
Citation: Jeong, O.; Ahmadzadeh, E.;

Moon, I. Comprehensive Neural

Cryptanalysis on Block Ciphers Using

Different Encryption Methods.

Mathematics 2024, 12, 1936. https://

doi.org/10.3390/math12131936

Academic Editor: Antanas Cenys

Received: 29 May 2024

Revised: 19 June 2024

Accepted: 20 June 2024

Published: 22 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Comprehensive Neural Cryptanalysis on Block Ciphers Using
Different Encryption Methods
Ongee Jeong 1, Ezat Ahmadzadeh 1 and Inkyu Moon 1,2,*

1 Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science &
Technology (DGIST), Daegu 42988, Republic of Korea; onji6@dgist.ac.kr (O.J.);
ezat.ahmadzadeh@dgist.ac.kr (E.A.)

2 Department of Artificial Intelligence, Daegu Gyeongbuk Institute of Science & Technology (DGIST),
Daegu 42988, Republic of Korea

* Correspondence: inkyu.moon@dgist.ac.kr

Abstract: In this paper, we perform neural cryptanalysis on five block ciphers: Data Encryption
Standard (DES), Simplified DES (SDES), Advanced Encryption Standard (AES), Simplified AES
(SAES), and SPECK. The block ciphers are investigated on three different deep learning-based attacks,
Encryption Emulation (EE), Plaintext Recovery (PR), Key Recovery (KR), and Ciphertext Classification
(CC) attacks. The attacks attempt to break the block ciphers in various cases, such as different types
of plaintexts (i.e., block-sized bit arrays and texts), different numbers of round functions and quantity
of training data, different text encryption methods (i.e., Word-based Text Encryption (WTE) and
Sentence-based Text Encryption (STE)), and different deep learning model architectures. As a result,
the block ciphers can be vulnerable to EE and PR attacks using a large amount of training data,
and STE can improve the strength of the block ciphers, unlike WTE, which shows almost the same
classification accuracy as the plaintexts, especially in a CC attack. Moreover, especially in the KR
attack, the Recurrent Neural Network (RNN)-based deep learning model shows higher average
Bit Accuracy Probability than the fully connected-based deep learning model. Furthermore, the
RNN-based deep learning model is more suitable than the transformer-based deep learning model
in the CC attack. Besides, when the keys are the same as the plaintexts, the KR attack can perfectly
break the block ciphers, even if the plaintexts are randomly generated. Additionally, we identify that
DES and SPECK32/64 applying two round functions are more vulnerable than those applying the
single round function by performing the KR attack with randomly generated keys and randomly
generated single plaintext.

Keywords: artificial intelligence; cryptanalysis; block cipher; data encryption standard (DES);
advanced encryption standard (AES); SPECK; deep learning

MSC: 68P25; 68T07

1. Introduction

Due to frequent data breaches, security and privacy concerns have increased. To
protect personal information in data, various cryptographic algorithms [1,2] have been
utilized in data encryption and also in authentication protocols [3]. Since encrypted data
differs from the original data, the sensitive information in data can be concealed and cannot
be exposed to anyone who is not authorized. Thus, to ensure data confidentiality, crypto-
graphic algorithms must be secure against attacks. Cryptanalysis can evaluate the strength
of the cryptographic algorithms through legitimate attacks. The weaknesses found from the
cryptanalysis can help prevent the attacks and construct new cryptographic algorithms that
are more resistant to attacks. There are four types of attacks in cryptanalysis, the Ciphertext
Only Attack (COA), Known Plaintext Attack (KPA), Chosen Plaintext Attack (CPA), and
Chosen Ciphertext Attack (CCA), which are distinguished according to information that

Mathematics 2024, 12, 1936. https://doi.org/10.3390/math12131936 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12131936
https://doi.org/10.3390/math12131936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0882-8585
https://doi.org/10.3390/math12131936
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12131936?type=check_update&version=3

Mathematics 2024, 12, 1936 2 of 23

attackers can access. The ciphertext is used in COA, the pair of plaintext and ciphertext
is used in KPA, the ciphertext of the plaintext chosen by the attacker is used in CPA, and
the plaintext of the ciphertext chosen by the attacker is used in CCA. Furthermore, the
brute-force attack [4] tries all possible keys to decrypt ciphertext until the plaintext is
correctly recovered. Linear cryptanalysis [5,6] finds a linear equation of relation between
plaintext, ciphertext, and key. Differential cryptanalysis [7] analyzes the effect of plaintext
changes on ciphertext by comparing ciphertexts of slightly different plaintexts.

Recently, deep learning has been actively applied in information security [8]. It can
automatically detect intrusions and malware to protect computing resources, programs, and
data from attacks in cyberspace. Moreover, deep learning-based cryptanalysis can enhance
the efficiency and effectiveness in finding the weaknesses of cryptographic algorithms.
Neural-aided cryptanalysis [9], one of the types of deep learning-based cryptanalysis, uses
deep learning models in traditional cryptanalysis, and neural cryptanalysis investigates
the vulnerability of cryptographic algorithms and random number generators [10] by
using only deep learning models [11]. Unlike the conventional cryptanalysis methods
that require mathematical calculations and knowledge of cryptographic algorithms, neural
cryptanalysis can automatically identify the vulnerability of cryptographic algorithms
by recovering the keys from the pair of the plaintext and the ciphertext, recovering the
plaintext from the ciphertext, generating the ciphertext from the plaintext, and analyzing
the ciphertext without decryption.

Cyberattacks have been increasing and have caused massive damage, not only for
personnel but also for hospitals, banks, and the government. Also, since they are getting
sophisticated and complicated by using artificial intelligence, they have become more
challenging to detect and defend. Thus, to protect personal information in data from
cyberattacks, cryptographic algorithms must be analyzed by using deep learning models
to investigate whether they can resist artificial intelligence-based cyberattacks.

Therefore, we perform neural cryptanalysis and comprehensively analyze five block
ciphers, such as Data Encryption Standard (DES) [12], Simplified DES (SDES) [2], Advanced
Encryption Standard (AES) [13], Simplified AES (SAES) [14], and SPECK [15]. The block
ciphers are investigated on deep learning-based Encryption Emulation (EE), Plaintext
Recovery (PR), Key Recovery (KR), and Ciphertext Classification (CC) attacks by using
randomly generated block-sized bit arrays and texts as plaintexts. The block ciphers apply
different numbers of round functions in the encryption of the block-sized bit arrays, and
they are investigated by using the deep learning models trained with different numbers of
data in EE, PR, and KR attacks. Moreover, the block ciphers use two different text encryption
methods, Word-based Text Encryption (WTE) and Sentence-based Text Encryption (STE),
to encrypt the texts in various operation modes, and they are analyzed with deep learning
models in EE, PR, and CC attacks. To the best of our knowledge, this is the first study that
performs the neural cryptanalysis on block ciphers using both block-sized bit arrays and
texts as plaintexts and also the EE, PR, KR, and CC attacks in one paper. Furthermore,
this paper compares the results in various cases and also discovers a method that can
improve the strength of the block ciphers in terms of the encryption process. Consequently,
it can help improve the strength of the block ciphers and design more secure block ciphers
according to the weaknesses found from the neural cryptanalysis.

The main contributions of this paper are summarized as follows:

• We perform comprehensive neural cryptanalysis to analyze the vulnerability of five
block ciphers, Data Encryption Standard (DES), Simplified DES (SDES), Advanced
Encryption Standard (AES), Simplified AES (SAES), and SPECK, on Encryption Emu-
lation (EE), Plaintext Recovery (PR), Key Recovery (KR), and Ciphertext Classification
(CC) attacks;

• For the block ciphers on randomly generated block-sized bit arrays, different numbers
of round functions are applied in the encryption of the block-sized bit arrays, and the
deep learning models trained with different numbers of data are used for EE, PR, and
KR attacks;

Mathematics 2024, 12, 1936 3 of 23

• For the block ciphers on texts, two different text encryption methods, Word-based
Text Encryption (WTE) and Sentence-based Text Encryption (STE), are used in various
operation modes to encrypt the texts, and the deep learning models are utilized for
EE, PR, and CC attacks;

• Experimental results show that the block ciphers can be more vulnerable to deep
learning-based EE and PR attacks using more data in model training, and STE can
improve the strength of block ciphers compared to WTE, which has almost the same
classification accuracy as the plaintexts, especially in CC attacks;

• In KR attacks, the secret keys can be perfectly recovered when the randomly generated
keys are the same as the plaintexts;

• For neural cryptanalysis, the Recurrent Neural Network (RNN)-based deep learning
model is more suitable than the fully connected-based and transformer-based deep
learning models, especially in KR and CC attacks.

The rest of the paper is organized as follows: Section 2 introduces the previous works
on deep learning-based cryptanalysis. Section 3 describes the proposed method, such as
the block ciphers analyzed in this paper, the methods used for text encryption, and the
deep learning model architectures used in each attack. Section 4 provides the results in
various cases for each type of plaintext. Section 5 discusses why the results are shown in
each case and interprets the results by applying them in real situations. Finally, Section 6
concludes the paper by summarizing the proposed method and the results.

2. Related Works

Deep learning [16,17] has been applied in various fields, such as medical, financial, and
other industries. Neural cryptanalysis is one of the important deep learning applications
that evaluates the strength of cryptographic algorithms against deep learning-based attacks.
Unlike neuro-aide cryptanalysis, which utilizes deep learning to improve the effectiveness
of traditional cryptanalysis, neural cryptanalysis breaks the cryptographic algorithms only
with deep learning [11].

2.1. Deep Learning-Based Cryptanalysis on Image Data

Computer vision [18] analyzes visual data with deep learning models and uses the
analytic information in various tasks, such as in self-driving cars and for medical diagnosis.
It can also be utilized in cryptanalysis [19–21] to investigate the weaknesses of cryptographic
algorithms used for image encryption. In [19], they identified the vulnerability of optical-
based cryptographic algorithms, Double Random Phase Encoding (DRPE) [22] and Triple
Random Phase Encoding (TRPE) [23], by recovering the original image from the encrypted
image with a deep learning model based on ResNet [24]. The model was trained to output
the original image corresponding to the encrypted image fed into the model. Moreover,
they evaluated the proposed model by removing some pixel values in the encrypted image
and adding noise to the encrypted image. In [20], they used both simple [25] and complex
real-world [26] images and classified the encrypted images of DRPE with a DRPE pre-
trained deep learning model. In [21], they decrypted the encrypted images of a chaos-based
cryptographic algorithm [27] by using a Convolutional Neural Network (CNN) [28] with
an encoder–decoder structure.

Although Privacy-preserving Deep Learning (PPDL) schemes [29,30] with image
encryption were proposed to protect personal information in image data, they can also
be evidence of the weaknesses of the cryptographic algorithms as encrypted images can
be analyzed. In [31,32], they classified images encrypted with Homomorphic Encryption
(HE) [33,34], which has the same result in calculation regardless of whether the encryption
is performed before or after the operations. Considering the properties of HE, which only
supports addition and multiplication, activation functions in deep learning models were
approximated to low-degree polynomials. In [35], they encrypted images with AES [13],
Twofish [36], Serpent [37], and ChaosNet [38] in different operation modes, Electronic
Codebook (ECB), Cipher Block Chaining (CBC), and Enhanced Cipher Block Chaining

Mathematics 2024, 12, 1936 4 of 23

(ECBC). The encrypted images were decrypted in the last single round and then classified
with a CNN-based deep learning model.

