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Abstract: Supply chains comprise various interconnected components like suppliers, manufacturers,
distributors, retailers, and customers, each with unique variables and interactions. Managing dynamic
supply chains is highly challenging, particularly when considering various sources of risk factors. This
paper extensively explores dynamical analysis and multistability analysis to understand nonlinear
behaviors and pinpoint potential risks within supply chains. Different phase portraits are used
to demonstrate the impact of various factors such as transportation risk, quality risk, distortion,
contingency reserves, and safety stock on both customers and retailers. We introduced a sliding mode
control method that computes the sliding surface and its derivative by considering the error and its
derivative. The equivalent control law based on the sliding surface and its derivative is derived and
validated for control purposes. Our results show that the controller SMC can significantly enhance
supply chain stability and efficiency. This research provides a robust framework for understanding
complex supply chain dynamics and offers practical solutions to enhance supply chain resilience
and flexibility.

Keywords: supply chain management; chaotic system; multistability; sliding mode control

MSC: 65P20; 26A33; 34A34; 65L07; 65L06; 93C40

1. Introduction

Initially, supply chain management focused on linear and deterministic models to
optimize operations [1,2]. However, as businesses encountered increasing complexity
and unpredictability, researchers began to recognize the limitations of these traditional
approaches. Chaos theory provided a framework for understanding the nonlinear dynamics
and emergent behaviors inherent in supply chain systems [3,4]. Studies identified chaotic
behavior in various aspects of supply chain operations, including demand forecasting [5],
inventory management [6], production scheduling [7], and distribution logistics [8]. These
findings highlighted the need for new methodologies capable of managing and controlling
the inherent chaos within supply chains [9,10].
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In addressing the intricacies of supply chains, certain academics have utilized nonlin-
ear dynamics theory to investigate pertinent issues. Ref. [11] introduced a pricing game
model for a closed-loop supply chain system, involving a manufacturer and a retailer with
distinct rationalities. Ref. [12] analyzed a three-dimensional mathematical model of supply
chains, with the goal of stabilizing chaotic behavior. This involved introducing a linear
control parameter to manage production levels and mitigate the risk of potential collapse,
which could lead to dangerous instability. Ref. [13] explored the emergence of chaos within
multi-level supply chains and provided insights into managing relevant factors to mitigate
or eliminate system chaos. Ref. [14] investigated the dynamic behavior of a three-tier supply
chain and devised an adaptive algorithm to counteract irregular dynamics stemming from
uncertainties. Ref. [15] proposed a novel supply chain model considering non-monotonic
demand variations with inventory levels and discussed synchronization phenomena in cou-
pled supply chain models under both unidirectional and bidirectional coupling. Ref. [16]
addressed the synchronization issue in supply chain systems using an active and adaptive
integral sliding mode control method. Despite the existing literature, there remains limited
discussion of dynamical analysis in 4D supply chain management. Thus, further research
is warranted to explore studies concerning supply chains in 4D systems.

Chaos control associated with complex phenomena has been identified in actual
supply chain systems. Numerous researchers have explored control and synchronization
methods to characterize these systems in the literature such as robust control [9], delayed
feedback control [17], adaptive sliding mode control [18], ANN [19], ANFIS [20], Robust
H∞ control [21], tracking control [22], stochastic fixed-time tracking control [23], fuzzy
neural network control [24], and nonlinear control [25].

Studying the SMC for the new 4D CSCM based on the product received by the cus-
tomer is important because it enhances the stability and control of complex, nonlinear
supply chain behaviors, ensuring smooth and predictable operations [26]. The SMC effec-
tively mitigates risks such as transportation delays, quality fluctuations, and information
distortion by dynamically adjusting system parameters, reducing disruptions [27]. This
leads to improved supply chain performance, including better inventory management,
reduced lead times, and optimized resource utilization, resulting in increased efficiency and
cost savings. The controller’s adaptability to real-time changes ensures the supply chain
remains resilient in the face of unexpected fluctuations. Additionally, the SMC manages
coexisting attractors, steering the system towards desirable states and avoiding undesirable
outcomes. Practical applications of the SMC translate into better forecasting, inventory
control, and risk management, maintaining competitive advantage [28]. This study bridges
the gap between advanced control theory and practical supply chain dynamics, providing
valuable insights and opening new avenues for research and application. The validation of
the SMC through simulations demonstrates its potential in handling complex supply chain
issues and provides confidence in its practical deployment.

