshold of 0.8,
the text is excluded.

Nevertheless, this initial approach does not consider the “detection confidence” of the
texts. Intuitively, even if two recognized texts share the same confidence, a text with lower
detection confidence is arguably less likely to be accurate compared to the other. Hence,
by integrating both the detection and recognition confidence, we introduce the gradual
low-quality filtering algorithm as follows. Firstly, we determine the filtering threshold, F,
using the text detection threshold, T. Their interrelation is described as

F(Ti) = 1−
(

1
2

)i+1
(5)

where i spans from 0 to m− 1, and m signifies the highest detection step.

https://huggingface.co/team-lucid/trocr-small-korean
https://huggingface.co/team-lucid/trocr-small-korean
https://huggingface.co/daekeun-ml/ko-trocr-base-nsmc-news-chatbot
https://huggingface.co/daekeun-ml/ko-trocr-base-nsmc-news-chatbot
https://huggingface.co/ddobokki/ko-trocr
https://www.aihub.or.kr/

Mathematics 2023, 11, 4585 12 of 20

For any detected text with recognition confidence, RCtext, and a corresponding detec-
tion threshold Ti,

If RCtext < F(Ti), the recognized text is omitted. (6)

This improved algorithm ensures the balanced consideration of both the detection
and recognition confidence. For illustration, consider the examples in Figures 4 and 5.
In the first subfigure of Figure 4, a text segment detected at threshold T0 has recognition
confidence of 0.77. It is retained because its confidence surpasses the filtering criterion for
F(T0) = 0.5. On the other hand, in the fourth subfigure of Figure 5, the text identified at
threshold T3 with confidence of 0.65 is excluded since it fails to meet the threshold criterion
of F(T3) = 0.9375.

5. Experiments
5.1. Experimental Setup

In our experiments, we utilized the three datasets constructed in Section 3. For each
dataset, we compared the performance of our approaches with that of existing methods.

Recognition performance is commonly measured using either the Character Error Rate
(CER) or Word Error Rate (WER). However, we argue that these measures are not suitable
for a fair evaluation of our approach, especially when dealing with Korean data. In the
Korean language, a single noun can consist of multiple sub-nouns, leading to multiple
correct answers when calculating the WER. Additionally, we believe that the CER might
not be the most appropriate metric since it can penalize misrecognized texts excessively.
For instance, consider a reference text A = “I am a boy”. If the recognized text is B = “ ” (an
empty string) and another recognized text is C = “I am a boy and and and and”, the CER
between A and B is 1, while the CER between A and C is 1.4545. This implies that the
empty string B is a better-recognized result than string C, even though C closely matches
the reference string but fails to terminate correctly. Such discrepancies are even more
pronounced when working with Korean recognition in noisy and small texts. To encourage
our algorithms to recognize texts without the risk of misrecognition, we propose a new
evaluation metric.

We introduce the Jaccard error rate (JER) based on the Jaccard similarity for bags [26]. It
is defined as follows: given two multisets A (the reference) and B (the candidate) consisting
of letters with all blank spaces ignored, the JER measures the dissimilarity between A and
B. It is given by

JER(A, B) = 1− 2|A ∩ B|
|A|+ |B|

Using this measure, the JER between A and B is 1, whereas the JER between A and C
is approximately 0.4815, making the latter a better recognition result than a blank.

The JER can be computed using either macro-averaging or micro-averaging meth-
ods. “Macro JER” is defined as the arithmetic mean of individual JER values. In contrast,
“Micro JER” is calculated based on (1) the total multiset of reference characters and (2) the
total multiset of candidate characters.

In addition to JER, we also track the elapsed time, reported in seconds, with the total
elapsed time provided for the entire dataset. Time measurements are conducted using an
11th Gen Intel® Core™ i7-11800H @ 2.30 GHz CPU, 16 GB RAM, and an NVIDIA GeForce
RTX 3080 Laptop GPU, all running on Ubuntu 20.04.6 LTS via WSL2.

We use three popular open-source OCR programs that support the Korean language
as comparators: Tesseract [1], EasyOCR [2], and three variations of the TrOCR models
detailed in Section 4.5. We introduce nine distinct versions of our approach, each incre-
mentally applying our techniques. Detailed experimental results are discussed in the
following subsections.