2.2. Deep Learning-Based Cryptanalysis on Text Data

Natural Language Processing (NLP) [39], which mainly manipulates human language,
has been applied in many tasks, such as in language translation and Chatbots. It can also
be utilized in cryptanalysis [11,40–50] to investigate the vulnerability of cryptographic
algorithms used for text encryption. In [41], they recovered keys with a deep learning
model from the ciphertexts encrypted with classical cryptographic algorithms, Caesar,
Vigenère, and substitution cipher. The model was trained by using the relative frequencies
of characters in the ciphertexts. Similarly, in [42], they classified the ciphertexts of Caesar,
Vigenère, and substitution cipher with a Recurrent Neural Network (RNN)-based deep
learning model [51]. The model predicted the class of the ciphertexts fed into the model.
In [43], they encrypted plaintexts with Data Encryption Standard (DES), and the ciphertexts
were recovered into the plaintexts by using a deep learning model with a Multi-Layer
Perceptron (MLP) structure. Plaintexts of 64-bit block size and the keys were generated
by using a Pseudo Random Number Generator (PRNG) and used to train the model.
In [44], they used round-reduced DES in text encryption and predicted plaintexts from the
ciphertexts by using an MLP-based deep learning model. In [45], they recovered plaintexts
with a deep learning model, which consisted of only Fully Connected layers (FC), from the
ciphertexts encrypted with Advanced Encryption Standard (AES) using 128-bit and 256-bit
key sizes. In [46], they used randomly generated block-sized plaintexts and encrypted the
plaintexts with lightweight block ciphers, Simplified DES (SDES) [2], SIMON, and SPECK.
The keys from the ciphertexts were recovered by using a deep learning model with only
FC layers. In [47], they encrypted plaintexts with SDES [2], Simplified AES (SAES), and
round-reduced SPECK. The model with skip connection [24] was used for key prediction.
In [48], they analyzed SM4 by recovering keys with MLP-based deep learning models,
and the plaintexts, ciphertexts, and the keys used in the paper were generated by using
a random number generator. In [49], they used an RNN-based deep learning model [51]
to generate ciphertexts and recover plaintexts in small-PRESENT. In [50], they encrypted
texts as plaintexts with AES-128 and classified them by using an RNN-based deep learning
model [51]. However, most previous studies analyzed cryptographic algorithms only on a
single attack and used images or block-sized bit arrays as plaintexts. In contrast, this paper
analyzes block ciphers from more viewpoints than the previous works by performing more
than two types of attacks in various cases. Furthermore, the factors that can affect the
strength of the block ciphers are identified. Specifically, the impact of the number of round
functions, the quantity of training data, the text encryption method in various operation
modes, and the architecture of deep learning models for the attack are investigated. Also,
ideas that can improve the security of the block ciphers are suggested.

3. Material and Methods
3.1. Block Ciphers

In this section, we introduce the five block ciphers, Data Encryption Standard (DES),
Simplified DES (SDES), Advanced Encryption Standard (AES), Simplified AES (SAES), and
SPECK32/64, evaluated in this paper.

3.1.1. Data Encryption Standard (DES)

In the 1970s, Data Encryption Standard (DES) [12], first developed by IBM, was
adopted as an encryption standard by the National Institute of Standards and Technology
(NIST), known as the National Bureau of Standards (NBS). DES is a block cipher of a Feistel
Network (FN) and uses a symmetric key in encryption. It generates 64-bit ciphertext from
64-bit plaintext by using a 64-bit key, including 8-bit parity bits. Initial Permutation (IP) is

Mathematics 2024, 12, 1936 5 of 23

first applied to the plaintext P before round functions and then divided into right and left
half blocks, R0 and L0, as follows:

IP(P) = L0R0 (1)

where IP(·) represents Initial Permutation (IP). In each round function f, expansion P-Box
expands the 32-bit right half block Rr−1 into a 48-bit block, and then an XOR operation is
applied to it with a 48-bit key kr of the round function. After that, S-Box transforms the
48-bit block into a 32-bit block and straight P-Box permutes it. Finally, the right output
block Rr of the round function is generated via an XOR operation of the straight P-Box
output and the left half block Lr−1. The right half block Rr−1 is the left output block Lr
as follows:

Rr = f (Rr−1, kr)⊕ Lr−1 (2)

Lr = Rr−1 (3)

where R, L, and k represent the right block, left block, and the key in the round function of
the corresponding subscript. After repeating this process 15 more times, Final Permutation
(FP), the inverse process of the IP, is applied and generates a 64-bit ciphertext C as follows:

C = FP(R16L16) = IP−1(R16L16) (4)

where FP(·) represents Final Permutation (FP). The keys for each round function are
generated by shifting and compressing the block after removing 8-bit parity bits.

The simplified version of DES, Simplified DES (SDES) [2], has 16-bit plaintext, 16-bit
ciphertext, and a 16-bit key in 4 round functions. Straight P-Box, including IP and FP, is not
used in SDES.

3.1.2. Advanced Encryption Standard (AES)

As the key space of DES is not large enough to be secure against a brute-force attack,
Advanced Encryption Standard (AES) [13], developed by Joan Daemen and Vincent Rijmen,
was selected as the new encryption standard in 2001. AES is a block cipher of a Substitution
Permutation Network (SPN) and uses a symmetric key in encryption. It encrypts 128-bit
plaintext into 128-bit ciphertext. According to the key size, different numbers of round
functions are applied, which are 10, 12, and 14 round functions for 128-, 192-, and 256-bit
keys, respectively. There are four operations in each round function: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. Plaintext is arranged into a 4 × 4 byte matrix called a
state. SubBytes substitutes 16 bytes in the state according to the S-BOX that has an 8-bit
input and 8-bit output. ShiftRows shifts the second, third, and fourth rows in a state once,
twice, and thrice to the left, respectively. MixColumns multiplies each column in a state
with a constant matrix over the finite field GF(28) as follows:

d1, j
d2, j
d3, j
d4, j

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


c1, j
c2, j
c3, j
c4, j

 (5)

where ci,j and di,j represent a byte at (i, j) in a state and result of the MixColumns operation,
respectively. AddRoundKey is an XOR operation for each byte in the state and correspond-
ing byte in the key of each round function. It is applied to the state of the plaintext before
the round functions, and then SubBytes, ShiftRows, MixColumns, and AddRoundKey are
applied in sequence for each round function. The final round function applies only three
operations, except Mixcolumns, in the same order as the previous round functions. The
keys for each round function are generated using key expansion.

The simplified version of AES, Simplified AES (SAES) [14], encrypts 16-bit plaintext
into 16-bit ciphertext by using a 16-bit key in 2 round functions. Since the block size of SAES

Mathematics 2024, 12, 1936 6 of 23

is smaller than AES, plaintext is arranged into a 2 × 2 nibble matrix, not a 4 × 4 byte matrix
as in AES. It also uses SubNibbles instead of SubBytes as does AES in each round function.

3.1.3. SPECK

Lightweight ciphers have been actively studied for security in constrained environ-
ments like Internet of Things (IoT) devices. SPECK [15] is one of the lightweight block
ciphers, which was released by the National Security Agency (NSA) in 2013. It is based
on an Addition-Rotation-XOR (ARX) operation and uses various sizes of blocks and keys.
The block has two words of 16-, 24-, 32-, 48-, and 64-bit, and the key has two, three, and
four words that are the same size as the block. The number of round functions also differs
according to the size of the block and key and the number of the words in the key. It can be
written as SPECK2n/nm, where 2 represents the number of words in the block, n represents
the size of the word in the block and key, and m represents the number of words in the
key. For example, SPECK32/64, used in this paper, has two 16-bit words in a block and
four 16-bit words in the key, and it applies 22 round functions. Each round function r first
applies right rotation to the left-half word Lr−1 and then adds the right-half word Rr−1. It
then generates the left output word Lr of the round function via an XOR operation with
key kr of the round function. The right output word Rr of the round function is the result of
the XOR operation of the left rotated right half word and left output word Lr of the round
function as follows:

Lr = ((Lr−1 ≫ r1) ⊞ Rr−1)⊕ kr (6)

Rr = (Rr−1 ≪ r2) ⊕ Lr (7)

where >> and << represent right and left rotations, ⊞ represents addition modulo word size
in the block and key, and ⊕ represents bitwise XOR operation, respectively. The rotated
bits r1 and r2 are r1 = 7 and r2 = 2 for SPECK32/64 and r1 = 8 and r2 = 3 for the other cases.
The keys for each round function are generated by the same process as the round function
in the encryption.

3.2. Text Encryption Methods

In this section, two different text encryption methods, Word-based Text Encryption
(WTE) and Sentence-based Text Encryption (STE), are described, which are used to figure
out how to improve the strength of block ciphers in text encryption.

3.2.1. Word-Based Text Encryption (WTE)

Since sentences consist of words, text can be encrypted word by word. In other
words, text is divided into word units, and each word is separately encrypted. The Word-
based Text Encryption (WTE) consists of five steps, which are the text pre-processing,
tokenization, binary encoding, padding, and encryption steps. The text pre-processing step
first changes uppercase to lowercase and removes the punctuation and emojis, which are
non-alphabetics, in plaintext. The clean plaintext, called the pre-processed plaintext, is then
divided into words in the tokenization step, and each word is encoded into a bit array in
the binary encoding step, according to the ASCII code. Each bit array is divided into blocks,
which are the same size as the block size in the block cipher. If the length of the bit array
is not a multiple of the block size and cannot be divided by the block size, zero-padding
is applied in the padding step, and then each block is encrypted with a block cipher in
the encryption step. The encrypted blocks in each word are combined, and it results in
one cipher word for one word. Thus, the number of cipher words CW in ciphertext CWTE
encrypted with WTE is the same as the number of words PW in clean plaintext P as follows:

NCW(CWTE) = NPW(P) (8)

where NCW(CWTE) and NPW(P) represent the number of cipher words in the ciphertext
encrypted with WTE and the number of words in the clean plaintext, respectively. The
process of WTE is depicted in Figure 1.

Mathematics 2024, 12, 1936 7 of 23

Mathematics 2024, 12, 1936 7 of 24

results in one cipher word for one word. Thus, the number of cipher words CW in cipher-
text CWTE encrypted with WTE is the same as the number of words PW in clean plaintext
P as follows:

𝑁஼ௐ(𝐶ௐ்ா) = 𝑁௉ௐ(𝑃) (8)

where NCW(CWTE) and NPW(P) represent the number of cipher words in the ciphertext en-
crypted with WTE and the number of words in the clean plaintext, respectively. The pro-
cess of WTE is depicted in Figure 1.

Figure 1. The Word-based Text Encryption (WTE) process. There are five steps, text pre-processing,
tokenization, binary encoding, padding, and WTE encryption, in sequence.

3.2.2. Sentence-Based Text Encryption (STE)
A sentence can be encrypted as itself without dividing the sentence into words or

characters. In Sentence-based Text Encryption (STE), there are four steps, the text pre-pro-
cessing, binary encoding, padding, and encryption steps. After generating clean plaintext
in the text pre-processing step by converting uppercase into lowercase and removing non-
alphabetic characters, like emojis, every character in the clean plaintext, including
whitespace, is encoded into a bit array B in the binary encoding steps, according to the
ASCII code. The bit array is then divided into blocks of the specific size corresponding to
the block size bs in the block cipher. To fit the bit array into the multiple of the block size,
zero-padding Z is applied in the padding step. The blocks in the bit array with padding
are then encrypted with the block cipher in the encryption step. Consequently, the number
of cipher words CW is the same as the number of the divided blocks in the bit array with
padding as follows:

𝑁஼ௐ(𝐶ௌ்ா) =
𝑙𝑒𝑛(𝐵 + 𝑍)

𝑏𝑠
 (9)

where NCW(CSTE) and len(B + Z) represent the number of cipher words in the ciphertext
encrypted with STE and the length of bit array with padding, respectively. The process of
STE is depicted in Figure 2.