In the dynamic landscape of supply chain management, the emergence of chaos theory
has shed light on the complex and unpredictable behavior inherent in supply chain systems.
With the recognition of chaotic dynamics within supply chains, there arises a need to
explore novel control strategies capable of navigating this intricate environment effectively.
This project focused on addressing this challenge through the development of a sliding
mode controller for a new 4D CSCM, specifically centered on the product received by
the customer.

The integration of chaos theory into supply chain dynamics underscores the existence
of coexisting attractors. Understanding and controlling these attractors are crucial for
ensuring stability and optimizing performance in supply chain operations. By leveraging
the insights from chaos theory and employing advanced control techniques such as sliding
mode control, this project aimed to design a control framework capable of managing the
complex dynamics of the supply chain model.

The main contributions and novelty of this paper include investigating the dynamics
of the new 4D CSCM based on the product received by the customer, identifying and
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characterizing coexisting attractors within the supply chain system, developing a sliding
mode control strategy to regulate the system dynamics and stabilize the supply chain
operation, and evaluating the performance and efficacy of the proposed sliding mode
controller through simulation and validation studies.

This work is organized as follows. The next section presents the introduction and objec-
tives of the study. In Section 2, we derive the new 4D CSCM based on the product received
by the customer. Section 3 investigates the dynamical behavior of the proposed system,
examining the influence of different parameters through techniques such as Lyapunov
exponents spectrum, bifurcation diagrams, and phase plots. Furthermore, in Section 4,
we propose a sliding mode control strategy for the new 4D CSCM, deriving the equiva-
lent control law and validating its effectiveness through simulation studies. This study is
summarized and concluding remarks are presented in the final section.

2. New 4D Chaotic Supply Chain Model (4D CSCM)

Supply chains are complex systems involving multiple interconnected components
such as suppliers, manufacturers, distributors, retailers, and customers [29]. These com-
ponents interact dynamically, with various factors influencing the overall performance
and stability of the supply chain [30]. Traditional models have often been inadequate in
capturing the inherent nonlinearities and chaotic behavior present in real-world supply
chains. To address this, recent studies have focused on developing models that can better
represent these complexities. One such model is the four-dimensional (4D) chaotic supply
chain model, which extends the conventional three-dimensional models by incorporating
an additional dimension.

Cuong et al. [31] described a four-tier integrated chaotic supply chain model, which
can be represented by a system of differential equations. This model considers the inter-
actions between product demand at a retailer, the quantity of product supplied by the
distributor, the product produced by the manufacturer, and the product received by the
customer. By incorporating various risk factors such as transportation risk, quality risk,
distortion, contingency reserves, and safety stock, the model aims to provide a more realis-
tic representation of supply chain dynamics. The four-tier integrated chaotic supply chain
model uses the following 4D system of differential equations:

.
x = ay − (m + 1)x + dw
.
y = cx − xz − y
.
z = xy − bz
.

w = −x − (m + 1)w

(1)

where x is product demand at a retailer, y is the quantity of product that the distributor can
supply, z is the product produced at a manufacturer, and w is the product received by the
customer. Moreover, in the chaotic supply chain model (1), we include various coefficients
such that of transport risk a, quality risk b, distortion c, contingency reserve d, and safety
stock m between customer and retailer.

When a = m + 1, the chaotic supply chain System (1) reduces to the 4D Lorenz–Stenflo
system given by the dynamics 

.
x = a(y − x) + dw
.
y = cx − xz − y
.
z = xy − bz
.

w = −x − aw

(2)

When a = 2, b = 1.05, c = 26, and d = 1.5, a chaotic attractor is exhibited by the 4D
CSCM (2) for the initial values x(0) = y(0) = z(0) = w(0) = 0.04. In fact, for T = 1 × 104 s,
the Lyapunov exponents for the Cuong System (2) were found to be:

L1 = 0.4228, L2 = 0, L3 = −2.9262, L4 = −3.5468 (3)
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This paper proposes a new chaotic supply chain system by adding a quadratic nonlin-
ear term px2 in the third differential equation of the Cuong chaotic System (2). Thus, our
new 4D chaotic supply chain system can be modelled according to a system of differen-
tial equations: 

.
x = a(y − x) + dw
.
y = cx − xz − y
.
z = xy − bz + px2
.

w = −x − aw

(4)