Mathematics 2023, 11, 4585 13 of 20

5.2. Experimental Results

We summarize the experimental results in Table 2. For each type of experiment,
the best-performing numbers are highlighted in bold and underlined. A detailed discussion
of these results is provided below.

First, the results of existing approaches are reviewed.

• Tesseract v5.3.1 Windows: While Tesseract is a recognized OCR solution for the Korean
language, it does not deliver satisfactory results on our datasets. Specifically, for our
first dataset, which features real-world noise, the Macro JER exceeds 0.5. Its perfor-
mance is somewhat better on our second dataset, which uses a variety of small fonts.
These results indicate Tesseract’s challenges with noisy datasets. Since our dataset
is exclusively in Korean, the Korean-only recognition setting (“ko”) outperforms the
combined Korean and English setting (“ko + en”).

• EasyOCR 1.7.0: EasyOCR is among the most popular open-source OCR packages avail-
able. Consistent with its reputation, it demonstrated commendable performance across
all our datasets. In our tests, it consistently surpassed Tesseract, echoing previous
studies that found EasyOCR superior to Tesseract, especially in recognizing Korean
text [4,6]. This was observed when the settings were tailored for either exclusively
Korean or both Korean and English. Nevertheless, much like Tesseract, EasyOCR
encountered challenges with real-world noisy data (Dataset 1) and with datasets
containing rotated text (Dataset 3).

• TrOCR Models: We employed three TrOCR models, as introduced in Section 4.5
(TrOCR1, TrOCR2, and TrOCR3). Although TrOCR1 outperforms the other two mod-
els, its Macro/Micro JER exceeds even 0.9, indicating that most recognition results
are incorrect. These results suggest that using TrOCR by itself, without additional
techniques, is challenging when applied to both real-world and artificial datasets.

Table 2. Summary of experimental results across various approaches and techniques.

Dataset 1 Dataset 2 Dataset 3

(#) Model Name Macro
JER

Micro
JER Time (s) Macro

JER
Micro
JER Time (s) Macro

JER
Micro
JER Time (s)

Existing Approaches

Tesseract v5.3.1 Windows

(1) en 0.7662 0.7448 15.3270 0.5419 0.5373 135.0326 0.5349 0.5249 134.9901
(2) ko 0.5227 0.4621 13.7473 0.2480 0.2304 126.7941 0.3577 0.3398 127.7314
(3) en + ko 0.5609 0.5074 23.3183 0.2748 0.2609 169.1845 0.3910 0.3755 170.3775

EasyOCR 1.7.0

(4) en 0.5096 0.5189 15.2087 0.4924 0.4931 176.6375 0.4631 0.4647 178.3048
(5) ko 0.1795 0.1839 15.2353 0.1039 0.1030 173.0024 0.1843 0.1823 184.9896
(6) en + ko 0.1745 0.1794 15.7230 0.1050 0.1041 176.6355 0.1873 0.1854 184.6961

TrOCR Models

(7) TrOCR1 0.9487 0.9505 8.6719 0.9559 0.9540 47.7345 0.9674 0.9659 44.4016
(8) TrOCR2 0.9979 0.9975 17.9105 0.9959 0.9961 235.6769 0.9965 0.9968 242.9406
(9) TrOCR3 0.9982 0.9976 10.9051 0.9956 0.9950 44.2932 0.9943 0.9937 41.3378

Mathematics 2023, 11, 4585 14 of 20

Table 2. Cont.

Dataset 1 Dataset 2 Dataset 3

(#) Model Name Macro
JER

Micro
JER Time (s) Macro

JER
Micro
JER Time (s) Macro

JER
Micro
JER Time (s)

Our Approaches

Text Detection(T0) + TrOCR Models

(10) TrOCR1 0.0552 0.0606 80.3815 0.1162 0.1150 401.6401 0.2237 0.2242 477.5391
(11) TrOCR2 0.6668 0.6689 306.4827 0.5302 0.5282 1430.5761 0.6053 0.6058 1400.2860
(12) TrOCR3 0.0707 0.0757 222.1472 0.1125 0.1107 1024.3570 0.2150 0.2144 995.9418

Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(L)

(13) L = 20 0.0496 0.0580 73.0700 0.0459 0.0449 379.3420 0.0820 0.0811 366.7101
(14) L = 512 0.0536 0.0794 74.6489 0.0459 0.0449 366.9069 0.0820 0.0811 362.8143

Antialiasing(M) + Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512)