Figure 1. The Word-based Text Encryption (WTE) process. There are five steps, text pre-processing,
tokenization, binary encoding, padding, and WTE encryption, in sequence.

3.2.2. Sentence-Based Text Encryption (STE)

A sentence can be encrypted as itself without dividing the sentence into words or char-
acters. In Sentence-based Text Encryption (STE), there are four steps, the text pre-processing,
binary encoding, padding, and encryption steps. After generating clean plaintext in the text
pre-processing step by converting uppercase into lowercase and removing non-alphabetic
characters, like emojis, every character in the clean plaintext, including whitespace, is
encoded into a bit array B in the binary encoding steps, according to the ASCII code. The
bit array is then divided into blocks of the specific size corresponding to the block size bs in
the block cipher. To fit the bit array into the multiple of the block size, zero-padding Z is
applied in the padding step. The blocks in the bit array with padding are then encrypted
with the block cipher in the encryption step. Consequently, the number of cipher words CW
is the same as the number of the divided blocks in the bit array with padding as follows:

NCW(CSTE) =
len(B + Z)

bs
(9)

where NCW(CSTE) and len(B + Z) represent the number of cipher words in the ciphertext
encrypted with STE and the length of bit array with padding, respectively. The process of
STE is depicted in Figure 2.

3.3. Deep Learning Model Architectures

We investigate the security of five block ciphers, SDES [2], SAES [14], DES [12],
AES-128 [13], and SPECK32/64 [15], by performing deep learning-based attacks, En-
cryption Emulation (EE), Plaintext Recovery (PR), Key Recovery (KR), and Ciphertext
Classification (CC) attacks. EE is an attack that tries to generate the ciphertexts from the
plaintexts, and PR is the reverse process of EE, which tries to recover the plaintexts from
the ciphertexts without knowledge of the key. KR attempts to recover the keys from the
pairs of plaintext and ciphertext, and CC is an attack that attempts to classify the cipher-
texts without decryption. The deep learning model architectures used for attacks on block
ciphers using block-sized bit arrays and texts as plaintext, respectively, are presented in
this section.

Mathematics 2024, 12, 1936 8 of 23Mathematics 2024, 12, 1936 8 of 24

Figure 2. The Sentence-based Text Encryption (STE) process. There are four steps, text pre-pro-
cessing, binary encoding, padding, and STE encryption, in sequence.

3.3. Deep Learning Model Architectures
We investigate the security of five block ciphers, SDES [2], SAES [14], DES [12], AES-

128 [13], and SPECK32/64 [15], by performing deep learning-based aĴacks, Encryption
Emulation (EE), Plaintext Recovery (PR), Key Recovery (KR), and Ciphertext Classifica-
tion (CC) aĴacks. EE is an aĴack that tries to generate the ciphertexts from the plaintexts,
and PR is the reverse process of EE, which tries to recover the plaintexts from the cipher-
texts without knowledge of the key. KR aĴempts to recover the keys from the pairs of
plaintext and ciphertext, and CC is an aĴack that aĴempts to classify the ciphertexts with-
out decryption. The deep learning model architectures used for aĴacks on block ciphers
using block-sized bit arrays and texts as plaintext, respectively, are presented in this sec-
tion.

3.3.1. Deep Learning Models for Encryption Emulation (EE), Plaintext Recovery (PR),
and Key Recovery (KR) AĴacks on Block-Sized Bit Arrays

For Encryption Emulation (EE), Plaintext Recovery (PR), and Key Recovery (KR) at-
tacks on block-sized bit arrays, fully connected-based and Recurrent Neural Network
(RNN)-based, bidirectional Long Short-Term Memory (BiLSTM) [51], deep learning mod-
els are utilized. Although a fully connected-based deep learning model is the most
straightforward neural network, it is still mainly used in neural cryptanalysis. It is because
cryptographic algorithms have diffusion and confusion properties, where a single bit in
the plaintext or key can affect all of the bits in the ciphertext. Since the fully connected-
based deep learning model can train the global features in the data, it has been considered
more suitable in neural cryptanalysis. Therefore, we first perform EE, PR, and KR aĴacks
on block-sized bit arrays by using a fully connected-based deep learning model. As shown
in Figure 3a, the model comprises four fully connected layers, which are followed by batch
normalization and ReLU, but the last layer is applied a sigmoid activation function. Each
layer has 512, 1024, and 512 nodes, respectively, and the last layer has the number of nodes
that is the same as the block size.

Moreover, since the pairs of the plaintext and the ciphertext are fed into the model in
KR aĴacks on block-sized bit arrays, it can be considered as two sequences. So, the RNN-
based deep learning model designed for sequential data can train the relation between the
plaintexts and the ciphertexts. Also, to investigate if there are any sequential features in
the plaintexts that represent corresponding ciphertexts and vice versa, we additionally
perform not only a KR aĴack but also EE and PR aĴacks on block-sized bit arrays by using
BiLSTM. It is one of the RNN-based deep learning models, which can process the

Figure 2. The Sentence-based Text Encryption (STE) process. There are four steps, text pre-processing,
binary encoding, padding, and STE encryption, in sequence.

3.3.1. Deep Learning Models for Encryption Emulation (EE), Plaintext Recovery (PR), and
Key Recovery (KR) Attacks on Block-Sized Bit Arrays

For Encryption Emulation (EE), Plaintext Recovery (PR), and Key Recovery (KR)
attacks on block-sized bit arrays, fully connected-based and Recurrent Neural Network
(RNN)-based, bidirectional Long Short-Term Memory (BiLSTM) [51], deep learning models
are utilized. Although a fully connected-based deep learning model is the most straight-
forward neural network, it is still mainly used in neural cryptanalysis. It is because
cryptographic algorithms have diffusion and confusion properties, where a single bit in the
plaintext or key can affect all of the bits in the ciphertext. Since the fully connected-based
deep learning model can train the global features in the data, it has been considered more
suitable in neural cryptanalysis. Therefore, we first perform EE, PR, and KR attacks on
block-sized bit arrays by using a fully connected-based deep learning model. As shown in
Figure 3a, the model comprises four fully connected layers, which are followed by batch
normalization and ReLU, but the last layer is applied a sigmoid activation function. Each
layer has 512, 1024, and 512 nodes, respectively, and the last layer has the number of nodes
that is the same as the block size.

Moreover, since the pairs of the plaintext and the ciphertext are fed into the model in
KR attacks on block-sized bit arrays, it can be considered as two sequences. So, the RNN-
based deep learning model designed for sequential data can train the relation between the
plaintexts and the ciphertexts. Also, to investigate if there are any sequential features in the
plaintexts that represent corresponding ciphertexts and vice versa, we additionally perform
not only a KR attack but also EE and PR attacks on block-sized bit arrays by using BiLSTM.
It is one of the RNN-based deep learning models, which can process the sequences in both
forward and backward directions by using input, output, and forget gates that control the
information passed, stored, and removed in each step. As shown in Figure 3b, the model
consists of three BiLSTMs with 256 hidden state sizes and a fully connected layer followed
by a sigmoid. Since DES and SPECK encrypt the plaintexts split into left and right blocks,
the plaintexts inputs for the EE attack on block-sized bit arrays, and the ciphertexts inputs
for the PR attack on block-sized bit arrays were divided into two parts, and each part was
then fed into the model in sequence. Similarly, in the KR attack on block-sized bit arrays,
the pair of plaintext and the ciphertext was fed into the model separately. Thus, the models
had a sequence length of two, and each input size was half of the block size for EE and PR
attacks and the same size as the block size for the KR attack.

Mathematics 2024, 12, 1936 9 of 23

Mathematics 2024, 12, 1936 9 of 24

sequences in both forward and backward directions by using input, output, and forget
gates that control the information passed, stored, and removed in each step. As shown in
Figure 3b, the model consists of three BiLSTMs with 256 hidden state sizes and a fully
connected layer followed by a sigmoid. Since DES and SPECK encrypt the plaintexts split
into left and right blocks, the plaintexts inputs for the EE aĴack on block-sized bit arrays,
and the ciphertexts inputs for the PR aĴack on block-sized bit arrays were divided into
two parts, and each part was then fed into the model in sequence. Similarly, in the KR
aĴack on block-sized bit arrays, the pair of plaintext and the ciphertext was fed into the
model separately. Thus, the models had a sequence length of two, and each input size was
half of the block size for EE and PR aĴacks and the same size as the block size for the KR
aĴack.

Figure 3. The deep learning models for Encryption Emulation (EE), Plaintext Recovery (PR), and
Key Recovery (KR) aĴacks on block-sized bit arrays. (a) Fully connected-based deep learning model
for EE, PR, KR aĴacks on block-sized bit arrays. (b) RNN-based deep learning model (BiLSTM) for
EE, PR, and KR aĴacks on block-sized bit arrays.

3.3.2. Deep Learning Models for Encryption Emulation (EE) and Plaintext Recovery (PR)
AĴacks on Texts

For Encryption Emulation (EE) and Plaintext Recovery (PR) aĴacks on texts, a trans-
former-based deep learning model, Text-to-Text Transfer Transformer (T5)-small [52], is
utilized. The transformer is a state-of-the-art deep learning model in NLP that uses only
aĴention mechanisms without RNN-based structures. It performs beĴer in capturing the
long-term dependencies than Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and even aĴention mechanisms in RNN-based deep learning models. Since EE

Figure 3. The deep learning models for Encryption Emulation (EE), Plaintext Recovery (PR), and Key
Recovery (KR) attacks on block-sized bit arrays. (a) Fully connected-based deep learning model for
EE, PR, KR attacks on block-sized bit arrays. (b) RNN-based deep learning model (BiLSTM) for EE,
PR, and KR attacks on block-sized bit arrays.

3.3.2. Deep Learning Models for Encryption Emulation (EE) and Plaintext Recovery (PR)
Attacks on Texts

For Encryption Emulation (EE) and Plaintext Recovery (PR) attacks on texts, a transformer-
based deep learning model, Text-to-Text Transfer Transformer (T5)-small [52], is utilized.
The transformer is a state-of-the-art deep learning model in NLP that uses only attention
mechanisms without RNN-based structures. It performs better in capturing the long-
term dependencies than Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and even attention mechanisms in RNN-based deep learning models. Since EE and PR
attacks on texts use texts as input and output, plaintexts as input, and the ciphertexts as
output in EE attacks, and ciphertexts as input and the plaintexts as output in PR attacks,
the transformer-based sequence-to-sequence deep learning model is chosen among the
transformer-based deep learning models. Unlike the other transformer-based sequence-to-
sequence deep learning models that were designed for specific NLP tasks, T5 converts every
NLP task into text-to-text problems. Therefore, we perform EE and PR attacks on texts by
using T5. As shown in Figure 4, the model comprises a stack of encoder blocks and decoder
blocks. Each encoder has a multi-head encoder self-attention and feed-forward layer,
and each decoder has a multi-head decoder self-attention, multi-head encoder–decoder
attention, and feed-forward layer with ReLU. After each layer, the normalization layer,
residual skip connection, and 0.1 dropout is followed, and dropout is also applied to the
output of the ReLU. The inputs for the first encoder block and decoder block are applied

Mathematics 2024, 12, 1936 10 of 23

to the embedding process before being fed into the first encoder block and decoder block.
Each output of the last decoder block is passed into the fully connected layer, which has
the same number of nodes as the number of tokens and is followed by softmax. The
embedding dimension is 512, the number of self-attention heads is six, the feed-forward has
a 2048 output dimensionality, and six encoder blocks and six decoder blocks are stacked.