We take new values for the system parameters as a = 5.5, b = 1.8, c = 27, d = 1.6, and
p = 0.5. We take the initial values of the System (4) as x(0) = 0.04, y(0) = 0.04, z(0) = 0.04,
and w(0) = 0.04. For T = 1 × 104 s, we calculated the Lyapunov exponents for the new 4D
System (4) and obtained the following:

L1 = 0.8006, L2 = 0, L3 = −5.8404, L4 = −8.7601. (5)

We notice the positive Lyapunov exponent of the new chaotic supply chain System (4)
is significantly greater than that of Cuong chaotic System (2). This implies that the new 4D
CSCM (4) exhibits more complexity than the Cuong chaotic System (2). The phase portrait
of the new 4D CSCM (4) can be seen in Figure 1.
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Figure 1. MATLAB simulation for System (4): (a) x-y plane, (b) y-z plane, (c) z-w plane, and
(d) x-w plane.
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3. Dynamical Analysis

In this section, we present a detailed examination of how the proposed system behaves,
looking closely at how its parameters and initial conditions interact. Using various crucial
techniques like Lyapunov exponents spectrum, bifurcation diagrams, and phase plots, we
uncover how the system behaves, pinpointing areas of chaos, multistability, and other
interesting phenomena. As explained further, our analysis reveals that the system is capable
of producing chaotic behavior, with a maximum Lyapunov exponent of 1.48. Additionally,
we discover the occurrence of multistability, providing a clear picture of its effects.

3.1. Influence of Parameter “a” on System’s Behavior

This subsection investigates the influence of parameter ‘a’ in shaping the behavior of
the proposed system. By systematically varying parameter ‘a’ within the range of [5, 20],
we explore its impact on the system’s dynamics. Through the bifurcation diagram and Lya-
punov exponents spectrum shown in Figures 2a and 2b, respectively, we demonstrate that
System (4) can exhibit chaotic and periodic behaviors for specific intervals of parameter ‘a’.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 21 
 

 

Figure 1. MATLAB simulation for System (4): (a) x-y plane, (b) y-z plane, (c) z-w plane, and (d) x-w 

plane. 

3. Dynamical Analysis 

In this section, we present a detailed examination of how the proposed system 

behaves, looking closely at how its parameters and initial conditions interact. Using 

various crucial techniques like Lyapunov exponents spectrum, bifurcation diagrams, and 

phase plots, we uncover how the system behaves, pinpointing areas of chaos, 

multistability, and other interesting phenomena. As explained further, our analysis 

reveals that the system is capable of producing chaotic behavior, with a maximum 

Lyapunov exponent of 1.48. Additionally, we discover the occurrence of multistability, 

providing a clear picture of its effects. 

3.1. Influence of Parameter “a” on System’s Behavior 

This subsection investigates the influence of parameter ‘a’ in shaping the behavior of 

the proposed system. By systematically varying parameter ‘a’ within the range of [5, 20], 

we explore its impact on the system’s dynamics. Through the bifurcation diagram and 

Lyapunov exponents spectrum shown in Figures 2a and 2b, respectively, we demonstrate 

that System (4) can exhibit chaotic and periodic behaviors for specific intervals of 

parameter ‘a’. 

When 5 < a < 15.3, System (4) exhibits chaotic behavior, as demonstrated by Figure 

2a. Additionally, Figure 2b clearly illustrates that the maximum Lyapunov exponent 

(MLE) is positive within this range. Furthermore, we observe windows of periodic 

behaviors nestled between chaotic regions at specific values of ‘a,’ namely, ([9.5, 9.6], [10.1, 

10.15], [11.31, 11.34], [13.6, 13.9]). For enhanced clarity, we provide a visualization of the 

chaotic attractor in Figure 2c for the case when a = 6. The resulting Lyapunov exponents 

according to this setting are as follows: LE1 = 0.812, LE2 = 0, LE3 = −6.338, and LE4 = −9.275. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Chaotic exhibition of System (4): (a) bifurcation diagram, (b) Lyapunov exponents, (c) x-y 

chaotic attractor for a = 6, (d) x-y periodic attractor for a = 18. 
Figure 2. Chaotic exhibition of System (4): (a) bifurcation diagram, (b) Lyapunov exponents, (c) x-y
chaotic attractor for a = 6, (d) x-y periodic attractor for a = 18.

