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Abstract: Underwater imagery plays a vital role in ocean development and conservation efforts.
However, underwater images often suffer from chromatic aberration and low contrast due to the
attenuation and scattering of visible light in the complex medium of water. To address these is-
sues, we propose an underwater image enhancement network called CM-Net, which utilizes color
mapping techniques to remove noise and restore the natural brightness and colors of underwater
images. Specifically, CM-Net consists of a three-step solution: adaptive color mapping (ACM), local
enhancement (LE), and global generation (GG). Inspired by the principles of color gamut mapping,
the ACM enhances the network’s adaptive response to regions with severe color attenuation. ACM
enables the correction of the blue-green cast in underwater images by combining color constancy
theory with the power of convolutional neural networks. To account for inconsistent attenuation in
different channels and spatial regions, we designed a multi-head reinforcement module (MHR) in
the LE step. The MHR enhances the network’s attention to channels and spatial regions with more
pronounced attenuation, further improving contrast and saturation. Compared to the best candidate
models on the EUVP and UIEB datasets, CM-Net improves PSNR by 18.1% and 6.5% and SSIM by
5.9% and 13.3%, respectively. At the same time, CIEDE2000 decreased by 25.6% and 1.3%.

Keywords: underwater imaging; color mapping; underwater image enhancement; color correction;
color mapping

MSC: 68T07

1. Introduction

Underwater imaging plays a crucial role in ocean exploration, target identification,
underwater photography, and other applications. However, most underwater images
suffer from degradation in visual quality due to the aberrant light absorption and scattering
within the complex underwater environment. Some typical vision defects in underwater
images include color deviation, low contrast, noise, and blurring. To improve the vision
quality of underwater images, the technique of underwater image enhancement (UIE) is
proposed, aiming to perceive underwater objects as if they were above water.

In the underwater environment, factors such as aerosols and diverse living organisms
contribute to abnormal light absorption and scattering behaviors that differ from those
observed in the air. Consequently, underwater images often appear dim and exhibit
color casts. To investigate the color characteristics of underwater images, we depict the
colorimetric distribution of them in the CIE 1931 xy chromaticity diagram. As shown in
Figure 1, the colors of underwater images are mainly located in the upper-left region of the
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colorimetric diagram. This positioning demonstrates a conspicuous blue-green appearance.
Comparatively, we provide the same images taken in air, and the colorimetric distribution
of those normal images exhibits a more evenly distributed colorimetric map, featuring a
wider color gamut and more vivid colors.
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Many UIE devices and software are developed to obtain clean underwater images.
Some underwater cameras are designed to remove the underwater degradation effect by
utilizing polarization imaging or range-gated imaging. The image quality significantly im-
proves with those optical-based underwater imaging devices, but the complex underwater
environment usually confines the underwater imaging performance, and most underwater
cameras are expensive. In recent decades, many image restoration models have been
proposed to recover colors from unprocessed underwater images [1,2]. However, those
physical models are not adaptive enough to cope with the diverse underwater scenes.

Recently, several deep learning-based UIE models have been proposed which utilize
abundant underwater and normal image pairs for UIE network training. There are still
some challenges for those deep learning approaches. First, some UIE datasets are artificially
generated, and the performance of the trained enhancement network reduces dramatically
for certain underwater images. Furthermore, most deep learning UIE models cannot be
physically explained, which results in the network parameters not being easily adjusted
under specific environments, and the enhanced images are usually inconsistent with the
human vision. Therefore, further exploration is needed to develop image enhancement
methods that are more robust for diverse underwater environments and consistent with
human vision.

In this paper, we try to propose a UIE method by analyzing the color features of
underwater and air images, in which a mapping network is established to convert the
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underwater color to the normal color. It can be observed from Figure 1 that the colors
of the same objects tend to move to the green or blue areas by comparing the air and
underwater images. The color gamut of underwater image is mostly smaller than that
of the normal image in air. Islam et al. [3] constructed models to simulate underwater
colors from normal images in the air. Correspondingly, some UIE works proposed inverse
models from water to air to generate normal images. Inspired by the reversible conversion
between underwater images and normal images in the abovementioned works, we take
them as color mapping pairs, and establish a water–air color mapping model with deep
learning algorithms. Through this color mapping model, the recovered image thus can
be calculated.

Color mapping is a fundamental visualization technique which aims to recolor a given
image by deriving a mapping between that image and its target image. Take one typical
application of color mapping; for example, in the field of color printing, the RGB display
image is usually mapped to a CMYK image before printing. Because most printers have a
smaller gamut than displays, the RGB image is firstly mapped to the printer gamut, and
then converted to the CMYK colors for printing. With thousands of training color patches,
the display-to-printer color mapping model can be constructed. Similarly, the inverse color
mapping model of printer to display can also be calculated, which is utilized during screen
proofing. Through the analysis of color mapping application and image color features
in Figure 1, it is notable that the process of converting underwater to normal images is
similar to the conversion from printer to display. These two processes both utilize color
mapping models to convert a small gamut to a large one. The only difference is that both
the underwater image and its corresponding normal image are fully in the RGB color space.
Thus, in this paper we propose one underwater image enhancement method by employing
the color mapping technique. Specifically, the underwater colors with a smaller gamut are
first mapped to the gamut of air images, and then the new RGB colors are calculated in the
mapped gamut.