Mathematics 2024, 12, 1936 10 of 24

and PR aĴacks on texts use texts as input and output, plaintexts as input, and the cipher-
texts as output in EE aĴacks, and ciphertexts as input and the plaintexts as output in PR
aĴacks, the transformer-based sequence-to-sequence deep learning model is chosen
among the transformer-based deep learning models. Unlike the other transformer-based
sequence-to-sequence deep learning models that were designed for specific NLP tasks, T5
converts every NLP task into text-to-text problems. Therefore, we perform EE and PR at-
tacks on texts by using T5. As shown in Figure 4, the model comprises a stack of encoder
blocks and decoder blocks. Each encoder has a multi-head encoder self-aĴention and feed-
forward layer, and each decoder has a multi-head decoder self-aĴention, multi-head en-
coder–decoder aĴention, and feed-forward layer with ReLU. After each layer, the normal-
ization layer, residual skip connection, and 0.1 dropout is followed, and dropout is also
applied to the output of the ReLU. The inputs for the first encoder block and decoder block
are applied to the embedding process before being fed into the first encoder block and
decoder block. Each output of the last decoder block is passed into the fully connected
layer, which has the same number of nodes as the number of tokens and is followed by
softmax. The embedding dimension is 512, the number of self-aĴention heads is six, the
feed-forward has a 2048 output dimensionality, and six encoder blocks and six decoder
blocks are stacked.

Figure 4. The deep learning models for Encryption Emulation (EE) and Plaintext Recovery (PR)
attacks on texts. Transformer-based deep learning model (T5-small) for EE and PR attacks on texts.

3.3.3. Deep Learning Models for Ciphertext Classification (CC) Attack on Texts

For Ciphertext Classification (CC) attacks on texts, RNN-based and transformer-based
deep learning models, which are bidirectional GRU (BiGRU) [53] and Bidirectional Encoder
Representations from Transformers (BERT)-base [54], respectively, are utilized. Since the
plaintexts are sequential data, an RNN-based deep learning model designed for sequential
data can be used to train the relation between the tokens in the sentence. Therefore, we
perform CC attack on texts by using BiGRU, one of the RNN-based deep learning models.
It can process the sequences in the backward direction as well as forward direction and
consists of a GRU that uses reset and update gates to determine how much information
of the context sequences is to be removed and passed. As shown in Figure 5a, the model

Mathematics 2024, 12, 1936 11 of 23

consists of input embedding, three BiGRUs, and a fully connected layer followed by
softmax. The embedding dimension is 256, and each BiGRU has a 128 hidden state size.

Mathematics 2024, 12, 1936 11 of 24

Figure 4. The deep learning models for Encryption Emulation (EE) and Plaintext Recovery (PR) at-
tacks on texts. Transformer-based deep learning model (T5-small) for EE and PR aĴacks on texts.

3.3.3. Deep Learning Models for Ciphertext Classification (CC) AĴack on Texts
For Ciphertext Classification (CC) aĴacks on texts, RNN-based and transformer-

based deep learning models, which are bidirectional GRU (BiGRU) [53] and Bidirectional
Encoder Representations from Transformers (BERT)-base [54], respectively, are utilized.
Since the plaintexts are sequential data, an RNN-based deep learning model designed for
sequential data can be used to train the relation between the tokens in the sentence. There-
fore, we perform CC aĴack on texts by using BiGRU, one of the RNN-based deep learning
models. It can process the sequences in the backward direction as well as forward direc-
tion and consists of a GRU that uses reset and update gates to determine how much infor-
mation of the context sequences is to be removed and passed. As shown in Figure 5a, the
model consists of input embedding, three BiGRUs, and a fully connected layer followed
by softmax. The embedding dimension is 256, and each BiGRU has a 128 hidden state size.

Furthermore, we additionally perform CC aĴack on texts by using a state-of-the-art
deep learning model for text classification, BERT-base [54]. It is a transformer-based deep
learning model that uses only the encoder part, a stack of encoder blocks. As shown in
Figure 4, each encoder block has the multi-aĴention encoder self-aĴention and the feed-
forward with GELU, and each layer is followed by a normalization layer, skip connection,
and 0.1 dropout in sequence. The inputs are fed into the first encoder block after applying
the input embedding and positional embedding. The fully connected layer with the same
number of nodes as the number of classes comes after the stack of the encoder blocks, and
softmax is applied to its output to classify the ciphertexts. As shown in Figure 5b, the
embedding dimension is 768, the number of self-aĴention heads is 12, the feed-forward
has 3072 output dimensionality, 12 encoder blocks and 12 decoder blocks are stacked, and
the last fully connected layer has the number of nodes equal to the number of classes.

Figure 5. The deep learning models for Ciphertext Classification (CC) aĴack on texts. (a) RNN-based
deep learning model (BiGRU) for CC aĴack on texts. (b) Transformer-based deep learning model
(BERT-base) for CC aĴack on texts.

4. Experiments
4.1. Experimental Setup

All of the models in this paper were constructed by using Python with the PyTorch
framework. A server in our laboratory with Intel Xeon Silver 4214 CPU and NVIDIA RTX
A5000 GPU was used to train the models and generate the data. The models for Encryp-
tion Emulation (EE), Plaintext Recovery (PR), and Key Recovery (KR) aĴacks on block
ciphers using block-sized bit arrays, fully connected-based, and BiLSTM, were trained for
300 epochs and 128 batch sizes by using a binary cross-entropy loss function and AdamW

Figure 5. The deep learning models for Ciphertext Classification (CC) attack on texts. (a) RNN-based
deep learning model (BiGRU) for CC attack on texts. (b) Transformer-based deep learning model
(BERT-base) for CC attack on texts.

Furthermore, we additionally perform CC attack on texts by using a state-of-the-art
deep learning model for text classification, BERT-base [54]. It is a transformer-based deep
learning model that uses only the encoder part, a stack of encoder blocks. As shown in
Figure 4, each encoder block has the multi-attention encoder self-attention and the feed-
forward with GELU, and each layer is followed by a normalization layer, skip connection,
and 0.1 dropout in sequence. The inputs are fed into the first encoder block after applying
the input embedding and positional embedding. The fully connected layer with the same
number of nodes as the number of classes comes after the stack of the encoder blocks, and
softmax is applied to its output to classify the ciphertexts. As shown in Figure 5b, the
embedding dimension is 768, the number of self-attention heads is 12, the feed-forward
has 3072 output dimensionality, 12 encoder blocks and 12 decoder blocks are stacked, and
the last fully connected layer has the number of nodes equal to the number of classes.

4. Experiments
4.1. Experimental Setup

All of the models in this paper were constructed by using Python with the PyTorch
framework. A server in our laboratory with Intel Xeon Silver 4214 CPU and NVIDIA
RTX A5000 GPU was used to train the models and generate the data. The models for
Encryption Emulation (EE), Plaintext Recovery (PR), and Key Recovery (KR) attacks on
block ciphers using block-sized bit arrays, fully connected-based, and BiLSTM, were
trained for 300 epochs and 128 batch sizes by using a binary cross-entropy loss function
and AdamW optimizer with a 0.001 learning rate. In EE and PR attacks on block ciphers
using texts, the deep learning models of T5-small architecture were trained by using a
cross-entropy loss function and Adam optimizer with a 0.005 learning rate, and they used
64 batch sizes and 100 epochs. The models used for Ciphertext Classification (CC) attacks
on block ciphers using texts, BiGRU, and BERT-base, were trained for 100 epochs with an
Adam optimizer and cross-entropy loss function. The BiGRU used a 0.001 learning rate
and 128 batch sizes, and the BERT-base used 0.0001 and 8 for the learning rate and batch
sizes, respectively.

Mathematics 2024, 12, 1936 12 of 23

4.2. Data Generation
4.2.1. Block-Sized Bit Arrays

For Encryption Emulation (EE) and Plaintext Recovery (PR) attacks on block ciphers
using block-sized bit arrays, the integers were first randomly generated by using the
method in the ‘random’ module of Python named the ‘getrandbits’ with block size as a
parameter, which can generate the integers of a specific bit length. Then, the integers were
encoded into the binary arrays and then encrypted with the block ciphers.

For Key Recovery (KR) attacks on block ciphers using block-sized bit arrays, a single
randomly selected block-sized bit array was used as a plaintext and it was encrypted
with keys that were randomly generated by using the same method, with the ‘getrandbits’
method in the ‘random’ module in Python, for the plaintexts in EE and PR attacks. The
sample plaintexts and the ciphertexts for EE and PR attacks on the five block ciphers using
block-sized bit arrays are shown in Table 1.

Table 1. Sample plaintexts (PT) and ciphertexts (CT) for Encryption Emulation (EE) and Plaintext
Recovery (PR) attacks on the five block ciphers using block-sized bit arrays.

Block Cipher Block Size

SDES 16-bit
PT 11000011 00110011
CT 10101110 00000011

SAES 16-bit
PT 11000111 01010100
CT 10100101 11000011

DES 64-bit
PT 10000010 00000001 00001100 01100010

11110101 11110101 10011011 00100010

CT 10100001 01100101 10110101 10011101
01100011 11100100 01101100 01100000

AES-128 128-bit

PT

11010111 00101011 01100001 00001000
00101010 01000000 01011111 00010010
10111001 01100011 11110011 01111111
01100111 10000001 01001100 00011111

CT

10100110 01111011 00010010 11001010
00011001 01101110 01110001 11000111
00111010 01010110 10010001 10010111
01101111 11111010 00001110 01010001

SPECK32/64 32-bit
PT 11100100 01100101 11100001 01010000
CT 10011011 11010000 01110000 11100101

4.2.2. Texts

For Encryption Emulation (EE) and Plaintext Recovery (PR) attacks on block ciphers
using texts, randomly generated texts were used as plaintexts. Each sentence has 30 words,
and the words are combinations of randomly selected lowercase letters. The length of each
word was randomly decided in the range from 1 to 15. The number of sentences is 50,000,
and they were divided into 25,000 sentences for training data and 25,000 sentences for
the test.

For Ciphertext Classification (CC) attacks on block ciphers using texts, the IMDB
dataset [55] was used as plaintexts. The texts in the dataset are the movie reviews that
have two classes, positive and negative. The total number of the texts is 50,000, consisting
of 25,000 positive reviews and 25,000 negative reviews. They were divided in half and
used each for train and test data, respectively, which each have 12,500 positive reviews and
12,500 negative reviews for a total of 25,000 texts. The texts were encrypted with the block
ciphers using two different text encryption methods, Word-based Text Encryption (WTE)
and Sentence-based Text Encryption (STE). Sample plaintexts and the ciphertexts for CC
attacks on five block ciphers using texts are shown in Table 2.

Mathematics 2024, 12, 1936 13 of 23

Table 2. Sample plaintexts (PT) and ciphertexts (CT) for Ciphertext Classification (CC) attacks on the
five block ciphers using texts.