When 5 < a < 15.3, System (4) exhibits chaotic behavior, as demonstrated by Figure 2a.
Additionally, Figure 2b clearly illustrates that the maximum Lyapunov exponent (MLE)
is positive within this range. Furthermore, we observe windows of periodic behaviors
nestled between chaotic regions at specific values of ‘a,’ namely, ([9.5, 9.6], [10.1, 10.15],
[11.31, 11.34], [13.6, 13.9]). For enhanced clarity, we provide a visualization of the chaotic
attractor in Figure 2c for the case when a = 6. The resulting Lyapunov exponents according
to this setting are as follows: LE1 = 0.812, LE2 = 0, LE3 = −6.338, and LE4 = −9.275.
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When 15.3 < a < 20, System (4) demonstrates periodic behavior, as illustrated in
Figure 2a. Furthermore, Figure 2b highlights that the maximum Lyapunov exponent (MLE)
is zero within this interval. Additionally, for further insight, we present a visualization of
the periodic attractor in Figure 2d corresponding to the case when a = 18. The resulting
Lyapunov exponents according to this setting are as follows: LE1 = 0, LE2 = −0.293,
LE3 = −17.386, and LE4 = −21.123.

Transportation risk is a significant factor in supply chain management, influencing
the stability and performance of the entire system [32]. By varying the transportation risk
parameter in our 4D CSCM, chaotic behavior in the supply chain due to transportation
risk can be identified by irregular and unpredictable fluctuations in inventory levels, order
quantities, and delivery schedules. This erratic behavior is often caused by factors such as
delays, disruptions, and variability in transportation times. Periodic behavior, on the other
hand, is characterized by regular, repeating patterns in the supply chain dynamics. This
occurs when the transportation risk is more predictable and stable, leading to consistent
and cyclical patterns in inventory and order levels.

3.2. Influence of Parameter “b” on System’s Behavior

In this subsection, we explore the influence of parameter ‘b’ on the behavior of System
(4) by systematically varying it within the range of [0, 2]. This observation was based on
the dynamics of the bifurcation diagram and Lyapunov exponents spectrum.

For 0 < b < 0.51, System (4) demonstrates periodic behavior, as depicted in Figure 3a.
Notably, Figure 3b reveals that the maximum Lyapunov exponent (MLE) is zero within
this range. Furthermore, we observe intervals of chaotic behavior amidst periodic regions
at specific values of ‘b’, namely, ([0.03, 0.07], [0.1, 0.13], [0.18, 0.20], [0.22, 0.25]). Figure 3c
illustrates the periodic attractor for the case when b = 0.3. The resulting Lyapunov expo-
nents according to this setting are as follows: LE1 = 0, LE2 = −0.349, LE3 = −4.756, and
LE4 = −7.201.

For 0.51 < b < 2, System (4) exhibits chaotic behavior, except for the intervals when
b = [0.71, 0.76], b = 0.82, and b = 0.96, where it demonstrates periodic behavior, as found in
Figure 3a. Additionally, Figure 3b gives an indication of positive MLE within this range.
To provide further insight, we present a visualization of the chaotic attractor in Figure 3d
corresponding to the case when b = 2. The resulting Lyapunov exponents according to this
setting are as follows: LE1 = 0.789, LE2 = 0, LE3 = −5.814, and LE4 = −8.975.

Chaotic behavior due to quality risk is characterized by unpredictable fluctuations
in product quality, leading to erratic order quantities, inventory levels, and customer sat-
isfaction [33]. Factors contributing to chaotic behavior include inconsistent production
processes, supplier quality issues, and variable inspection standards. In the chaotic regime,
phase portraits of supply chain variables (e.g., product quality vs. inventory level) show
intricate, non-repeating patterns, indicating high sensitivity to initial conditions. Small
changes in quality risk can lead to significantly different outcomes, highlighting the unpre-
dictable nature of the system. Periodic behavior, in contrast, is characterized by regular,
repeating patterns in the supply chain dynamics due to stable and predictable product qual-
ity. This occurs when quality risk is minimized through consistent production processes
and reliable suppliers. In the periodic regime, phase portraits show closed, repeating loops,
indicating stable and predictable behavior. Periodic behavior allows for consistent product
quality, enhancing customer satisfaction and reducing the need for returns or rework.
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3.3. Influence of Parameter “c” on System’s Behavior

This subsection examines the effect of systematically varying parameter ‘c’ on the
system’s behavior within the range of [20, 200]. This observation was drawn from the
dynamics of the bifurcation diagram and Lyapunov exponents spectrum.