In the field of color management, color mapping is performed based on the data of
the lookup-table within the ICC profile. But for underwater image restoration, it is not
practical to build ICC profiles for specific underwater environments; thus, we utilize a
deep learning method to construct the color mapping model while considering various
underwater environments. Specifically, we trained a deep learning network, CM-Net, to
achieve color mapping using pairs of underwater and airborne images, and the mapped
image demonstrates a much larger gamut with brighter colors than the underwater image.
Briefly, the CM-Net consists of three steps. Step 1 is adaptive color mapping (ACM), step 2
is local enhancement (LE), and step 3 is global generation (GG). The ACM is designed to
broaden the underwater gamut and remove the greenish or bluish effect. The color-mapped
image has a normal large gamut, and the colors are distributed normally like in images
taken in air. To tackle the issues of low contrast and blurred details, we introduce LE,
which consists of a multi-head reinforcement (MHR) module integrated into a U-shaped
architecture. Furthermore, we adopt a transformer network-based approach for GG, which
is commonly used for such tasks.

Our key contributions can be summarized as follows:

(1) We propose ACM that analyzes the causes of color degradation in underwater images
and focuses on recovering areas with severe degradation. It leverages the bene-
fits of color constancy theory and deep neural network knowledge to enhance the
performance of underwater image restoration.

(2) We introduce an MHR module that preserves the interaction between local features
and channel information, extracting pixel-level cross-channel context information.
This enables the underwater image to achieve ideal contrast and overcome the chal-
lenges of low contrast and blurred details.

(3) Our CM-Net achieves state-of-the-art performance across various visual quality and
quantitative metrics. It demonstrates the effectiveness of our proposed approach for
UIE tasks by comparing it with other methods.
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2. Related Works

The related works are considered in three groups: color features of underwater images,
gamut mapping, and UIE methods.

2.1. Color Features of Underwater Images

When objects are observed through the medium of water, they tend to lose part of
their color attributes. Underwater images typically have a blue-green background, as if
they were filtered through a thick layer of turquoise. The way light behaves in water is
significantly different from how it behaves in air. Different wavelengths of light experience
varying rates of attenuation underwater. Among the visible wavelengths, red light, with
a longer wavelength, is the most weakened. On the other hand, blue-green light, with a
wavelength of 480 ± 30 nm, experiences the least amount of absorption, resulting in the
greatest penetration underwater, as shown in Figure 2. Due to the RGB camera’s sensitivity
to red attenuation, the red component in the captured image appears weak, while the
information in the blue and green channels remains relatively intact.
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2.2. Gamut Mapping

The color perception of different devices varies due to their respective color ranges,
resulting in the same scene appearing in different colors on different devices such as
monitors, printers, and cameras. Gamut mapping (GM) is a technique that maps color
values from one color space to another, ensuring consistent color across different devices [4].
In digital image processing, GM is commonly used to map an image from the camera’s
original color space to the standard RGB or CMYK color space for accurate display or
printing of the image. Additionally, GM can also adjust the image’s color saturation,
brightness, and contrast properties to achieve better visual effects.

The XYZ color space is designed to represent the human perception system, which is a
device-independent color space. The utilization of gamut mapping technology in the XYZ
color space can ensure consistent color reproduction across various devices. In addition,
the XYZ color space is easily represented in the xy chromaticity diagram, facilitating the
gamut comparisons of different images or devices.

In this paper, the principle of GM is applied to map the blue-green color of underwater
images to the standard color of air images. The whole process of learning color information
in the XYZ space can be expressed as follows:

I′(x,y,z) = G(I(x,y,z)) (1)
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I′(x,y,z) and I(x,y,z) represent the color tristimulus values of the underwater image and
the normal image, respectively. G is the network that is essential to achieve color mapping
between two images. By adjusting the network parameters, different degrees of color
mapping can be realized, achieving better visual effects.

2.3. UIE Methods

To improve the quality of underwater images, researchers have developed various
algorithms. These algorithms aim to improve visibility and reduce color casts. Based on
their foundation in underwater imaging models, existing UIE methods can be divided into
the following two categories.

2.3.1. Traditional Methods

Early research in the UIE field focused on using prior knowledge and physical models
to estimate the key parameters of underwater imaging models [5]. Since underwater imag-
ing models share similarities with atmospheric scattering models in dehazing tasks [6],
some researchers have attempted to extend physics-based dehazing algorithms to un-
derwater scenes. For example, Chiang et al. [7] and Galdran et al. [8] applied the dark
channel prior (DCP) dehazing method [9] to underwater image recovery. These methods
are primarily concerned with the accurate estimation of media transmission parameters,
which is challenging. Therefore, some researchers used the spatial frequency domain
method [10–14] to adjust the pixel values of underwater images. Hitam et al. [15] proposed
the CLAHE-Mix method, which applies contrast-limited adaptive histogram equalization
for UIE. Ancuti et al. [16] proposed a fusion strategy that derived the inputs and the
weight measures from the degraded image, enhancing the quality of underwater video
and images. Reinhard et al. [17] applied GM to improve image quality by matching the
color distribution in the LAB color space. Xiao et al. [18] aligned the gamuts of source and
target images through a linear transformation. However, these methods do not consider
the underlying imaging mechanisms, and the neglect of the physical degradation process
limits improvements in the enhancement quality [19].