Block
Cipher

Word-Based Text Encryption
(WTE)

Sentence-Based Text Encryption
(STE)

Raw PT Long, boring, blasphemous. Never have I been so glad to see ending credits roll.

Clean PT <sos> long boring <unk> never have i been so glad to see ending credits roll

CT

SDES

F898FCF0 0D6AE0E4 E49D609FE0E4
63147C7C E8746F9AF10C E3F76F9A

7C7E 0E05778D F898
65628A18 F299 E48E9BEF

778D728CE0E4 0A687F707660FCF0 F4947585

F898 CD2F 0D6A E0E4 13A4 E0E1
7AE0 252C 6314 B8BB E874 6F9A
3151 E3F7 6F9A 7A5B 13A4 E2E4
28A3 F898 154D 1E6D 4828 F299

E5B3 E2E4 9D5C 836B 7AE0 252C
0A68 7F70 7660 CD2F F494 7585

SAES

99C6AA77 D589FBB8 DD698D6CFBB8
BF396E2B 5BB17E13AC87 A3F47E13

60EB 5D618F36 99C6
C2AE919C 9A56 79C361FB

8F36BA52FBB8 E7D79F3C99FCAA77
9D66C58E

99C6 ABF7 D589 FBB8 A008 E4B7
8726 6D9B BF39 63BB 5BB1 7E13
A207 A3F4 7E13 D00A A008 5F31
69EB 99C6 0007 A584 654B 9A56
2A4B 5F31 C006 9BBC 8726 6D9B
E7D7 9F3C 99FC ABF7 9D66 C58E

DES

CD4566317E56A93A B08A99398DBA92F9
4EEB5E9AFEA28938 AF17B02BA5C5338C

9DFC755044A4DCBA D6C05F3006D20C3D
A7143EBC9CAE9204 769946F99C485DEE

5610353D62C49911 8D74B609B71E5152
3E45D02D673D4408 CB329810D3237036
62D20D09B363E0E8 3B3D46C16952F5E1

80DF7F1D6EDA029D

77237D3087C01421 1C625E2ACFA91E43
1798A6F4C1728A3 441CB1F82DE88B91
D115601D4635B08B 17E83944B92A2C3

6EDEE356D92CFB57 9C307FC6A8AB315C
DA6307B428EFA210

AES-128

4E868947AE87032CB4AB3AB1259FD2CC
70F97BAD90E32C3DC2BA64F333C8FC34
79782DCA09F8F78E79D155EF275766AB
7D380847DE6926FEE197829340375F85

DB4A3E7157DCCD0DE4532E6D513CE3E3
FED33C19304B8BFAE39F312D59B8679F
7A3DBE11315B8BD7F325BA9F0A560E42
85672272B1FD784F4FCE630D87CECF45
37A8F73D65868E4D2AD78E3817611106

F2440CE66FB9A30D2F3496AAFFE8D40B
EEB323DDA10073F6D56137102684D6D9
44A2565D57F17525BE9FEBE534550C61

1FECEA93FC81AE8541C24FB09BA36BAF
CD66B413450473A63082B3CBCC2673B7
F5171781FD2E56C8575C778F38F16402

606DD27DB193B86D47E752D9C414C902
58965476EDC7D79BCB9F010B90913C18

CE5AFF1E3E248FBB30A80BD0850C65E0
83BBE3B98C3FA6EEDB22DF9A2FD954F0
A1CF4930A7119C65861CB17D8A1A7D40

SPECK32/64

763B3E6C 9A74EB3F F7E740D152C9C786
46D232A0 A9D02DB1A873A100 B1C1106D

59C3F40D B6D58649 28D6EEC1
A47F9C19 64625A3A 4FA8C3B4

D691084652C9C786 33CBDB0F0E5F734E
765A23F2

994E22A7 9A74EB3F F8727415
6CA852E0 EF876AE3 A9D02DB1

15112268 8C2B4007 EF230235
73914DFB F9692D63 9663649E

53C4D879 112B4EAD 6CA852E0
33CBDB0F 61BE74EB 765A23F2

4.3. Neural Cryptanalysis on Block-Sized Data
4.3.1. Results on Different Numbers of Training Data and Round Functions

To investigate the impact of the data amount used in training the models for Encryption
Emulation (EE) and Plaintext Recovery (PR) attacks, we trained the fully connected-based
deep learning model while increasing the quantity of training data. Since SDES and SAES
use 16-bit block size, we used only half of the data, 215 (=32,768), among the possible
block-sized bit arrays, 216 (=65,536), as the training data. In the other block ciphers, DES,
AES-128, and SPECK32/64, the quantity of training data was increased by 4-times from

Mathematics 2024, 12, 1936 14 of 23

216 (=65,536) and these data were used to train the models. We compared the results in
different numbers of round functions by calculating the average of Bit Accuracy Possibility
(BAPavg) [46,47] in 215 (=32,768) of test data as follows:

predn
i =

{
0, i f predn

i ≤ 0.5
1, otherwise.

BAPi =
∑N

n=1 XNOR(realn
i , predn

i)

N
(10)

BAPavg =
∑bs

i=1 BAPi

bs
(11)

where realn
i and predn

i represent the ith bit of the nth real and predicted outputs, respectively.
BAPi is the BAP of the ith bit, N is the total number of test data, BAPavg is the average of
BAP in total data, and bs is the block size of the block cipher. As shown in Figures 6 and 7,
the more training data used in training, the higher the accuracy in every block cipher. In
SPECK32/64, 216 of training data was enough to break the single round function, and the
BAPavg reached 1.0 when the training data were increased to 222 in two round functions.
Furthermore, for the three round functions in SPECK32/64, BAPavg increased to 0.6~0.7
in 222 of training data. Also, DES with a single and two round functions reached 1.0 and
0.8~0.9 BAPavg, respectively, on 222 of training data. However, every BAPavg of AES-128
was 0.5, even with a single round function. As a result, the possibility for EE and PR
attacks on block ciphers using a block-sized bit array was higher when we trained the deep
learning models with as much data as possible.

Mathematics 2024, 12, 1936 15 of 24

Figure 6. Average Bit Accuracy Probability (BAPavg) of Encryption Emulation (EE) aĴack with dif-
ferent quantities of training data and different numbers of round functions. (a) SDES and SAES with
215 training data. (b) DES. (c) AES-128. (d) SPECK32/64.

Figure 7. Average Bit Accuracy Probability (BAPavg) of Plaintext Recovery (PR) aĴack with different
quantities of training data and different numbers of round functions. (a) SDES and SAES with 215
training data. (b) DES. (c) AES-128. (d) SPECK32/64.

4.3.2. Results on Different Deep Learning Models
To identify the impact of the deep learning model architecture in neural cryptanaly-

sis, we additionally performed the Encryption Emulation (EE), Plaintext Recovery (PR),
and Key Recovery (KR) aĴacks on block ciphers using block-sized bit arrays by using an
RNN-based deep learning model, BiLSTM [51]. The result was compared with that of the
fully connected-based deep learning model. The model used 222 (4,194,304) training data,
which was the maximum number of training data in the fully connected-based deep learn-
ing model. The BAPavg in the RNN-based deep learning model was slightly increased com-
pared to the fully connected-based deep learning model as shown in Table 3. Conse-
quently, it was more efficient to extract the features by dividing inputs into meaningful
parts with the RNN-based deep learning model, BiLSTM, rather than using them all at
once with the fully connected-based deep learning model.

Figure 6. Average Bit Accuracy Probability (BAPavg) of Encryption Emulation (EE) attack with
different quantities of training data and different numbers of round functions. (a) SDES and SAES
with 215 training data. (b) DES. (c) AES-128. (d) SPECK32/64.

4.3.2. Results on Different Deep Learning Models

To identify the impact of the deep learning model architecture in neural cryptanalysis,
we additionally performed the Encryption Emulation (EE), Plaintext Recovery (PR), and
Key Recovery (KR) attacks on block ciphers using block-sized bit arrays by using an RNN-
based deep learning model, BiLSTM [51]. The result was compared with that of the fully
connected-based deep learning model. The model used 222 (4,194,304) training data, which
was the maximum number of training data in the fully connected-based deep learning
model. The BAPavg in the RNN-based deep learning model was slightly increased com-
pared to the fully connected-based deep learning model as shown in Table 3. Consequently,
it was more efficient to extract the features by dividing inputs into meaningful parts with

Mathematics 2024, 12, 1936 15 of 23

the RNN-based deep learning model, BiLSTM, rather than using them all at once with the
fully connected-based deep learning model.

Mathematics 2024, 12, 1936 15 of 24

Figure 6. Average Bit Accuracy Probability (BAPavg) of Encryption Emulation (EE) aĴack with dif-
ferent quantities of training data and different numbers of round functions. (a) SDES and SAES with
215 training data. (b) DES. (c) AES-128. (d) SPECK32/64.

Figure 7. Average Bit Accuracy Probability (BAPavg) of Plaintext Recovery (PR) aĴack with different
quantities of training data and different numbers of round functions. (a) SDES and SAES with 215
training data. (b) DES. (c) AES-128. (d) SPECK32/64.

4.3.2. Results on Different Deep Learning Models
To identify the impact of the deep learning model architecture in neural cryptanaly-

sis, we additionally performed the Encryption Emulation (EE), Plaintext Recovery (PR),
and Key Recovery (KR) aĴacks on block ciphers using block-sized bit arrays by using an
RNN-based deep learning model, BiLSTM [51]. The result was compared with that of the
fully connected-based deep learning model. The model used 222 (4,194,304) training data,
which was the maximum number of training data in the fully connected-based deep learn-
ing model. The BAPavg in the RNN-based deep learning model was slightly increased com-
pared to the fully connected-based deep learning model as shown in Table 3. Conse-
quently, it was more efficient to extract the features by dividing inputs into meaningful
parts with the RNN-based deep learning model, BiLSTM, rather than using them all at
once with the fully connected-based deep learning model.

Figure 7. Average Bit Accuracy Probability (BAPavg) of Plaintext Recovery (PR) attack with different
quantities of training data and different numbers of round functions. (a) SDES and SAES with 215

training data. (b) DES. (c) AES-128. (d) SPECK32/64.

Table 3. Average Bit Accuracy Probability (BAPavg) of Encryption Emulation (EE), Plaintext Recovery
(PR), and Key Recovery (KR) attacks using different deep learning models on the five block ciphers
with different numbers of round functions for block-sized bit array encryption.