For the interval of c ([20, 82], [90, 145.5]), System (4) displays chaotic behavior, with
exceptions noted when c = [57, 57.5], c = 49.5, c = 197, c = 138.5, and c = 141.5, where it
exhibits periodic behavior, as shown in Figure 4a. Moreover, Figure 4b indicates a positive
maximum Lyapunov exponent (MLE) within this range. To offer deeper insight, we provide
a visualization of the chaotic attractor in Figure 4c corresponding to the case when c = 110.
The resulting Lyapunov exponents according to this setting are as follows: LE1 = 1.482,
LE2 = 0, LE3 = −5.572, and LE4 = −9.710.

For the range of c ([92, 90], [145.5, 200]), System (4) demonstrates periodic behavior, as
illustrated in Figure 4a. Notably, Figure 4b reveals that the MLE is zero within this interval.
Figure 4d illustrates the periodic attractor for the case when c = 89. The resulting Lyapunov
exponents according to this setting are as follows: LE1 = 0, LE2 = −2.591, LE3 = −2.849,
and LE4 = −8.373.

Distortion in supply chain management refers to discrepancies and inaccuracies in
information flow, demand forecasts, and order quantities, often leading to the well-known
“bullwhip effect” [34,35]. In the chaotic regime, phase portraits of supply chain variables
(e.g., order quantity vs. inventory level) show complex, non-repeating patterns, indicating
high sensitivity to initial conditions. Small changes in distortion can lead to significantly
different outcomes, highlighting the unpredictable nature of the system. Periodic behavior,
in contrast, is characterized by regular, repeating patterns in the supply chain dynamics
due to accurate and timely information flow. This occurs when distortion is minimized
through synchronized communication and reliable data analytics.
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3.4. Influence of Parameter “d” on System’s Behavior

In this subsection, we explore the impact of parameter ‘d’ on the system’s behavior by
systematically varying it within the range of [−35, 5]. This observation was drawn from
the dynamics of the bifurcation diagram and Lyapunov exponents spectrum.

For the interval of d ([−35, −25.5], [−22.8, −20.2]), System (4) predominantly exhibits
periodic behavior, except for the subrange of d [−20.7, −20.45], where chaos emerges, as
found in Figure 5a. Notably, Figure 5b suggests a zero maximum Lyapunov exponent
(MLE) within this interval. Figure 5c illustrates the periodic attractor for the case when
d = −27. The resulting Lyapunov exponents according to this setting are as follows: LE1 = 0,
LE2 = −0.468, LE3 = −0.499, and LE4 = −12.841.
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Within the range of d ([−25.5, −22.8], [−20.2, 5]), System (4) predominantly displays
chaotic behavior. However, exceptions occur at specific values such as d = [(−24.3, −24.15),
(−23.35, −23.25), (−13.25, −13), (−11.75, −11.55)], d = −18.5, and d = −18, where periodic
behavior is observed, as depicted in Figure 5a. Additionally, Figure 5b highlights a positive
maximum Lyapunov exponent (MLE) within this range. To provide further insight, we
present a visualization of the chaotic attractor in Figure 5d corresponding to the case
when d = 1. The resulting Lyapunov exponents according to this setting are as follows:
LE1 = 0.772, LE2 = 0, LE3 = −5.669, and LE4 = −8.903.

Contingency reserves in supply chain management refer to the additional inventory
or resources kept to buffer against uncertainties and disruptions [36]. Chaotic behavior
due to poorly managed contingency reserves is characterized by erratic and unpredictable
fluctuations in inventory levels, leading to inefficiencies and instability in the supply chain.
In the chaotic regime, phase portraits of supply chain variables (e.g., inventory level vs.
order quantity) show intricate, non-repeating patterns, indicating high sensitivity to initial
conditions. Periodic behavior, in contrast, is characterized by regular, repeating patterns in
the supply chain dynamics due to well-managed contingency reserves. This occurs when
contingency reserves are appropriately sized and consistently utilized to buffer against
demand variability and disruptions.

3.5. Influence of Parameter “p” on System’s Behavior

In this subsection, we explore the impact of parameter ‘p’ on the system’s behavior by
systematically varying it within the range of [0.5, 10]. This observation was drawn from
the dynamics of the bifurcation diagram and Lyapunov exponents spectrum.

When choosing p between ([0.5, 9.3]), we observe a clear sign of chaotic behavior in
System (4), as found in Figure 6a. Furthermore, Figure 6b indicates a positive maximum
Lyapunov exponent (MLE) within this range. To provide a deeper understanding, we
present a visualization of the chaotic attractor in Figure 6c corresponding to the scenario
when p = 3. The resulting Lyapunov exponents according to this setting are as follows:
LE1 = 1.022, LE2 = 0, LE3 = −5.601, and LE4 = −9.222.