(15) M = 2 0.0489 0.0530 81.8446 0.0459 0.0449 543.4094 0.0839 0.0831 516.9085
(16) M = 4 0.0523 0.0561 112.1780 0.0466 0.0456 1204.3357 0.0847 0.0839 1205.7066

Real ESRGAN(M) + Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512)

(17) M = 2 0.0597 0.0688 161.6895 0.0531 0.0519 2306.2874 0.0928 0.0915 4119.9295
(18) M = 4 0.0672 0.0734 348.6670 0.0522 0.0508 6734.3283 0.0895 0.0884 12333.8697

Text Detection(T) + Link Refiner + Warp + Rotation + TrOCR1(512)

(19) T = T1 0.1027 0.0976 73.3372 0.0459 0.0449 380.7345 0.0604 0.0599 392.1491
(20) T = T2 0.2469 0.2420 62.7877 0.0612 0.0606 378.5012 0.0721 0.0718 393.4250
(21) T = T3 0.2910 0.2885 61.2715 0.0928 0.0933 380.1300 0.1102 0.1118 399.6759

Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512)

(22) S = 1 0.0494 0.0743 85.8151 0.0372 0.0366 454.0669 0.0705 0.0701 474.0587
(23) S = 2 0.0498 0.0749 99.8336 0.0401 0.0399 519.2830 0.0734 0.0736 525.2052
(24) S = 3 0.0600 0.0882 115.3246 0.0453 0.0467 599.2412 0.0836 0.0870 620.1675

Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregression + Batch Decoding

(25) AR Only 0.0396 0.0475 122.7754 0.0360 0.0352 562.3832 0.0728 0.0721 595.6792
(26) AR+BD 0.2294 0.2910 77.6673 0.0745 0.0753 394.0620 0.1148 0.1153 394.5043

Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregression + Low-Quality Filter

(27) S = 1 0.0432 0.0488 141.3093 0.0288 0.0282 697.1296 0.0575 0.0565 687.0164
(28) S = 2 0.0424 0.0481 156.3434 0.0283 0.0277 780.0101 0.0553 0.0543 795.0077
(29) S = 3 0.0424 0.0481 170.1998 0.0279 0.0275 856.4727 0.0544 0.0535 896.8290

Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregression + Gradual Low-Quality Filter(S)

(30) S = 0 0.0396 0.0474 119.2158 0.0354 0.0346 560.9463 0.0690 0.0680 520.0968
(31) S = 1 0.0352 0.0420 132.7426 0.0244 0.0239 659.6777 0.0538 0.0531 640.4872
(32) S = 2 0.0346 0.0414 144.3790 0.0235 0.0230 777.9616 0.0512 0.0505 744.6360
(33) S = 3 0.0344 0.0412 158.9390 0.0231 0.0226 828.3957 0.0504 0.0497 835.1660

Second, we summarize the experimental results of our various approaches as follows.

• Text Detection(T0) + TrOCR Models: Recall that TrOCR in isolation exhibits subop-
timal performance on our datasets. However, when supplemented with the text
detection techniques outlined in Section 4.3, even without further strategies such as
link refinement or perspective transformation, its performance substantially improves.
Specifically, while TrOCR1 alone demonstrates a Macro JER of 0.9487 in Dataset 1, its
performance markedly improves to a Macro JER of 0.0552 when using the text detec-
tion technique, albeit with a tenfold increase in elapsed time. Through our analyses,
TrOCR1 is found to be most effective on Dataset 1, while TrOCR3 excels on Datasets 2
and 3. Given that TrOCR3 demands significantly more elapsed time than TrOCR1

Mathematics 2023, 11, 4585 15 of 20

without outperforming it in subsequent experiments, we exclusively report results
from the TrOCR1 model in ensuing experiments.

• Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(L): In order to en-
hance the recognition quality, we employ the link refinement technique, as detailed in
Section 4.3, and the perspective transformation and rotation techniques, introduced
in Section 4.4. These methods prove particularly effective in Datasets 2 and 3, where
images contain various types of text fragments, making accurate text detection crucial.
Practically, the Macro JER in Dataset 3 witnessed a substantial decrease from 0.2237
to 0.0820. We also explored the impact of the text generation length limits, adjusting
them from 20 (the original setting) to 512. A longer length limit resulted in a higher
JER in Dataset 1, particularly increasing the Micro JER, suggesting that the recognized
text for some entries did not terminate appropriately, thereby generating excessively
long and inaccurate sequences. This issue can be mitigated using our gradual text
detection and gradual low-quality filtering techniques, the results of which are demon-
strated in subsequent experiments. Therefore, in the following experiments, we utilize
a maximum length of 512.