2.3.2. Deep Learning Models

Deep learning has made remarkable progress in various advanced computer vision
and recognition tasks. Several attempts have been made to improve the performance of
UIE through the use of deep learning. Islam et al. [3] utilized a CycleGAN-based approach
to construct a large dataset of underwater images and proposed a lightweight conditional
GAN for image recovery. Li et al. [20] incorporated features from three color spaces and
an attention mechanism, enhancing the network model’s response to regions with severe
degradation. Xu et al. [21] proposed an unsupervised adaptive network that enables the
training of unpaired underwater images in a GAN model, reducing the dependence on
paired datasets for the model. Zhou et al. [22] proposed an underwater multi-feature image
enhancement method that incorporates an embedded fusion mechanism to enhance the
final reconstruction effect.

However, the aforementioned methods do not take into account the small color gamut
caused by the blue-green color bias of underwater images. However, the above method has
disadvantages: (1) It does not take into account the visual characteristics of the human eye,
so sometimes it cannot provide satisfactory results in color. (2) The small amount of real
data makes it difficult to apply to complex and diverse underwater scenes, which limits
the performance of UIE. In view of this, we consider the small color gamut in underwater
images, and propose a method that combines color gamut mapping and deep learning to
accurately map the color gamut range from underwater to normal images, which is more in
line with human vision theory. At the same time, we expanded the dataset training, and the
model has strong generalization ability and can adapt to various underwater environments.
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From the brief review above, our network aims to generate high-visual-quality un-
derwater images by taking into account the unique properties of underwater imaging that
change the image’s color gamut.

3. The Proposed Method

We present an overview of the architecture of CM-Net in Figure 3—a cascading method
consisting of three steps from underwater degraded images to high-quality clear images.
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3.1. Adaptive Color Mapping

As the first step, ACM aims to achieve adaptive color correction from underwater
degraded images to ground truth.

The XYZ color space is designed to represent the human visual perception system. So,
we converted RGB images to XYZ color spaces to represent and process colors in a way
that more easily approximated human visual perception. ACM consists of a base module
and a condition module, the process of which is described as

IXYZ = M1 IRGB (2)

where M1 is

M1 =

 0.412435 0.357586 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 (3)

3.1.1. Base Module

The base module is designed to handle global operations, using underwater degrada-
tion images as input, with each pixel working independently. It can be described as

IBM = FBM(IXYZ(x, y)), ∀(x, y) ∈ IXYZ (4)

where IXYZ represents images in the XYZ color space, (x, y) represents the chrominance
coordinates in IXYZ, FBM denotes the base module, and IBM represents the output of the
base module.

The base module consists of a basic block and the Global Feature Modulation Strat-
egy [23] (GFM), whose specific structure is shown in Figure 4. Thus, the base block is
composed of N convolutional layers with 1 × 1 convolutional filters and (N − 1) ReLU
activations, which can be denoted as

FBB= (Conv 1×1 ◦ Conv1×1
)N ◦ (ReLU ◦ Conv1×1(IXYZ))

N−1 (5)
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The basic block can learn pixel-to-pixel color mapping like a 3D lookup table. Addi-
tionally, 1 × 1 filters with multiple layers are good at handling a variety of global operations,
while also having the flexibility to adjust feature maps, which is crucial for learning color
mapping relationships between images. Liu et al. [24] and Chen et al. [25] also confirmed
this view.

To exploit the extracted global color information, we introduce GFM to modulate
the intermediate features of the base block, which has been successfully applied in photo
retouching and LDR-to-HDR tasks. It can be described as

GFM(xi) = α1 ∗ xi + α2 (6)

where xi denotes the feature map. α1 and α2 represent the scale and shift factors, respectively.

3.1.2. Conditional Module

To achieve image adaptive mapping, we introduce a conditional module that works
in tandem with the base network. The conditional module (CM) primarily focuses on
extracting color-related information to enable tunable mapping. As depicted in Figure 5, the
CM comprises multiple color feature blocks (CFBs), feature dropouts, convolutional layers,
and global average pooling. These components collectively contribute to the system’s
ability to enhance and map underwater degradation images accurately.

A color feature block contains two convolution layers with 1 × 1 filters, an average
pooling layer, ReLU activation, and layer normalization, which can be written as follows:

CFB(x) = LN ◦ Avgpool ◦ ReLU ◦ SA ◦ Conv1×1 ◦ Conv1×1(x) (7)

where x denotes the input of CFB. The condition module takes Ixyz as input and outputs a
condition vector V. Our condition module is denoted by

V = Avg ◦ Conv1×1 ◦ Dropout ◦ CFBN(x) (8)

Since the convolutional layer contains only 1 × 1 filters, the conditional module cannot
efficiently extract local features. With the help of the pooling layer, the network can extract
global priors based on image statistics. A dropout layer is added before the global average
pool, which can effectively avoid network overfitting.