For the range of p [9.3, 10], System (4) demonstrates periodic behavior, except for
instances when p is in the intervals [9.94, 10], p = 9.35, and p = 9.5, as illustrated in
Figure 6a. Notably, Figure 6b reveals that the MLE is zero within this interval. Figure 6d
illustrates the periodic attractor for the scenario when p = 9.8. The resulting Lyapunov
exponents according to this setting are as follows: LE1 = 0, LE2 = −0.777, LE3 = −3.791,
and LE4 = −9.238.
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Chaotic behavior due to improperly managed safety stock is characterized by irregular
and unpredictable fluctuations in inventory levels, leading to instability in the supply
chain [37]. Factors contributing to chaotic behavior include inappropriate sizing of safety
stock and inconsistent replenishment policies. Chaotic behavior due to safety stock can
lead to frequent overstocking or stockouts, increasing holding costs and reducing service
levels. Also, periodic behavior allows for consistent service levels and efficient inventory
management, reducing the likelihood of stockouts and excess inventory.

3.6. Influence of Initial Conditions on System’s Behavior

In this section, we explore how the choice of initial conditions potentially affects the
behavior of the system we have proposed. We discuss its multistability and the coexistence
of different chaotic attractors by considering fixed parameter values yet with different
initial points [38–41]. To demonstrate this interesting phenomenon, we choose two distinct
initial points: [0.04 0.04 0.04 0.04], shown in blue, and [−0.04 0.04 0.04 0.04], shown in red.
Next, we create a bifurcation diagram for System (4) with c values ranging from 130 to 200.
The resulting diagram, displayed in Figure 7a, clearly shows the presence of multistability
in the system.

In Figure 7b–d, you can see three pairs of coexisting chaotic attractors generated by
System (4) for c = 135, c = 140, and c = 145, respectively. Figure 7e,f depict two pairs
of coexisting periodic attractors for c = 147 and c = 190, respectively. The existence of
coexisting distinct attractors under identical parameter settings underscores the complex
dynamical nature of the proposed system, offering valuable insights into its behavior and
potential applications.
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attractors for c = 145, (e) two coexisting periodic attractors for c = 147, (f) two coexisting periodic
attractors for c = 190.

4. Sliding Mode Controller

Traditionally, two main steps are considered in the design of sliding model control.
The first step is the selection of the sliding surface and the second step is the control law to
stay on the sliding surface [42,43]. In practice and computer implementations, other steps
must be considered. Therefore, in this article, all the steps of designing the sliding model
controller will be described. Initially, with initial conditions, the system will have an output.
This output will be compared with the desired values and the error will be obtained. The
error block has two outputs, the first is the error and the second is its derivative.
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In the next block, the sliding method calculates the sliding surface and its derivative
using the error and the derivative of the error (of course, the sliding surface is selected by
the designer, but finally the slip surface and the derivative of the sliding surface must be
calculated). The equivalent control law is obtained from the two parameters of the sliding
surface and the derivative of the sliding surface. This control law is called equivalent
controller. In the design of the sliding mode controller, the exponential reaching law is
added to the equivalent controller. Finally, the sliding model controller will be activated.
This cycle continues until the output of the system tends to the desired values. The block
diagram in Figure 8 depicts this cycle.
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In this paper, the main goal was to eliminate the chaotic behavior in the 4D chaotic
supply chain.

So, Equation (6) was rewritten as follows:

.
x = a(y − x) + dw + uSMCx
.
y = cx − xz − y + uSMCy
.
z = xy − bz + px2 + uSMCz
.

w = −x − aw + uSMCw

(6)

where uSMCx , uSMCy , uSMCz , uSMCw are the proposed sliding model controllers and should
be designed.