Block
Cipher

Round
Number

EE Attack PR Attack KR Attack

Fully
Connected-

Based

RNN-Based
(BiLSTM)

Fully
Connected-

Based

RNN-Based
(BiLSTM)

Fully
Connected-

Based

RNN-Based
(BiLSTM)

SDES

1 0.998 1.0 0.998 1.0 0.601 0.601
2 0.997 1.0 0.998 0.999 0.826 0.851
3 0.892 0.817 0.898 0.828 0.593 0.651
4

(Full Rounds) 0.696 0.691 0.686 0.689 0.450 0.607

SAES
1 1.0 1.0 1.0 0.998 0.573 0.621
2

(Full Rounds) 0.998 0.999 1.0 0.999 0.528 0.610

DES

1 1.0 1.0 0.999 1.0 0.589 0.589
2 0.812 0.875 0.855 0.961 0.666 0.825
3 0.507 0.510 0.508 0.513 0.517 0.510

16
(Full Rounds) 0.500 0.500 0.500 0.500 0.500 0.499

AES-128

1 0.500 0.499 0.500 0.499 0.500 0.500
2 0.499 0.499 0.500 0.500 0.499 0.499
3 0.500 0.500 0.499 0.500 0.500 0.499

10
(Full Rounds) 0.499 0.499 0.499 0.499 0.499 0.499

SPECK32/64

1 1.0 1.0 0.999 0.999 0.624 0.624
2 1.0 0.999 0.999 0.999 0.698 0.749
3 0.587 0.883 0.708 0.925 0.499 0.499

22
(Full Rounds) 0.500 0.500 0.500 0.500 0.500 0.500

Mathematics 2024, 12, 1936 16 of 23

Interestingly, the single round function showed lower BAPavg than the two round
functions in KR attacks on SDES, DES, and SPECK32/64. Since SDES and DES split the
plaintexts into two blocks, left and right, and then applied the XOR operation with the key
only to the right block of the input for the round function, only half of the ciphertexts for
the single round function have information about the keys. Because the left block of the first
round function is the same as the right block of the input for the first round function, the
ciphertexts for the single round function in SDES and DES have less information of the key
than the ciphertexts with two round functions. Similarly, SPECK32/64 splits the plaintexts
and the keys into two blocks, respectively. However, the inputs for the first round function
are applied to the operations with the right block of the keys, which are not applied to any
operations in the key schedule. Therefore, the ciphertexts encrypted with a single round
function in SPECK32/64 only have information about the half key, the right part of the key.
In other words, the deep learning model could extract more features related to the keys
from the ciphertexts with two round functions than those with a single round function in
SDES, DES, and SPECK32/64.

Furthermore, we performed the KR attack on DES using randomly generated block-
sized bit arrays of 222 (=4,194,304), not only for a randomly generated single block-sized bit
array, by using the RNN-based deep learning model, BiLSTM. The keys were generated
for two cases, the same keys as the plaintexts and randomly generated keys. When the
keys were the same as the plaintexts, DES was vulnerable and perfectly broken. In contrast,
it was difficult to recover the keys, which were randomly generated regardless of the
plaintexts, and showed 0.5 BAPavg. Consequently, using the same key as the plaintexts can
make the block ciphers vulnerable even if the plaintexts are randomly generated.

4.4. Neural Cryptanalysis on Text Data
4.4.1. Results on Different Text Encryption Methods

To figure out how to improve the strength of block ciphers using texts, we encrypted
plaintexts with two different text encryption methods, Word-based Text Encryption (WTE)
and Sentence-based Text Encryption (STE). In Encryption Emulation (EE) and Plaintext
Recovery (PR) attacks on block ciphers using texts, a transformer-based deep learning
model, T5-small [52], was used to generate the ciphertexts and recover the plaintexts. It
tokenizes the plaintexts and the ciphertexts by using the SentencePiece [56] and considers
context information of the sequences in word embedding. We used the ratio of the correctly
predicted tokens over the total tokens as metrics, which can be calculated as follows:

CorrrectlyPredictedTokenRatio =
100
M

×
M

∑
n=1

N(predtokn
cor)

N(predtokn
cor) + N(predtokn

incor)
(12)

where M represents the total number of test data, and N(predtokn
cor) and N(predtokn

incor)
are the number of correctly and incorrectly predicted tokens in nth test data, respectively.

The correctly predicted token ratio in WTE was higher than that in STE, as shown in
Figure 8, which means STE can make the block ciphers more secure compared to the WTE
in EE and PR attacks.

In Ciphertext Classification (CC) attacks on block ciphers using texts, the ciphertexts
for each text encryption method were classified by using the RNN-based deep learning
model that consists of a BiGRU [53], which utilized Word2Vec [57,58] to represent the words
as embedding vectors that a deep learning model can train. The result was compared using
classification accuracy, which is the percentage of correctly classified ciphertexts out of the
total ciphertexts as follows:

Classi f ication Acc =
N(predC cor)

N(predC cor) + (predCincor)
× 100

M
(13)

where N(predCcor) and N(predCincor) represent the number of correctly and incorrectly
classified test ciphertexts, respectively, and M is the total number of test data.

Mathematics 2024, 12, 1936 17 of 23

Mathematics 2024, 12, 1936 17 of 24

contrast, it was difficult to recover the keys, which were randomly generated regardless
of the plaintexts, and showed 0.5 BAPavg. Consequently, using the same key as the
plaintexts can make the block ciphers vulnerable even if the plaintexts are randomly gen-
erated.

4.4. Neural Cryptanalysis on Text Data
4.4.1. Results on Different Text Encryption Methods

To figure out how to improve the strength of block ciphers using texts, we encrypted
plaintexts with two different text encryption methods, Word-based Text Encryption
(WTE) and Sentence-based Text Encryption (STE). In Encryption Emulation (EE) and
Plaintext Recovery (PR) aĴacks on block ciphers using texts, a transformer-based deep
learning model, T5-small [52], was used to generate the ciphertexts and recover the
plaintexts. It tokenizes the plaintexts and the ciphertexts by using the SentencePiece [56]
and considers context information of the sequences in word embedding. We used the ratio
of the correctly predicted tokens over the total tokens as metrics, which can be calculated
as follows:

Correctly Predicted Token Ratio =
100

𝑀
× ෍

𝑁(𝑝𝑟𝑒𝑑𝑡𝑜𝑘௖௢௥
௡)

𝑁(𝑝𝑟𝑒𝑑𝑡𝑜𝑘௖௢௥
௡) + 𝑁(𝑝𝑟𝑒𝑑𝑡𝑜𝑘௜௡௖௢௥

௡)

ெ

௡ୀଵ

 (12)

where M represents the total number of test data, and 𝑁(𝑝𝑟𝑒𝑑𝑡𝑜𝑘௖௢௥
௡) and

𝑁(𝑝𝑟𝑒𝑑𝑡𝑜𝑘௜௡௖௢௥
௡) are the number of correctly and incorrectly predicted tokens in nth test

data, respectively.
The correctly predicted token ratio in WTE was higher than that in STE, as shown in

Figure 8, which means STE can make the block ciphers more secure compared to the WTE
in EE and PR aĴacks.

Figure 8. Correctly predicted token ratio of Encryption Emulation (EE) and Plaintext Recovery (PR)
aĴacks with different text encryption methods. (a) EE aĴack. (b) PR aĴack.

Figure 8. Correctly predicted token ratio of Encryption Emulation (EE) and Plaintext Recovery (PR)
attacks with different text encryption methods. (a) EE attack. (b) PR attack.

The classification accuracy of the ciphertexts encrypted with STE was lower than
that of ciphertexts encrypted with WTE in every block cipher as shown in Figure 9a.
Furthermore, the accuracy of ciphertext classification on WTE was almost the same as the
accuracy of plaintext classification. Therefore, ciphertexts encrypted with WTE were more
vulnerable to CC attack than STE in every block cipher.

4.4.2. Results on Different Deep Learning Models

To identify the impact of the deep learning model architecture in the Ciphertext
Classification (CC) attacks on block ciphers using texts, we additionally classified the
ciphertexts with a transformer-based deep learning model, BERT-base [54], which repre-
sents the words into the embedding vectors according to the context information in the
sentences. It also tokenizes the words by using the subword-based tokenizer WordPiece.
Since transformer-based deep learning model uses a subword tokenizer, it can divide a
single block in the ciphertexts into several tokens. Thus, the classification accuracy of WTE
in the transformer-based deep learning model was lower than that in the RNN-based deep
learning model with Word2Vec as shown in Figure 9b. In other words, it was challenging
to capture the features from the separated blocks because the block ciphers encrypt the
texts block-wise. Moreover, unlike in WTE, contexts in the ciphertexts were removed in
STE, and the transformer-based deep learning model that uses only attention mechanisms
to extract context information and relations between the tokens was not proper in neural
cryptanalysis on block ciphers. Thus, the transformer-based deep learning model could
not train the ciphertexts encrypted with STE and showed 50% classification accuracy in
every block cipher. Consequently, word-based tokenization and static word embedding

Mathematics 2024, 12, 1936 18 of 23

were more efficient in the CC attacks on block ciphers using texts than the subword-based
tokenization and contextualized word embedding.

Mathematics 2024, 12, 1936 18 of 24

In Ciphertext Classification (CC) aĴacks on block ciphers using texts, the ciphertexts
for each text encryption method were classified by using the RNN-based deep learning
model that consists of a BiGRU [53], which utilized Word2Vec [57,58] to represent the
words as embedding vectors that a deep learning model can train. The result was com-
pared using classification accuracy, which is the percentage of correctly classified cipher-
texts out of the total ciphertexts as follows:

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐 =
𝑁(𝑝𝑟𝑒𝑑𝐶௖௢௥)

𝑁(𝑝𝑟𝑒𝑑𝐶௖௢௥) + (𝑝𝑟𝑒𝑑𝐶௜௡௖௢௥)
 ×

100

𝑀
 (13)

where 𝑁(𝑝𝑟𝑒𝑑𝐶௖௢௥) and 𝑁(𝑝𝑟𝑒𝑑𝐶௜௡௖௢௥) represent the number of correctly and incor-
rectly classified test ciphertexts, respectively, and M is the total number of test data.

The classification accuracy of the ciphertexts encrypted with STE was lower than that
of ciphertexts encrypted with WTE in every block cipher as shown in Figure 9a. Further-
more, the accuracy of ciphertext classification on WTE was almost the same as the accu-
racy of plaintext classification. Therefore, ciphertexts encrypted with WTE were more vul-
nerable to CC aĴack than STE in every block cipher.

Figure 9. Classification accuracy of Ciphertext Classification (CC) aĴacks in different deep learning
models with different text encryption methods. (a) RNN-based (BiGRU) CC aĴack. (b) Transformer-
based (BERT-base) CC aĴack.

4.4.2. Results on Different Deep Learning Models
To identify the impact of the deep learning model architecture in the Ciphertext Clas-

sification (CC) aĴacks on block ciphers using texts, we additionally classified the cipher-
texts with a transformer-based deep learning model, BERT-base [54], which represents the
words into the embedding vectors according to the context information in the sentences.
It also tokenizes the words by using the subword-based tokenizer WordPiece. Since trans-
former-based deep learning model uses a subword tokenizer, it can divide a single block
in the ciphertexts into several tokens. Thus, the classification accuracy of WTE in the trans-
former-based deep learning model was lower than that in the RNN-based deep learning
model with Word2Vec as shown in Figure 9b. In other words, it was challenging to capture

Figure 9. Classification accuracy of Ciphertext Classification (CC) attacks in different deep learning
models with different text encryption methods. (a) RNN-based (BiGRU) CC attack. (b) Transformer-
based (BERT-base) CC attack.

4.4.3. Results on Different Operation Modes

To confirm that the block cipher using WTE is more vulnerable than that using STE
against Encryption Emulation (EE), Plaintext Recovery (PR), and Ciphertext Classification
(CC) attacks, we also performed neural cryptanalysis on the block ciphers using texts in
the other operation modes. The attacks on DES [12] and AES-128 [13] in CBC and CFB
modes were compared with the attacks in ECB mode. The models and hyper-parameters
for EE, PR, and CC attacks in CBC and CFB modes were the same as the model and hyper-
parameters previously used in ECB mode. The correctly predicted token ratio for EE attacks
was higher than that in PR attacks. However, both DES and AES-128 were more difficult
to break when the texts were encrypted with STE than WTE as shown in Figure 10. The
average correctly predicted token ratio was around 10% in STE but 15% and 25% for EE
and PR attacks, respectively, in WTE. Although the classification accuracy decreased in
CBC and CFB modes compared to that in ECB mode, the classification accuracy of the
ciphertexts encrypted with WTE still showed over 80% as shown in Figure 11. In contrast,
deep learning models could not train and classify the ciphertexts encrypted with STE, and
the classification accuracy was almost 50% in every operation mode. As a result, STE could
improve the strength of the block ciphers against the EE, PR, and CC attacks on block
ciphers using texts, and STE must be used for text encryption instead of WTE.