The output of ACM is I′XYZ, which is converted by M2 to IACM, where IACM represents
the output of ACM. Our goal is to optimize the process of adaptive color correction. M2 is

M2 =

 3.240479 − 1.537150 − 0.498535
−0.969256 1.875992 0.041556
0.055648 − 0.204043 1.057311

 (9)
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We can observe the effect of ACM through the CIE chromaticity diagram. As shown in
the experimental part, with different images as input to the conditional module, the color
gamut changes significantly. The result shows that our ACM implements images adaptively.
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3.2. Local Enhancement

LE is a crucial step performed after ACM to improve the quality of underwater
degraded images. ACM can achieve significant improvements, but LE is necessary to
bring the results closer to the ground truth. It is worth noting that directly applying
local operations for an end-to-end mapping before adaptive color correction often leads
to noticeable artifacts in the output results. For detailed information, please refer to the
ablation study.

To accomplish LE, we designed a Multi-Head Reinforcement Block (MHR), which
is described as follows. This step takes the output of ACM as its input. The features are
then passed through a U-shaped encoder–decoder architecture consisting of four down-
sampling and up-sampling operations. In the encoder component, MHR is employed to
extract features at different scales while doubling the number of feature channels during
down-sampling. Conversely, in the decoder component, high-level features are extracted
through a Residual Enhancement Block (REB) and then up-sampled to the original size,
culminating in the production of the final output. Moreover, skip connections are employed
to fuse features from the encoder components to compensate for information loss caused
by resampling. Overall, these operations can be represented as

ILE = IMHR ◦ IREB (10)

3.2.1. Multi-Head Reinforcement Block

MHR plays a crucial role in learning features at various scales, enabling the in-depth
extraction of image information following ACM. It facilitates the recovery of image informa-
tion from semantic features. The structure of MHR is shown in Figure 6. To realize global
information aggregation and channel information interaction between images, we use
Simplified Channel Attention (SCA) to help restore missing details of underwater images.
As the transformer has flourished and layer normalization (LN) has been used in more and
more methods, many studies have shown that using LN can stabilize the training process
of the network. SimpleGate simply multiplies features into two parts along the channel
dimension, essentially replacing the activation function and reducing the computational
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complexity within the block. The multi-head structure can realize pixel-level cross-channel
context information fusion to recover image details and texture information better.
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3.2.2. Residual Enhancement Block

Figure 7 presents the details of the REB, which addresses the issue of vanishing
gradients and seeks to maintain data fidelity as much as possible. As the number of filters
in the encoder network increases from 64 to 1024, the number of filters in the decoder
network decreases from 1024 to 64. Moreover, all convolutional layers within the REB
employ a consistent 3 × 3 filter size with a stride of 1. This module ensures coherence and
enhances performance in the specific task at hand.
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3.3. Global Generation

The third step in our method is GG, which is designed to capture global information
that may be overlooked by the local receptive fields of the ACM and LE steps. To effectively
capture global information, we introduce a residual–transformer module. It consists of
residual learning and transformer blocks. The local residual learning technique bypasses
less important information, such as low-resolution regions or low-frequency components.
Multiple local residual connections allow the main network to focus its attention on more
relevant information.

Additionally, we use the transformer module proposed by the article in [26]. The
formulation of this step can be represented as
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IGG = R ◦ ((ITB ◦ Conv1×1) ◦ R ◦ (Conv3×3 ◦ Conv1×1 ◦ (ILE))) (11)

where ITB represents the output of the transformer block, R represents the residual opera-
tion, and ILE stands for the output of LE.

3.4. Loss Function

To recover image details more accurately and capture context information for multiple
scale features, we use MSE loss to train the network and optimize weights and biases. The
calculation is as follows:

LMSE =
1
N

N

∑
i=1

(IGT − IOutput)
2 (12)

where N is the number of training images, IOutput is the result of the enhanced underwater
image, and IGT is the ground truth.

4. Experiments and Results

In this section, we first describe the datasets, evaluation metrics, and implementation
details. We then present a comparative study involving the proposed method and other
enhancement methodologies. Finally, a further analysis of the ablation study is conducted.

4.1. Implementation Details

For training, the input to CMNet is 800 pairs of underwater images in the UIEB
dataset [27] and 5050 pairs in the EUVP dark subset [3]. The UIEB dataset includes
underwater scenes with low light, color cast, fog, and other underwater degradation
features. The EUVP dataset contains a wealth of water types, and the goal is to enhance
the perceptual image. For testing, we utilized the remaining 500 synthetic images from a
dark subset of the EUVP dataset (denoted as S_500), 90 real-world underwater images from
UIEB (denoted as R_90), and 60 challenge images (denoted as C_60) from UIEB. Using a
diverse selection of images allows us to evaluate the performance of our model in various
scenarios and challenges. Compared to training, we did not resize or randomly crop the
input images. We trained our model using ADAM and set the learning rate to 0.0001. The
batch size was set to 10, and the epoch number was set to 600. We used Pytorch (Python
3.8) as the deep learning framework on a Linux host with a single NVIDIA GTX 3090Ti
GPU (NVIDIA Corp., Santa Clara, CA, USA).

4.2. Experimental Settings
4.2.1. Datasets

The UIEB dataset was proposed by Li et al. in 2019. The UIEB dataset contains a total
of 950 pairs of underwater images, of which 890 have corresponding reference images and
the remaining 60 images with unsatisfactory reference images are used as challenge data.
These images depict different underwater scenes with obvious degradation features such
as color coercion, contrast reduction, and detail blurring.