Step 1: The first step is to calculate the error. The error function is defined as follows:
ex = x − x∗

ey = y − y∗

ez = z − z∗

ew = w − w∗

(7)

where x∗, y∗, z∗, w∗ are the desired values (set point) to reach our control goal.
Step 2: Calculation of the error derivative, according to Equation (7), so:

.
ex =

.
x − .

x∗
.
ey =

.
y − .

y∗
.
ez =

.
z − .

z∗
.
ew =

.
w − .

w∗

(8)
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Step 3: The selection of the sliding surface is very important in the design problem
of the sliding model controller. Therefore, the sliding surface in this design is considered
as follows: 

sx = ex(t) +
∫ t

0 ζxex(τ)dτ

sy = ey(t) +
∫ t

0 ζyey(τ)dτ

sz = ez(t) +
∫ t

0 ζzez(τ)dτ

sw = ew(t) +
∫ t

0 ζwew(τ)dτ

(9)

where ζx, ζy, ζz, ζw are constant values.
Step 4: To determine the derivative of the sliding surface, the derivative is taken from

Equation (9): 

.
sx =

.
ex(t) + ζxex(t)

.
sy =

.
ey(t) + ζyey(t)

.
sz =

.
ez(t) + ζzez(t)

.
sw =

.
ew(t) + ζwew(t)

(10)

To reach the equivalent control law, the condition s=0 must be satisfied. Therefore:

.
ex(t) + ζxex(t) = 0
.
ey(t) + ζyey(t) = 0
.
ez(t) + ζzez(t) = 0
.
ew(t) + ζwew(t) = 0

(11)

Step 5: Determine the equivalent controller. By replacing Equation (8) in Equation (11)
and simplifying, the equivalent controller is obtained:

uxeq = −a(y − x)− dw − x∗ − ζxex(t)

uyeq = −cx + xz + y − y∗ − ζyey(t)

uzeq = −xy + bz − px2 − z∗ − ζzez(t)

uweq = x + aw − w∗ − ζwew(t)

(12)

where u are equivalent controllers. To achieve the final model sliding control, the exponen-
tial control law should also be added to the equivalent controller. So:

uSMCx = uxEq + uxERL

uSMCy = uyEq + uyERL

uSMCz = uzEq + uzERL

uSMCw = uwEq + uwERL

(13)

Step 6: Obtain the exponential control law, which is the exponential control law in
Equation (13) and is obtained from the following relationship.

uxERL = kxsx + αx
sx

|sx |+εx

uyERL = kysy + αy
sy

|sy|+εy

uzERL = kzsz + αz
sz

|sz |+εz

uwERL = kwsw + αw
sw

|sw |+εw

(14)

In the last equation, k, ε are the gains of the exponential control law. Of course, it is
obvious that:

lim
ε→0

(α
s

|s|+ ε
) = αsign(s) (15)



Mathematics 2024, 12, 1938 14 of 21

Verification of the sliding model controller design is carried out with the help of
Theorem 1.

Theorem 1. The behavior of the chaotic equations of the supply chain (6) under the controller
of the following proposed sliding model tends to the desired values when the initial condition
values x(0), y(0), z(0), w(0) ∈ R.



uSMCx = −a(y − x)− dw − x∗ − ζxex(t) + kxsx + αx
sx

|sx |+εx

uSMCy = −cx + xz + y − y∗ − ζyey(t) + kysy + αy
sy

|sy|+εy

uSMCz = −xy + bz − px2 − z∗ − ζzez(t) + kzsz + αz
sz

|sz |+εz

uSMCw = x + aw − w∗ − ζwew(t) + kwsw + αw
sw

|sw |+εw

(16)

Proof. Consider the candidate Lyapunov function as follows:

V(s) =
1
2
(s2

x + s2
y + s2

z + s2
w) (17)

If the Equation (17) is derived, then:

.
V(s) =

.
sxsx +

.
sysy +

.
szsz +

.
swsw (18)

By inserting and simplifying Equation (18):

.
V(s) = sx(

.
ex(t) + ζxex(t)) + sy(

.
ey(t) + ζyey(t))+

sz(
.
ey(t) + ζyey(t)) + sw(

.
ew(t) + ζwew(t))

⇒ sx(kxsx + αx
sx

|sx |+εx
) + sy(kysy + αy

sy

|sy|+εy
)+

sz(kzsz + αz
sz

|sz |+εz
) + sw(kwsw + αw

sw
|sw |+εw

)

(19)

Equation (19) will always be negative (
.

V(s) < 0) if and only if αx,y,z,w, kx,y,z,w < 0. □
In the numerical simulation, MATLAB R2022a software was used to calculate

the supply chain responses of Equation (6). The initial condition values were equal
to

[
x(0) y(0) z(0) w(0)

]T
=

[
0.04 0.04 0.04 0.04

]
. The sliding mode controller

parameters were equal to αx,y,z,w = 0.01, kx,y,z,w = −0.1 and ζx,y,z,w = −2 were also selected.
The desired values in this part of the simulation were zero (x∗ = y∗ = z∗ = w∗ = 0). Figure 9
shows the new 4D chaotic supply chain under the proposed sliding model controller. The
control strategy was activated from time t = 4.