• Antialiasing(M) + Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512):
We additionally employ the image resizing and antialiasing techniques described
in Section 4.2. Here, “M” denotes the multiplication factor for image resizing (e.g.,
M = 2 implies 2× width and 2× height, while M = 4 implies 4× width and 4× height).
Initially, we resize using factor M and subsequently refine the resized image using the
antialiasing technique. Experimental results indicate that when M = 2, the Macro JER
in Dataset 1 is enhanced from 0.0536 to 0.0489, and the Micro JER is also improved,
moving from 0.0794 to 0.0530. However, in artificial datasets with minimal noisy
text (Dataset 2 and Dataset 3), the JER does not exhibit an increase. Despite slight
improvements, we opt not to utilize this technique in subsequent experiments because
the elapsed time significantly increases when the image size is already substantial (as
in Dataset 2 and 3).

• Real ESRGAN(M) + Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512):
We additionally apply image resizing and the Real ESRGAN technique introduced in
Section 4.2. As previously described, “M” denotes the multiplication factor for image
resizing. Surprisingly, Real ESRGAN does not outperform the antialiasing technique. This
underperformance may stem from the fact that the TrOCR models were not trained on
data refined by Real ESRGAN.

• Text Detection(T) + Link Refiner + Warp + Rotation + TrOCR1(512): In these experi-
ments, we varied the text detection threshold T from the original T0 to T1, T2, and T3,
respectively. The results are somewhat interesting: in Dataset 1, when using T1, both
the Macro and Micro JER significantly deteriorate compared to using T0. Conversely,
in Dataset 3, they improve. These outcomes suggest that the optimal parameters
can vary depending on the dataset or images, inspiring our concept of gradual text
detection and gradual low-quality filtering.

• Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512): We use the
gradual detection technique from Section 4.3 instead of a fixed threshold. The best JER
is achieved when S = 1, which is better than when S = 0, 2, or 3. Since increasing S
does not consistently improve the recognition, selecting the correct S value remains
a challenge.

• Text Detection(T0) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregression
+ Batch Decoding: In these experiments, we additionally applied autoregression tech-
niques and batch decoding techniques, as introduced in Sections 4.4 and 4.5. The nota-
tion “AR Only” in Table 2 indicates that only the autoregression technique was used,
without batch decoding, while “AR + BD” signifies the employment of both autoregres-
sion and batch decoding. The experimental results reveal that utilizing autoregression
substantially improves the recognition performance. Specifically, without the autore-
gression technique, the Micro JER is 0.794 in Dataset 1; with the technique, it markedly

Mathematics 2023, 11, 4585 16 of 20

decreases to 0.0475. Unfortunately, the batch decoding technique did not demon-
strate satisfactory performance. Although it significantly reduced the elapsed time, its
recognition performance notably degraded, especially in Dataset 1. In Dataset 1, texts
typically had varying background colors and font sizes, factors that likely contributed
to the diminished recognition performance.

• Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregres-
sion + Low-Quality Filter: Here, we additionally apply both the gradual detection
and low-quality filtering techniques. As mentioned in Section 4.6, the low-quality
filtering technique employs a threshold of 0.8. Experimental results reveal that optimal
recognition performance is achieved when S = 2 or S = 3. These findings contrast
with those obtained using only the gradual detection technique, where S = 1 deliv-
ers the best performance. This underscores the significance of filtering incorrectly
recognized results when employing our gradual detection technique.

• Gradual Detection(S) + Link Refiner + Warp + Rotation + TrOCR1(512) + Autoregres-
sion + Gradual Low-Quality Filter(S): This marks our final experiment utilizing both
the gradual detection and gradual low-quality filtering techniques. As the parameter
“S” is varied from 0 to 3, we observe a consistent increase in recognition performance,
alleviating concerns over the specific choice of the S parameter. The final results are
somewhat surprising: in terms of Micro JER, when S = 3, all datasets yield Micro JER
values below 0.05. Particularly in Dataset 2, the Micro JER is significantly lower at
0.0226. Considering that the JER between “I am a boy.” and “I am a boy” is 0.0666,
it is evident that our recognizer accurately identifies the majority of texts within our
complex datasets.