Mathematics 2024, 12, 1936 19 of 23

Mathematics 2024, 12, 1936 19 of 24

the features from the separated blocks because the block ciphers encrypt the texts block-
wise. Moreover, unlike in WTE, contexts in the ciphertexts were removed in STE, and the
transformer-based deep learning model that uses only aĴention mechanisms to extract
context information and relations between the tokens was not proper in neural cryptanal-
ysis on block ciphers. Thus, the transformer-based deep learning model could not train
the ciphertexts encrypted with STE and showed 50% classification accuracy in every block
cipher. Consequently, word-based tokenization and static word embedding were more
efficient in the CC aĴacks on block ciphers using texts than the subword-based tokeniza-
tion and contextualized word embedding.

4.4.3. Results on Different Operation Modes
To confirm that the block cipher using WTE is more vulnerable than that using STE

against Encryption Emulation (EE), Plaintext Recovery (PR), and Ciphertext Classification
(CC) aĴacks, we also performed neural cryptanalysis on the block ciphers using texts in
the other operation modes. The aĴacks on DES [12] and AES-128 [13] in CBC and CFB
modes were compared with the aĴacks in ECB mode. The models and hyper-parameters
for EE, PR, and CC aĴacks in CBC and CFB modes were the same as the model and hyper-
parameters previously used in ECB mode. The correctly predicted token ratio for EE at-
tacks was higher than that in PR aĴacks. However, both DES and AES-128 were more
difficult to break when the texts were encrypted with STE than WTE as shown in Figure
10. The average correctly predicted token ratio was around 10% in STE but 15% and 25%
for EE and PR aĴacks, respectively, in WTE. Although the classification accuracy de-
creased in CBC and CFB modes compared to that in ECB mode, the classification accuracy
of the ciphertexts encrypted with WTE still showed over 80% as shown in Figure 11. In
contrast, deep learning models could not train and classify the ciphertexts encrypted with
STE, and the classification accuracy was almost 50% in every operation mode. As a result,
STE could improve the strength of the block ciphers against the EE, PR, and CC aĴacks on
block ciphers using texts, and STE must be used for text encryption instead of WTE.

Figure 10. Correctly predicted token ratio of Encryption Emulation (EE) and Plaintext Recovery
(PR) attacks in different operation modes with different text encryption methods. (a) EE attack.
(b) PR attack.

Mathematics 2024, 12, 1936 20 of 24

Figure 10. Correctly predicted token ratio of Encryption Emulation (EE) and Plaintext Recovery (PR)
aĴacks in different operation modes with different text encryption methods. (a) EE aĴack. (b) PR
aĴack.

Figure 11. Classification accuracy of Ciphertext Classification (CC) aĴack in different operation
modes with different text encryption methods. (a) RNN-based (BiGRU) CC aĴack on DES. (b) Trans-
former-based (BERT-base) CC aĴack on DES. (c) RNN-based (BiGRU) CC aĴack on AES-128. (d)
Transformer-based (BERT-base) CC aĴack on AES-128.

5. Discussion
Block ciphers using block-sized bit arrays and texts as plaintexts were analyzed by

performing Encryption Emulation (EE), Plaintext Recovery (PR), Key Recovery (KR), and
Ciphertext Classification (CC) aĴacks based on different deep learning models. Since the
performance of the deep learning model is typically dependent on the amount of training
data, BAPavg increased when more data were used for model training in EE and PR aĴacks
on block-sized bit arrays. Moreover, applying two round functions was more vulnerable
than using a single round function in KR aĴacks on DES and SPECK32/64 using block-
sized bit arrays, because of the encryption process that splits the plaintexts into two
blocks. Specifically, DES applies the XOR operation with a key only to the right block, and
SPECK32/64 applies the XOR operation with only the right part of the key to the left block.
Therefore, key information is contained in the part of the ciphertexts of DES to which a
single round function is applied, and part of the key information is included in the cipher-
texts of SPECK32/64 in which a single round function is applied. In addition, even if texts
are encrypted, WTE generates the same cipher word for the same plain word, while
whitespace position information is removed in STE. So, WTE showed almost the same
classification accuracy as plaintexts in CC aĴacks on texts. Moreover, since block ciphers
like Feistel Network and SPECK32/64 encrypt the plaintexts after spliĴing them, the RNN-
based deep learning model outperformed the fully connected-based deep learning model
in capturing the relation between the split blocks and showed beĴer BAPavg. Also, the in-
puts for the RNN-based deep learning model in CC aĴacks on texts were the tokens gen-
erated by using a word-based tokenizer, which are the cipher words and cipher blocks in
the ciphertexts. However, the transformer-based deep learning model separated the ci-
phertexts into the tokens with a subword-based tokenizer, and the tokens are converted
into embedding vectors by using contextualized word embedding, which is not meaning-
ful in the ciphertexts removing the context information. Thus, the classification accuracy

Figure 11. Classification accuracy of Ciphertext Classification (CC) attack in different operation modes
with different text encryption methods. (a) RNN-based (BiGRU) CC attack on DES. (b) Transformer-
based (BERT-base) CC attack on DES. (c) RNN-based (BiGRU) CC attack on AES-128. (d) Transformer-
based (BERT-base) CC attack on AES-128.

Mathematics 2024, 12, 1936 20 of 23

5. Discussion

Block ciphers using block-sized bit arrays and texts as plaintexts were analyzed by
performing Encryption Emulation (EE), Plaintext Recovery (PR), Key Recovery (KR), and
Ciphertext Classification (CC) attacks based on different deep learning models. Since
the performance of the deep learning model is typically dependent on the amount of
training data, BAPavg increased when more data were used for model training in EE and
PR attacks on block-sized bit arrays. Moreover, applying two round functions was more
vulnerable than using a single round function in KR attacks on DES and SPECK32/64
using block-sized bit arrays, because of the encryption process that splits the plaintexts
into two blocks. Specifically, DES applies the XOR operation with a key only to the right
block, and SPECK32/64 applies the XOR operation with only the right part of the key to the
left block. Therefore, key information is contained in the part of the ciphertexts of DES to
which a single round function is applied, and part of the key information is included in the
ciphertexts of SPECK32/64 in which a single round function is applied. In addition, even if
texts are encrypted, WTE generates the same cipher word for the same plain word, while
whitespace position information is removed in STE. So, WTE showed almost the same
classification accuracy as plaintexts in CC attacks on texts. Moreover, since block ciphers
like Feistel Network and SPECK32/64 encrypt the plaintexts after splitting them, the RNN-
based deep learning model outperformed the fully connected-based deep learning model
in capturing the relation between the split blocks and showed better BAPavg. Also, the
inputs for the RNN-based deep learning model in CC attacks on texts were the tokens
generated by using a word-based tokenizer, which are the cipher words and cipher blocks
in the ciphertexts. However, the transformer-based deep learning model separated the
ciphertexts into the tokens with a subword-based tokenizer, and the tokens are converted
into embedding vectors by using contextualized word embedding, which is not meaningful
in the ciphertexts removing the context information. Thus, the classification accuracy was
higher in the RNN-based deep learning model than the transformer-based deep learning
model in CC attacks on texts.

In addition, we could identify that the key size is significant in determining the
strength of the block ciphers. The simplified version of the block ciphers, SDES and SAES,
using a small key size and fewer round functions, were easily broken compared to the
other block ciphers. In contrast, AES was challenging to break, even with a single round
function, as it uses the largest key size. And DES and SPECK32/64 showed almost the
same vulnerability on deep learning-based attacks, but SPECK32/64, using a smaller key
size than DES, was slightly more vulnerable.

The results of the neural cryptanalysis in this paper can be interpreted from two points
of view, the person who wants to protect personal information by using block ciphers in
the system and the person who wants to break the block ciphers and take the personal
information. First, from the perspective of the protector, the block ciphers must be designed
with a large key size and sufficient round functions, and the key must not be the same as
the plaintext. Also, texts must be encrypted with STE, not WTE. From the perspective of the
attacker, RNN-based deep learning models are more appropriate in deep learning-based
attacks on the block ciphers, and as much data for training the model should be collected
as possible.

6. Conclusions

We comprehensively analyze five block ciphers, DES, SDES, AES-128, SAES, and
SPECK32/64, on deep learning-based Encryption Emulation (EE), Plaintext Recovery (PR),
Key Recovery (KR), and Ciphertext Classification (CC) attacks. The block ciphers using
different numbers of round functions in a block-sized bit array encryption are investigated
in EE, PR, and KR attacks using deep learning models trained with different numbers of
data. Also, the block ciphers with two different text encryption methods, Word-based Text
Encryption (WTE) and Sentence Text Encryption (STE), for text encryption are analyzed
in three operation modes, ECB, CBC, and CFB, on EE, PR, and CC attacks using the deep

Mathematics 2024, 12, 1936 21 of 23

learning models. As a result, more data for training the models can increase the possibility
of successful attacks, and STE can improve security, even in the CBC and CFB modes, unlike
WTE, which shows almost the same classification accuracy as the plaintexts, especially in CC
attacks. Moreover, using the same key as the plaintext is vulnerable against KR attacks, and
applying two round functions in the encryption of SDES, DES, and SPECK32/64 provides a
better KR-attack performance than applying a single round function. Also, the RNN-based
deep learning model is more suitable in neural cryptanalysis than the fully connected-
based and transformer-based deep learning models, especially in KR and CC attacks,
and shows higher BAPavg and classification accuracy. From the experiments, we could
investigate the weaknesses of the block ciphers, which can help prevent attacks and design
new cryptographic algorithms. However, although we found that using more training
data can increase the likelihood of attacks, it is challenging to develop efficient learning
algorithms for the huge amount of data. In the future, we will design new deep learning
architectures based on distributed machine learning or federated learning [59], which can
be more efficient in neural cryptanalysis. Moreover, since recent neural cryptanalysis has
used deep learning architectures designed for the data, not encrypted, we will explore new
architectures of deep learning models that are more suitable for neural cryptanalysis and
show better performance than traditional cryptanalysis.

Author Contributions: Conceptualization, I.M.; methodology, O.J. and E.A.; software, O.J. and E.A.;
validation, O.J. and I.M.; writing—original draft preparation, O.J. and E.A; writing—review and
editing, I.M.; visualization, O.J.; supervision, I.M.; funding acquisition, I.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00126, Re-
search on AI-based Cryptanalysis and Security Evaluation). This work was supported by Institute of
Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (RS-2024-00400368, Development of Image Integrity Verification Technology for
Forgery Prevention and Original Proof).

Data Availability Statement: The dataset used in this paper is a public dataset which has been
referenced in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Paar, C.; Pelzl, J. Understanding Cryptography: A Textbook for Students and Practitioners; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2009.
2. Stamp, M. Information Security: Principles and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2011.
3. Gupta, A.; Barthwal, A.; Vardhan, H.; Kakria, S.; Kumar, S.; Parihar, A.S. Evolutionary study of distributed authentication

protocols and its integration to UAV-assisted FANET. Multimed. Tools Appl. 2023, 82, 42311–42330. [CrossRef]
4. Adleman, L.M.; Rothemund, P.W.; Roweis, S.; Winfree, E. On applying molecular computation to the data encryption standard.