Figure 10 depicts the behavior of the proposed sliding model controller. As can be
seen from Figure 10, the controller reached zero value after a short time. Figure 11 shows
that the sliding surface converged to zero exponentially over time.

In the other part of the simulation, the tracking of other desired values was investigated
in Table 1. In this way, after reaching the first desired values, the second desired values
were tracked.

Table 1. The different time sequences.

Seq. Time Desired Value Sliding Mode

1 0 < Time < 4 none off
2 4 < Time < 10 x∗ = y∗ = z∗ = w∗ = 0 on
3 10 < Time < ∞ x∗ = y∗ = z∗ = w∗ = 5 on
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When physical systems are involved in chaos, they cause great damage to organiza-
tions and systems in the real world. Therefore, controller design methods should be able
to remove chaotic behavior from the system in a short period of time and also track it if
desired values are required. Therefore, the time to reach stability is defined from the time
the controller is applied until the zero error is reached. Figure 12 show the chaos removal
and optimal value tracking under the proposed sliding model controller and Figure 13
show the behavior of the sliding model controller in order to track the desired values after
removing the chaos. In the sliding model controller design method, the time to reach
stability and eliminate chaos is approximately equal to t = 1.8. This value can be controlled
by setting the parameters ζx, ζy, ζz, ζw in Equation (9). Figure 14 shows the comparison of
chaotic supply chain behavior with changing values ζx, ζy, ζz, ζw, and Figure 15 shows
the behavior of the proposed sliding model controller with different ζx, ζy, ζz, ζw values.

As can be seen, the more negative zeta values increase the speed of convergence
towards the desired values. But the important point is the controller’s behavioral conditions,
which have sharp points and more magnitude. Controller behavior can represent real-world
implementation cost. In other words, in physical systems, the control signal is applied to
the actuator, but if this signal has high frequencies, the actuator may not be able to respond
to it. In supply chain systems, the control signal is the same as management decisions. Also,
the actuator in supply chain systems is interpreted as organizational agility. Therefore, if
an organization is agile and fast, it can respond to quick management decisions. Otherwise,
in physical systems or supply chain systems, the fast behavior of the controller is not seen
by the driver.
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5. Conclusions

This paper delves into the intricate dynamics of supply chains, highlighting the chal-
lenges posed by their interconnected components and susceptibility to disruptions. Our
research utilized dynamical and multistability analyses to explore nonlinear behaviors and
identify potential risks within these systems. Key findings from our dynamical analysis
demonstrated how transport risk, quality risk, distortion, contingency reserves, and safety
stock impact supply chain management. Each of these factors was shown to influence
the stability and efficiency of supply chain operations significantly. Moreover, we intro-
duced a sliding method for computing the sliding surface and its derivative, along with
the derivation of an equivalent control law. This method presents promising avenues
for controlling supply chain dynamics by providing a robust mechanism to manage the
complexities and nonlinearities inherent in supply chains. Our sliding mode controller was
validated through simulations, which underscored its effectiveness in stabilizing supply
chain operations and enhancing performance. In practical terms, this controller can be
implemented in supply chain management software and systems to automatically adjust
key parameters such as order quantities, inventory levels, and safety stock in response to
real-time data. Due to computational limitations, real applications will be implemented in
future research.

Author Contributions: Conceptualization, M.D.J. and A.S.; Formal analysis, S.V. and K.B.; Funding
acquisition, M.D.J.; Investigation, S.M.H., K.B. and S.V.; Methodology, S.M.H., M.H. and M.D.J.;
Writing—original draft, M.D.J., A.S. and S.M.H.; writing—review and editing and supervision, K.B.,
M.H., S.V. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universitas Padjadjaran.

Data Availability Statement: Our manuscript has no associated data.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Bidhandi, H.M.; Yusuff, R.M.; Ahmad, M.M.H.M.; Bakar, M.R.A. Development of a new approach for deterministic supply chain

network design. Eur. J. Oper. Res. 2009, 198, 121–128. [CrossRef]
2. Biswas, P.; Kumar, S.; Jain, V.; Chandra, C. Measuring supply chain reconfigurability using integrated and deterministic

assessment models. J. Manuf. Syst. 2019, 52, 172–183. [CrossRef]
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