The Euvp dark subset is an EUVP dataset proposed by Islam et al. in 2020, which
contains a total of 5550 pairs of images. The data were collected with seven different
cameras in different locations under various visibility conditions, Additionally, images
extracted from a few publicly available YouTube videos are included in the dataset. The
Euvp dataset can adapt to a wide range of natural variations such as scene, water type, and
light conditions, enhancing the generalization ability of the model.

4.2.2. Evaluation Metrics

We adopted five commonly used image quality evaluation metrics including peak
signal-to-noise ratio (PSNR) [28], structural similarity index measure (SSIM) [29], under-
water color image quality evaluation (UCIQE) [30], underwater image quality metric
(UIQM) [31], and CIEDE2000 (∆E00) [32]. A higher PSNR score indicates better image
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quality for the enhanced image. Similarly, a higher SSIM score indicates a greater similarity
between the two images. UCIQE is a composite score that considers color intensity, satu-
ration, and contrast. UIQM consists of three attribute measures: colorfulness, sharpness,
and contrast. Higher UIQM/UCIQE scores suggest better visual perception. ∆E00 is em-
ployed to quantify the difference between two colors and is considered a highly compatible
evaluation method with human vision.

4.2.3. Comparison Methods

Our method was compared with 10 underwater image enhancement methods, includ-
ing traditional methods—GDCP [33], Red [8], Retinex [34], UDCP [35], and Fusion [16]—
as well as deep learning-based methods—F-GAN [3], Water-Net [27], UWCNN [36], U-
color [20], and U-Shape [37]. For the traditional methods, we directly applied the methods
to the test sets using the authors’ code and training approach. For the deep learning-
based methods, we trained them using the author-provided model and network training
parameters to ensure an objective experiment.

4.3. Visual Comparisons

In this section, we compared our method with other existing methods on diverse
testing datasets. Firstly, we evaluated the enhancement effect on a synthetic test set, as
shown in Figure 8. It can be observed that the competing methods failed to improve picture
contrast or properly correct unwanted color artifacts. None of the compared methods was
able to fully restore the scene structure. In contrast, our method achieved the closest results
to the ground truth and obtained the highest PSNR and SSIM scores.
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Specifically, in Figure 8a, the degraded image exhibited a blue-green deviation. In
terms of color correction, GDCP, Red, and F-GAN introduced additional color artifacts.
Retinex resulted in oversaturation, and the other methods used for comparison failed to
effectively correct the blue-green bias issue.

On the other hand, our proposed method effectively eliminated the blue-green tones,
demonstrating the advantages of our designed ACM structure in underwater image en-
hancement. We then evaluated the results of different methods on real underwater images
with a blurry appearance, as depicted in Figure 9. In Figure 9a, the foggy conditions greatly
obscured the structural details of the underwater scene. GDCP, UWCNN, and F-GAN
produced significant color distortion and highly degraded image quality. Other comparison
methods suffered from insufficient image enhancement or introduced oversaturation.
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As shown in Figure 10, our method successfully removes the yellow haze and enhances
the contrast in the image on the C_60 dataset. In contrast, the Fusion, Retinex, and W-Net
methods introduce blue artifacts, while the UWCNN method introduces red artifacts. Our
method produces more realistic and clearer image results through effective color correction.
This indicates that our method has a significant advantage in improving the quality of
underwater images.
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Overall, our algorithm successfully eliminates the blurring effect in the image and
improves the contrast without introducing noticeable issues of excessive enhancement and
oversaturation. These results prominently demonstrate the excellent performance of our
method in enhancing the quality and visibility of real underwater images.

4.4. Quantitative Comparisons

In these test datasets, we first conducted quantitative comparisons for R_90 and S_500.
Tables 1 and 2 record the average scores of different methods on PSNR, SSIM, UICQE,
UIQM, and ∆E00. According to the results in Table 1, our algorithm outperforms other
competing methods in terms of PSNR, SSIM, and ∆E00 metrics. Compared to the second-
best method, our CM-Net improves PSNR by 18.1% and 6.5% and SSIM by 5.9% and
13.3% on the S_500 and R_90 datasets, respectively. At the same time, our scores on ∆E00
decreased by 25.6% and 1.3%, respectively.
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Table 1. Comparison of different methods on S_500 dataset (bold: best).

Method PSNR SSIM UCIQE UIQM ∆E00

GDCP 11.71 0.636 0.467 2.30 23.53
Fusion 16.65 0.790 0.446 3.12 16.11

Red 17.87 0.851 0.424 5.15 16.23
Retinex 16.16 0.728 0.411 4.07 16.72

UWCNN 18.19 0.821 0.361 6.47 13.88
W-Net 15.87 0.819 0.410 3.01 19.38
F-GAN 19.93 0.785 0.395 4.42 12.65
U-Color 19.11 0.849 0.380 6.16 13.57
U-Shape 19.18 0.857 0.386 5.72 13.86
CM-Net 22.66 0.908 0.369 5.50 10.31

Table 2. Comparison of different methods on R_90 dataset (bold: best).