J. Comput. Biol. 1999, 6, 53–63. [CrossRef] [PubMed]
5. Matsui, M.; Yamagishi, A. A new method for known plaintext attack of FEAL cipher. In Advances in Cryptology—EUROCRYPT’92:

Workshop on the Theory and Application of Cryptographic Techniques, Balatonfüred, Hungary, 24–28 May 1992; Proceedings 11; Springer:
Berlin/Heidelberg, Germany, 1993; pp. 81–91.

6. Matsui, M. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology–EUROCRYPT’93: Workshop on the Theory and
Application of Cryptographic Techniques Lofthus, Norway, 23–27 May 1993; Springer: Berlin/Heidelberg, Germany, 2003; Volume 765,
p. 386.

7. Biham, E.; Shamir, A. Differential Cryptanalysis of the Data Encryption Standard; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2012.

8. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019, 10,
122. [CrossRef]

9. Chen, Y.; Shen, Y.; Yu, H. Neural-Aided Statistical Attack for Cryptanalysis. Comput. J. 2023, 66, 2480–2498. [CrossRef]
10. Truong, N.D.; Haw, J.Y.; Assad, S.M.; Lam, P.K.; Kavehei, O. Machine learning cryptanalysis of a quantum random number

generator. IEEE Trans. Inf. Forensics Secur. 2018, 14, 403–414. [CrossRef]

https://doi.org/10.1007/s11042-023-15197-0
https://doi.org/10.1089/cmb.1999.6.53
https://www.ncbi.nlm.nih.gov/pubmed/10223664
https://doi.org/10.3390/info10040122
https://doi.org/10.1093/comjnl/bxac099
https://doi.org/10.1109/TIFS.2018.2850770

Mathematics 2024, 12, 1936 22 of 23

11. Baek, S.; Kim, K. Recent advances of neural attacks against block ciphers. In Proceedings of the 2020 Symposium on Cryptography
and Information Security (SCIS 2020), Kochi, Japan, 28–31 January 2020; IEICE Technical Committee on Information Security:
Tokyo, Japan, 2020.

12. FIPS-Pub.46; Data Encryption Standard. Federal Information Processing Standards Publication. National Institute of Standards
and Technology: Gaithersburg, MD, USA, 1999.

13. Rijmen, V.; Daemen, J. Advanced Encryption Standard. In Proceedings of Federal Information Processing Standards Publications;
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001; Volume 19, p. 22.

14. Musa, M.A.; Schaefer, E.F.; Wedig, S. A simplified AES algorithm and its linear and differential cryptanalyses. Cryptologia 2003,
27, 148–177. [CrossRef]

15. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK families of lightweight block
ciphers. Cryptol. Eprint Arch. 2013, 404.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
17. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
18. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.

Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]
19. Hai, H.; Pan, S.; Liao, M.; Lu, D.; He, W.; Peng, X. Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep

learning. Opt. Express 2019, 27, 21204–21213. [CrossRef]
20. Jeong, O.; Moon, I. Adaptive transfer learning-based cryptanalysis on double random phase encoding. Opt. Laser Technol. 2024,

168, 109916. [CrossRef]
21. He, C.; Ming, K.; Wang, Y.; Wang, Z.J. A deep learning based attack for the chaos-based image encryption. arXiv 2019,

arXiv:1907.12245.
22. Refregier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995,

20, 767–769. [CrossRef] [PubMed]
23. Ahouzi, E.; Zamrani, W.; Azami, N.; Lizana, A.; Campos, J.; Yzuel, M.J.; Engineering, O. Optical triple random-phase encryption.

Opt. Eng. 2017, 56, 113114. [CrossRef]
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
25. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
26. Liu, X.; Liu, W.; Mei, T.; Ma, H. Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance.

IEEE Trans. Multimed. 2017, 20, 645–658. [CrossRef]
27. Guan, Z.-H.; Huang, F.; Guan, W. Chaos-based image encryption algorithm. Phys. Lett. A 2005, 346, 153–157. [CrossRef]
28. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural

Networks; MIT Press: Cambridge, MA, USA, 1995; Volume 3361, pp. 255–258.
29. Tanuwidjaja, H.C.; Choi, R.; Baek, S.; Kim, K. Privacy-preserving deep learning on machine learning as a service—A comprehen-

sive survey. IEEE Access 2020, 8, 167425–167447. [CrossRef]
30. Boulemtafes, A.; Derhab, A.; Challal, Y. A review of privacy-preserving techniques for deep learning. Neurocomputing 2020, 384,

21–45. [CrossRef]
31. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to

encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning, New
York, NY, USA, 19–24 June 2016; pp. 201–210.

32. Hesamifard, E.; Takabi, H.; Ghasemi, M. Cryptodl: Deep neural networks over encrypted data. arXiv 2017, arXiv:1711.05189.
33. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
34. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
35. Lidkea, V.M.; Muresan, R.; Al-Dweik, A. Convolutional neural network framework for encrypted image classification in

cloud-based ITS. IEEE Open J. Intell. Transp. Syst. 2020, 1, 35–50. [CrossRef]
36. Ferguson, N. Impossible Differentials in Twofish; Counterpane Systems: Minneapolis, MN, USA, 1999.
37. Biham, E.; Dunkelman, O.; Keller, N. Linear cryptanalysis of reduced round Serpent. In Proceedings of the International Workshop

on Fast Software Encryption, Yokohama, Japan, 2–4 April 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 16–27.
38. Thoms, G.R.; Muresan, R.; Al-Dweik, A. Chaotic encryption algorithm with key controlled neural networks for intelligent

transportation systems. IEEE Access 2019, 7, 158697–158709. [CrossRef]
39. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural

Netw. Learn. Syst. 2020, 32, 604–624. [CrossRef] [PubMed]
40. Sikdar, S.; Kule, M. Recent Trends in Cryptanalysis Techniques: A Review. In Proceedings of the International Conference

on Frontiers in Computing and Systems, Punjab, India, 19–21 December 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 209–222.

41. Focardi, R.; Luccio, F.L. Neural Cryptanalysis of Classical Ciphers. In Proceedings of the ICTCS, Urbino, Italy, 18–20 September
2018; pp. 104–115.

https://doi.org/10.1080/0161-110391891838
https://doi.org/10.1038/nature14539
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1364/OE.27.021204
https://doi.org/10.1016/j.optlastec.2023.109916
https://doi.org/10.1364/OL.20.000767
https://www.ncbi.nlm.nih.gov/pubmed/19859323
https://doi.org/10.1117/1.OE.56.11.113114
https://doi.org/10.1109/TMM.2017.2751966
https://doi.org/10.1016/j.physleta.2005.08.006
https://doi.org/10.1109/ACCESS.2020.3023084
https://doi.org/10.1016/j.neucom.2019.11.041
https://doi.org/10.1109/OJITS.2020.2996063
https://doi.org/10.1109/ACCESS.2019.2950007
https://doi.org/10.1109/TNNLS.2020.2979670
https://www.ncbi.nlm.nih.gov/pubmed/32324570

Mathematics 2024, 12, 1936 23 of 23

42. Ahmadzadeh, E.; Kim, H.; Jeong, O.; Kim, N.; Moon, I. A deep bidirectional LSTM-GRU network model for automated ciphertext
classification. IEEE Access 2022, 10, 3228–3237. [CrossRef]

43. Alani, M.M. Neuro-cryptanalysis of DES and triple-DES. In Proceedings of the Neural Information Processing: 19th International
Conference, ICONIP 2012, Doha, Qatar, 12–15 November 2012; Proceedings, Part V 19. Springer: Berlin/Heidelberg, Germany,
2012; pp. 637–646.

44. Xiao, Y.; Hao, Q.; Yao, D.D. Neural cryptanalysis: Metrics, methodology, and applications in CPS ciphers. In Proceedings of the
2019 IEEE Conference on Dependable and Secure Computing (DSC), Hangzhou, China, 8–20 November 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–8.

45. Hu, X.; Zhao, Y. Research on plaintext restoration of AES based on neural network. Secur. Commun. Netw. 2018, 2018, 6868506.
[CrossRef]

46. So, J. Deep-learning-based cryptanalysis of lightweight block ciphers. Secur. Commun. Netw. 2020, 2020, 3701067. [CrossRef]
47. Kim, H.; Lim, S.; Kang, Y.; Kim, W.; Kim, D.; Yoon, S.; Seo, H. Deep-learning-based cryptanalysis of lightweight block ciphers

revisited. Entropy 2023, 25, 986. [CrossRef] [PubMed]
48. Abdurakhimov, B.; Abdurazzokov, J.; Lingyun, L. Analysis of the use of artificial neural networks in the cryptanalysis of the SM4

block encryption algorithm. AIP Conf. Proc. 2023, 2812, 020048.
49. Kimura, H.; Emura, K.; Isobe, T.; Ito, R.; Ogawa, K.; Ohigashi, T. A Deeper Look into Deep Learning-based Output Prediction

Attacks Using Weak SPN Block Ciphers. J. Inf. Process. 2023, 31, 550–561. [CrossRef]
50. Kumar, K.; Tanwar, S.; Kumar, S. Deep-Learning-based Cryptanalysis through Topic Modeling. Eng. Technol. Appl. Sci. Res. 2024,

14, 12524–12529. [CrossRef]
51. Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 6645–6649.

52. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

53. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

54. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

55. Maas, A.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C. Learning word vectors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA,
19–24 June 2011; pp. 142–150.

56. Kudo, T.; Richardson, J. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text
processing. arXiv 2018, arXiv:1808.06226.

57. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

58. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their composi-
tionality. In Proceedings of the Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, NV, USA, 5–10
December 2013; Volume 26, pp. 1–9.

59. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving
communication efficiency. arXiv 2016, arXiv:1610.05492.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3140342
https://doi.org/10.1155/2018/6868506
https://doi.org/10.1155/2020/3701067
https://doi.org/10.3390/e25070986
https://www.ncbi.nlm.nih.gov/pubmed/37509933
https://doi.org/10.2197/ipsjjip.31.550
https://doi.org/10.48084/etasr.6515

	Introduction
	Related Works
	Deep Learning-Based Cryptanalysis on Image Data
	Deep Learning-Based Cryptanalysis on Text Data

	Material and Methods
	Block Ciphers
	Data Encryption Standard (DES)
	Advanced Encryption Standard (AES)
	SPECK

	Text Encryption Methods
	Word-Based Text Encryption (WTE)
	Sentence-Based Text Encryption (STE)

	Deep Learning Model Architectures
	Deep Learning Models for Encryption Emulation (EE), Plaintext Recovery (PR), and Key Recovery (KR) Attacks on Block-Sized Bit Arrays
	Deep Learning Models for Encryption Emulation (EE) and Plaintext Recovery (PR) Attacks on Texts
	Deep Learning Models for Ciphertext Classification (CC) Attack on Texts

	Experiments
	Experimental Setup
	Data Generation
	Block-Sized Bit Arrays
	Texts

	Neural Cryptanalysis on Block-Sized Data
	Results on Different Numbers of Training Data and Round Functions
	Results on Different Deep Learning Models

	Neural Cryptanalysis on Text Data
	Results on Different Text Encryption Methods
	Results on Different Deep Learning Models
	Results on Different Operation Modes

	Discussion
	Conclusions
	References