Table 3 illustrates two example recognition results from Dataset 2. In this table,
the model number corresponds to the same model number specified in Table 2. To provide
concise representations, we report only false negatives (FN) and false positives (FP) for
each model, instead of showcasing the full recognized results. For existing approaches,
we selected model #2 (Tesseract), #5 (EasyOCR), and #7 (TrOCR). For our approach, we
opted for models #10, #14, #19, #20, #21, and #33. In the first image (sample image 97
from Dataset 2), existing approaches produced a substantial number of false negatives and
false positives (the quantities of FN + FP for each model are 78, 14, and 101, respectively).
Similarly, for the second image (sample image 134 from Dataset 2), they produced 121, 12,
and 88 FN + FP, respectively. In stark contrast, our final model (Model #33) yielded an
FN + FP count of only 5 for the first image and 2 for the second. Out of the seven FN + FP in
our model, four were misrecognitions of 0 as O. A noteworthy strength of our final model
is its consistently robust performance across various images. For instance, while Model #20
performs well on the first image, evidenced by an FN + FP of merely 4, its performance
dwindles on the second image, where FN + FP increases to 12. Conversely, while Model
#14 exhibits strong performance on the second image (with an FN + FP of only 2), it falters
on the first image, where the FN + FP ascends to 8.

We previously argued that the Jaccard error rate (JER) offers a more equitable evalu-
ation measure for our approach. Therefore, we consistently use the JER throughout this
paper. However, for clarity, we also provide a brief comparison of our method against other
techniques using both the Character Error Rate (CER) and the Word Error Rate (WER).
Table 4 presents a concise comparison of Tesseract, EasyOCR, and our final model, Gradual
OCR. The results indicate a consistent trend across all evaluation measures: our approach
surpasses the other methods in terms of macro-averaged JER, CER, and WER.

Mathematics 2023, 11, 4585 17 of 20

Table 3. Recognition results for two sample images from Dataset 2. Only false negatives and false
positives are reported for concise presentation.

Model # of FN + FP FN (False Negatives) FP (False Positives)

Sample Image 97 of Dataset 2

Existing Approaches

Model #2 78

.0000001111122222334444
4556667789999결고과권데뒤란
람만문반부사사상새세약월은

잡제죽진짜큼태테표형화회

서저칸포

Model #5 14 0계권란부새약테형 #관네데작

Model #7 101

.0000000001112222223334
4444555666778999999

가결계고과권나날데도뒤란람

만문반발버부사사상새세

아약용월은이작잡장제제죽지

진짜큼태테표하형화회회

:::전

Our Approaches

Model #10 14 .006고권반부새월은테형 2

Model #14 8 006계반월테 례

Model #19 6 0계고 ’-례

Model #20 4 0 ’-○

Model #21 12 006사잡회 ’.†○가임

Model #33 5 0계반 ○례

Sample Image 134 of Dataset 2

Existing Approaches

Model #2 121

.22333344444455555666777
9999

결경과관길동동뒤듯뜻련로물

살상서스안알역우운위점정집

(())))000001«=======[[|||×ㅎ
ㅠ고교끄내내너더딱때때때띠
메몰버브비시써아아애에여울

으으이임학호회

Model #5 12 ...0서어위집 „,꽃

Model #7 88

.00000000012223333344444
4555556667779999

결경과관길너동동뒤듯뜻련로

물바살상서스안알어역우운위

이이점정지집

””,:.나나넌는

Our Approaches

Model #10 7 0서알어위집 ’

Model #14 2 0알

Model #19 5 0길뒤 11

Model #20 12 0길동뒤뜻살운이 ○끄빛삼

Model #21 14 03길너동뒤뜻운이 †권녀및튀

Model #33 2 0 ○

Mathematics 2023, 11, 4585 18 of 20

Table 4. Comparison of JER (Jaccard Error Rate), CER (Character Error Rate), and WER (Word Error
Rate) across Tesseract (Model #2), EasyOCR (Model #5), and Gradual OCR (Model #33).