Method PSNR SSIM UCIQE UIQM ∆E00

GDCP 0.735 0.44 3.67 17.77 13.27
Fusion 0.842 0.48 4.46 8.84 20.50

Red 0.814 0.41 5.31 11.93 17.47
Retinex 0.759 0.44 5.09 14.08 17.75

UWCNN 0.680 0.31 7.01 16.30 13.83
W-Net 0.845 0.48 6.10 14.71 19.35
F-GAN 0.734 0.40 5.14 13.69 17.32
U-Color 0.870 0.37 5.58 7.98 20.99
U-Shape 0.800 0.38 6.33 7.88 21.32
CM-Net 0.906 0.45 5.30 7.78 22.71

Since there is no ground truth for C_60, we adopted the no-reference metrics. Table 3
records the average scores of different methods on UIQM and UICQE. Using non-reference
image quality evaluation metrics on the three test sets, we found that the UWCNN and
Fusion methods excel in UIQM and UCIQE scores. However, visually speaking, UWCNN
introduces noticeable red artifacts, greatly diminishing the visual quality of the enhanced
images. The Fusion method may not yield satisfactory outcomes in terms of brightness,
thereby impacting the overall visual perception of the enhanced images. It is crucial to strike
a balance between different image quality metrics and visual aesthetics when evaluating
and comparing various image enhancement methods. Our CM-Net’s scores on the test set
are slightly inferior to the comparison methods, but, as mentioned by Berman et al. [38]
and Ren et al. [39], UIQM and UCIQE are not sensitive to color shifts.

Therefore, we used chromaticity diagrams to visually observe the color distribution
of the enhanced images. The chromaticity coordinate of each position on the chromaticity
diagram is a quantitative result that describes the physical description of subjective colors of
visible light. When the coordinate value of the enhanced image approaches the coordinate
of the true color in the chromaticity diagram, the color gamut of the generated results is
broader, and the color restoration is more accurate. As shown in Figures 11–13, the color
range generated by the UWCNN and Fusion methods is relatively small. Additionally,
we found some interesting results in our experiments, i.e., that some methods achieve a
color gamut beyond or even bigger than the ground-truth color range on the chromaticity
diagram, indicating that some competing methods introduce color artifacts or even destroy
the intrinsic colors.
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Figure 13. Visual comparison and corresponding chromaticity diagram on the C_60 dataset: (a) raw;
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Table 3. Comparison of different methods on C_60 dataset (bold: best).

Method UIQM UCIQE

GDCP 5.03 0.42
Fusion 5.20 0.48

Red 6.19 0.42
Retinex 6.00 0.42
UDCP 1.37 0.48

UWCNN 7.01 0.32
W-Net 6.34 0.41
F-GAN 4.56 0.39
U-Color 6.84 0.38
U-Shape 4.71 0.39
CM-Net 5.29 0.43

4.5. Ablation Study

To demonstrate the effectiveness of each component, we conducted a series of ablation
studies on R_90. We carefully considered the components of CM-Net and LE, including
ACC, LE, GG, and MHNB. To be more specific, we carried out the following experiments:

• We assessed the positional relationship between the modules. ACC, ACC + LE, and
ACC + LE + GG represent combinations of adaptive color mapping, local enhance-
ment, and global generation networks, respectively. CM-Net is the complete model
consisting of the three networks ACC, LE, and GG. The LE + ACC + GG model has
the local enhancement network positioned in front of the ACC network;

• We assessed the number of MHNBs in LE. The quantities 3 MHNB and 5 MHNB
represent the usage of three and five MHNBs, respectively, in the down-sampling
process of LE. In CM-Net, four MHNBs are utilized for overall image processing
and enhancement.
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Statistical results are shown in Tables 4 and 5. Visual comparisons of the effects of
each are shown in Figures 14 and 15. The conclusions drawn from the ablation studies are
listed as follows:

1. As presented in Table 4, our CM-Net achieves the best quantitative performance
across two testing datasets when compared with the ablated models, which implies
the effectiveness of the combinations of ACC, LE, and GG networks selected in
this experiment;

2. We experimented with MHRB numbers of {3, 4, 5} in the encoder section. As shown
in Table 5, we found that the selected four MHRBs can be the most beneficial to the
CM-Net. The results indicate that aimlessly adding the same number of MHNBs will
not bring extra performance improvement to enhance underwater images;

3. As shown in Figures 14 and 15, only the images generated by the ACC module have
insufficient brightness, and the overall color of the LE enhancement results in front
of the ACC network is inaccurate. The five MHNBs may make the network overfit,
and the color quality deteriorates instead. The overall color of CM-Net’s results is
close to that of the reference image, as LE networks help reconstruct local detail, and
GG is good for boosting global brightness. The three modules studied have their
functions during the enhancement process, and the combination can improve the
overall performance of our network.

Table 4. Ablation study of different components on R_90 dataset (bold: best).

Component PSNR SSIM ∆E00

ACC 20.48 0.867 10.10
ACC + LE 21.43 0.893 8.98

LE + ACC + GG 21.90 0.893 8.67
CM-Net 22.71 0.906 7.98

Table 5. Ablation study of different MHRB numbers on R_90 dataset (bold: best).