Dataset 1 Dataset 2 Dataset 3

Model JER CER WER JER CER WER JER CER WER

Model #2
(Tesseract) 0.5227 0.6450 0.8406 0.2480 0.3525 0.5332 0.3577 0.4855 0.6839

Model #5
(EasyOCR) 0.1795 0.2795 0.5767 0.1039 0.1631 0.3367 0.1843 0.2755 0.4936

Model #33
(Gradual
OCR)

0.0344 0.0602 0.1803 0.0231 0.0411 0.0921 0.0504 0.0872 0.1698

In conclusion, our final model demonstrates outstanding performance across various
datasets. While we introduce numerous techniques to enhance the performance, we be-
lieve that the gradual detection and gradual low-quality filtering methods are especially
significant. This is because the success of practical OCR relies largely on the quality of text
detection models. Notably, these two techniques add substantial value to text detection
algorithms when combined with text recognition models. We argue that our proposed
methods can be smoothly integrated into a wide range of text recognition models. With a
more advanced recognition model, it is likely that our techniques would deliver even
better performance.

6. Conclusions

In this paper, we introduce “Gradual OCR”, a novel optical character recognition
(OCR) approach focused on Korean chart data and utilizing two pivotal techniques: gradual
detection and gradual low-quality filtering. The former involves the incremental detection
of texts, while the latter dynamically filters inferior-quality texts. Our approach was vali-
dated using three distinct Korean chart datasets. The first dataset encompassed real-world,
web-collected data, characterized by high noise levels. The second dataset was crafted with
small, varied text fonts, while the third included rotated versions of these text instances,
thereby assessing the model’s robustness against various typographical variations and ori-
entations. The experimental results were indeed surprising. In terms of the macro-averaged
Jaccard error rate, our method achieved scores of 0.0344, 0.0231, and 0.0504 for Datasets 1, 2,
and 3, respectively. This performance was approximately 7 to 15 times better than Tesseract
and 3 to 5 times better than EasyOCR. However, a notable drawback of our approach is its
elapsed time. Recognizing the entirety of Datasets 1, 2, and 3 took about 167.3675, 887.8956,
and 949.0274 s, respectively. This was roughly 7 to 12 times slower than Tesseract and 5
to 10 times slower than EasyOCR. Nonetheless, we expect that the elapsed time could be
considerably reduced if a smaller text recognition model were used.

Our future work is twofold. Firstly, we aim to further enhance our approach by
training more efficient TrOCR models, recognizing that our results harbor the potential for
further refinement with advanced models. Secondly, we aspire to leverage the efficacy of
gradual OCR to develop a novel methodology for a chart understanding model, ensuring
comprehensive OCR application to chart data.

Author Contributions: Conceptualization, Y.P. and Y.S.; methodology, Y.P. and Y.S.; investigation,
Y.P. and Y.S.; data curation, Y.P. and Y.S.; writing—original draft preparation, Y.P. and Y.S.; writing—
review and editing, Y.P. and Y.S.; funding acquisition, Y.P. and Y.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2023-00250352).

Mathematics 2023, 11, 4585 19 of 20

Data Availability Statement: Some of the data from this study are available at https://github.com/
tooeeworld/gradualocr (accessed on 25 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smith, R. An overview of the Tesseract OCR engine. In Proceedings of the Ninth International Conference on Document Analysis

and Recognition (ICDAR 2007), Curitiba, Brazil, 23–26 September 2007; Volume 2, pp. 629–633.
2. EasyOCR. JaidedAI. 2023. Available online: https://github.com/JaidedAI/EasyOCR (accessed on 25 September 2023).
3. Cho, W.; Kwon, J.; Kwon, S.; Yoo, J. A Comparative Study on OCR using Super-Resolution for Small Fonts. Int. J. Adv. Smart

Converg. 2019, 8, 95–101.
4. Kim, C.Y.; An, S.Y.; Jeon, E.J.; Cha, B.R. A Study on the Survey and Demonstration Test of OCR based on Open Source for AI OCR.

In Proceedings of the Symposium of the Korean Institute of Communications and Information Sciences, Seoul, Republic of Korea,
23–25 August 2023; pp. 851–852.

5. Hyeong, K.K.; Duke, C.W. Development of OCR-based algorithm for information extraction from Material Safety Data Sheets
(MSDS). In Proceedings of the Symposium of the Korean Institute of Communications and Information Sciences, Seoul, Republic
of Korea, 23–25 August 2023; pp. 986–987.

6. Moon, J.; Kim, D.; Kim, E.; Oh, Y.; Jung, S.K.; Jang, J.; Kim, D. Development of OCR-based Spell check EduTech tool for
Handwriting Education for children. In Proceedings of the Korea Computer Congress, Jeju, Republic of Korea, 25–28 June 2023;
pp. 1640–1642.

7. Luo, J.; Li, Z.; Wang, J.; Lin, C.Y. Chartocr: Data extraction from charts images via a deep hybrid framework. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, Waikola, HI, USA, 5–9 January 2021; pp. 1917–1925.

8. Li, S.; Lu, C.; Li, L.; Zhou, H. Chart-RCNN: Efficient Line Chart Data Extraction from Camera Images. arXiv 2022, arXiv:2211.14362.
9. Balaji, A.; Ramanathan, T.; Sonathi, V. Chart-text: A fully automated chart image descriptor. arXiv 2018, arXiv:1812.10636.
10. Kantharaj, S.; Do, X.L.; Leong, R.T.K.; Tan, J.Q.; Hoque, E.; Joty, S. Opencqa: Open-ended question answering with charts. arXiv

2022, arXiv:2210.06628.
11. Kantharaj, S.; Leong, R.T.K.; Lin, X.; Masry, A.; Thakkar, M.; Hoque, E.; Joty, S. Chart-to-text: A large-scale benchmark for chart

summarization. arXiv 2022, arXiv:2203.06486.
12. Baek, Y.; Lee, B.; Han, D.; Yun, S.; Lee, H. Character region awareness for text detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9365–9374.
13. Shi, B.; Bai, X.; Yao, C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene

text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 2298–2304. [CrossRef] [PubMed]
14. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2021, arXiv:2010.11929.
15. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 38, 295–307. [CrossRef] [PubMed]
16. Kim, S.; Park, J.; Kim, S.; Na, Y.; Jang, Y. Multi-book Label Detection Model using Object Detection and OCR. J. Korean Inst. Inf.

Technol. 2023, 21, 1–8.
17. Wang, X.; Xie, L.; Dong, C.; Shan, Y. Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In

Proceedings of the IEEE/CVF international Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 1905–1914.

18. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversar-
ial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14
September 2018.

19. Huang, Y.; Li, S.; Wang, L.; Tan, T. Unfolding the alternating optimization for blind super resolution. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2020; Volume 33, pp. 5632–5643.

20. Wei, P.; Xie, Z.; Lu, H.; Zhan, Z.; Ye, Q.; Zuo, W.; Lin, L. Component divide-and-conquer for real-world image super-resolution. In
Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Part VIII 16; Springer
International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 101–117.

21. Ji, X.; Cao, Y.; Tai, Y.; Wang, C.; Li, J.; Huang, F. Real-world super-resolution via kernel estimation and noise injection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 466–467.

22. Zhang, K.; Liang, J.; Van Gool, L.; Timofte, R. Designing a practical degradation model for deep blind image super-resolution.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 4791–4800.

23. Park, E.L.; Cho, S. KoNLPy: Korean Natural Language Processing in Python. In Proceedings of the 26th Annual Conference on
Human & Cognitive Language Technology, Chuncheon, Korea, 10–11 October 2014; Volume 6, pp. 133–136.

https://github.com/tooeeworld/gradualocr
https://github.com/tooeeworld/gradualocr
https://github.com/JaidedAI/EasyOCR
http://doi.org/10.1109/TPAMI.2016.2646371
http://www.ncbi.nlm.nih.gov/pubmed/28055850
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://www.ncbi.nlm.nih.gov/pubmed/26761735

Mathematics 2023, 11, 4585 20 of 20

24. Li, M.; Lv, T.; Chen, J.; Cui, L.; Lu, Y.; Florencio, D.; Wei, F. Trocr: Transformer-based optical character recognition with pre-trained
models. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37,
pp. 13094–13102.

25. Yim, M.; Kim, Y.; Cho, H.-C.; Park, S. SynthTIGER: Synthetic Text Image GEneratoR Towards Better Text Recognition Models. In
Proceedings of the International Conference on Document Analysis and Recognition, San Jose, CA, USA, 21–26 August 2021;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–124.

26. Rajaraman, A.; Ullman, J. D. Mining of Massive Datasets; Cambridge University Press: Cambridge, UK, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Dataset Construction
	Gradual OCR
	Overview of Our Approach
	Image Preprocessor
	Text Detection Module
	Text Region Processor
	TrOCR
	Filtering Module

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions
	References