Component PSNR SSIM ∆E00

3 MHRB 21.61 0.882 9.27
5 MHRB 22.21 0.899 8.69
CM-Net 22.71 0.906 7.98
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5. Conclusions

In this work, we propose a color-mapped underwater image enhancement network.
Our model considers human visual perception and employs deep learning techniques to
reconstruct underwater images. To address common issues in underwater images such
as color artifacts, projection ability, low contrast, and image blur, we have implemented
a combination of ACC, LE, and GG modules. The ACC network applies adaptive color
mapping, while the MHRB module enables effective feature interaction across multiple
scales and preserves fine details. The GG module enhances global highlights. We conducted
extensive experiments on various benchmark datasets, demonstrating the superiority of
our solution and the effectiveness of the ACC, LE, GG, and MHRB numbers. The results
showed that our proposed CMNet outperformed other models by achieving PSNR of
22.66 and 22.71, SSIM of 0.908 and 0.906, and ∆E00 of 10.31 and 7.98 on the EUVP and
UIEB datasets. Ablation studies were also conducted to validate the importance of key
components in our approach. Looking to the future, considering the evolving needs and
advancements in underwater research, we intend to explore lightweight underwater image
enhancement models, which will have important implications for real-time operating
systems like underwater robotics and monitoring networks.

Author Contributions: Methodology, S.W., B.S. and X.Y.; software, J.T.; validation, S.W. and W.H.;
formal analysis, X.Y.; investigation, W.H. and X.G.; resources, J.T.; writing—original draft, X.Y.; project
administration, B.S.; funding acquisition, W.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China un-
der grant 62076199; in part by the Key R&D project of Shaanxi Province under grants 2022ZDLGY01-
03 and 2024GX-YBXM-129; in part by the Foundation of Key Laboratory of Pulp and Paper Science
and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of
Sciences), under grant KF202118; in part by the Key Scientific Research Program of Shaanxi Provincial
Department of Education under grant 23JY063; and in part by Xi’an science and technology research
plan (No. 22GXFW0088).

Data Availability Statement: The data presented in this study is available on request from the
corresponding authors, and the dataset was jointly completed by the team, so the data is not pub-
licly available.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Guo, Y.; Li, H.; Zhuang, P. Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network. IEEE J.

Ocean. Eng. 2020, 45, 862–870. [CrossRef]
2. Li, C.Y.; Guo, J.C.; Guo, C.L. Emerging from water: Underwater image color correction based on weakly supervised color transfer.

IEEE Signal Process. Lett. 2018, 25, 323–327. [CrossRef]
3. Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020,

5, 3227–3234. [CrossRef]
4. Xu, L.; Zhao, B.; Luo, M.R. Colour gamut mapping between small and large colour gamuts: Part I. gamut compression. Opt.

Express 2018, 26, 11481–11495. [CrossRef]
5. Mcglamery, B.L. A computer model for underwater camera systems. Proc. SPIE 1980, 208, 221–231.
6. Akkaynak, D.; Treibitz, T. Sea-Thru: A Method for Removing Water from Underwater Images. In Proceedings of the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691.
7. Chiang, J.Y.; Chen, Y.C. Underwater Image Enhancement by Wavelength Compensation and Dehazing. IEEE Trans. Image Process.

2012, 21, 1756–1769. [CrossRef] [PubMed]
8. Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic Red-Channel underwater image restoration. J. Vis. Commun. Image

Represent. 2015, 26, 132–145. [CrossRef]
9. HE, K.M.; Sun, J.; Tang, X.O. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011,

33, 2341–2353. [PubMed]
10. Robert, H. Image enhancement by histogram transformation. Comput. Graph. Image Process. 1977, 6, 184–195.

https://doi.org/10.1109/JOE.2019.2911447
https://doi.org/10.1109/LSP.2018.2792050
https://doi.org/10.1109/LRA.2020.2974710
https://doi.org/10.1364/OE.26.011481
https://doi.org/10.1109/TIP.2011.2179666
https://www.ncbi.nlm.nih.gov/pubmed/22180510
https://doi.org/10.1016/j.jvcir.2014.11.006
https://www.ncbi.nlm.nih.gov/pubmed/20820075


Mathematics 2024, 12, 1933 18 of 19

11. Stephen, M.P.; Philip, A.E.; John, D.A.; Robert, C.; Ari, G.; Trey, G.; Bart, T.H.R.; John, B.Z.; Karel, Z. Adaptive histogram
equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–369.

12. Liu, Y.C.; Chan, W.H.; Chen, Y.Q. Automatic white balance for digital still camera. IEEE Trans. Consum. Electron. 2002, 41, 460–466.
13. Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1978, 237, 108–128. [CrossRef] [PubMed]
14. Land, E.H. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc. Natl. Acad.

Sci. USA 1986, 83, 3078–3080. [CrossRef]
15. Hitam, M.S.; Awalludin, E.A.; Jawahir, H.W.; Yussof, W.N.; Bachok, Z. Mixture contrast limited adaptive histogram equalization

for underwater image enhancement. In Proceedings of the 2013 International Conference on Computer Applications Technology
(ICCAT), Sousse, Tunisia, 20–22 January 2013; pp. 1–5.

16. Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing underwater images and videos by fusion. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 81–88.

17. Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41.
[CrossRef]

18. Xiao, X.Z.; Ma, L.Z. Color transfer in correlated color space. In Proceedings of the 2006 ACM International Conference on Virtual
Reality Continuum and Its Applications (VRCIA’06), New York, NY, USA, 12–26 June 2006; pp. 305–309.

19. Liu, R.S.; Fan, X.; Zhu, M.; Hou, M.J.; Luo, Z.X. Real-World Underwater Enhancement: Challenges, Benchmarks, and Solutions
Under Natural Light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [CrossRef]

20. Li, C.Y.; Anwar, S.; Hou, J.H.; Cong, R.M.; Guo, C.L.; Ren, W.Q. Underwater image enhancement via medium transmission-guided
multi-color space embedding. IEEE Trans. Image Process. 2021, 30, 4985–5000. [CrossRef] [PubMed]

21. Ye, X.C.; Li, Z.P.; Sun, B.L.; Wang, Z.H.; Xu, R.; Li, H.J.; Fan, X. Deep Joint Depth Estimation and Color Correction from Monocular
Underwater Images Based on Unsupervised Adaptation Networks. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3995–4008.
[CrossRef]

22. Zhou, J.C.; Sun, J.M.; Zhang, W.S.; Lin, Z.F. Multi-view underwater image enhancement method via embedded fusion mechanism.
Eng. Appl. Artif. Intell. 2023, 121, 105946. [CrossRef]

23. He, J.; Liu, Y.; Qiao, Y.; Dong, C. Conditional Sequential Modulation for Efficient Global Image Retouching. In Proceedings of the
Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 679–695.

24. Liu, Y.H.; He, J.W.; Chen, X.Y.; Zhang, Z.W.; Zhao, H.Y.; Dong, C.; Qiao, Y. Very Lightweight Photo Retouching Network with
Conditional Sequential Modulation. IEEE Trans. Multimed. 2022, 25, 4638–4652. [CrossRef]

25. Chen, X.Y.; Zhang, Z.W.; Ren, J.S.; Tian, L.; Qiao, Y.; Dong, C. A New Journey from SDRTV to HDRTV. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4480–4489.

26. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient Transformer for High-Resolution Image
Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans, LA, USA, 18–24 June 2022; pp. 5718–5729.

27. Li, C.Y.; Guo, C.L.; Ren, W.Q.; Cong, R.M.; Hou, J.H.; Kwong, S.; Tao, D.C. An underwater image enhancement benchmark
dataset and beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [CrossRef]

28. Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the 2012 Fourth International
Workshop on Quality of Multimedia Experience, Melbourne, VIC, Australia, 5–7 July 2012; pp. 37–38.

29. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612.

30. Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071.
[CrossRef] [PubMed]

31. Tao, Y.; Dong, L.L.; Xu, W.H. A novel two-step strategy based on white-balancing and fusion for underwater image enhancement.
IEEE Access 2020, 8, 217651–217670. [CrossRef]

32. Sharma, G.; Wu, W.C.; Dalal, E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and
mathematical observations. Color Res. Appl. 2005, 30, 21–30. [CrossRef]

33. Peng, Y.T.; Cao, K.M.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image
Process. 2018, 27, 2856–2868. [CrossRef]

34. Fu, X.Y.; Zhuang, P.X.; Huang, Y.; Liao, Y.H.; Zhang, X.P.; Ding, X.H. A retinex-based enhancing approach for single underwater
image. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014;
pp. 4572–4576.

35. Drews, P., Jr.; do Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission estimation in underwater single images. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2–8 December 2013;
pp. 825–830.

36. Li, C.Y.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit.
2020, 98, 107038. [CrossRef]

37. Peng, L.T.; Zhu, C.L.; Bian, L.H. U-Shape Transformer for Underwater Image Enhancement. IEEE Trans. Image Process. 2023, 32,
3066–3079. [CrossRef]

https://doi.org/10.1038/scientificamerican1277-108
https://www.ncbi.nlm.nih.gov/pubmed/929159
https://doi.org/10.1073/pnas.83.10.3078
https://doi.org/10.1109/38.946629
https://doi.org/10.1109/TCSVT.2019.2963772
https://doi.org/10.1109/TIP.2021.3076367
https://www.ncbi.nlm.nih.gov/pubmed/33961554
https://doi.org/10.1109/TCSVT.2019.2958950
https://doi.org/10.1016/j.engappai.2023.105946
https://doi.org/10.1109/TMM.2022.3179904
https://doi.org/10.1109/TIP.2019.2955241
https://doi.org/10.1109/TIP.2015.2491020
https://www.ncbi.nlm.nih.gov/pubmed/26513783
https://doi.org/10.1109/ACCESS.2020.3040505
https://doi.org/10.1002/col.20070
https://doi.org/10.1109/TIP.2018.2813092
https://doi.org/10.1016/j.patcog.2019.107038
https://doi.org/10.1109/TIP.2023.3276332


Mathematics 2024, 12, 1933 19 of 19

38. Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative
Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2822–2837. [CrossRef]

39. Ren, T.D.; Xu, H.Y.; Jiang, G.Y.; Yu, M.; Zhang, X.; Wang, B.; Luo, T. Reinforced Swin-Convs Transformer for Underwater Image
Enhancement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2020.2977624

	Introduction 
	Related Works 
	Color Features of Underwater Images 
	Gamut Mapping 
	UIE Methods 
	Traditional Methods 
	Deep Learning Models 


	The Proposed Method 
	Adaptive Color Mapping 
	Base Module 
	Conditional Module 

	Local Enhancement 
	Multi-Head Reinforcement Block 
	Residual Enhancement Block 

	Global Generation 
	Loss Function 

	Experiments and Results 
	Implementation Details 
	Experimental Settings 
	Datasets 
	Evaluation Metrics 
	Comparison Methods 

	Visual Comparisons 
	Quantitative Comparisons 
	Ablation Study 

	Conclusions 
	References

