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Abstract: A new authentication method based on EEG signal is proposed here. Biometric features
such as fingerprint scanning, facial recognition, iris scanning, voice recognition, and even brainwave
patterns can be used for authentication methods. Brainwave patterns, also known as brain biometrics,
can be captured using technologies like electroencephalography (EEG) to authenticate a user based
on their unique brain activity. This method is still in the research phase and is not yet commonly
used for authentication purposes. Extracting EEG features for authentication typically involves
signal processing techniques to analyze the brainwave patterns. Here, a method based on statistics
for extracting EEG features is designed to extract meaningful information and patterns from the
brainwave data for various applications, including authentication, brain–computer interface systems,
and neurofeedback training.

Keywords: user authentication; EEG signals; visual evoked potentials (VEPs); local neighbor descriptive
pattern (LNDP); personalized electrode selection algorithm; machine learning
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1. Introduction

Over the past decade, the world has witnessed a paradigm shift in the widespread use
of brain–computer interfaces (BCI) in both user authentication (UA) and user identification
(UI) applications, the two having substantial similarities but different purposes. Thus,
while authentication systems confirm or deny a user’s identity, identification systems are
used to find a person in a group [1,2]. In such a technology-driven society, traditional
identifiers (ID cards or classic passwords) are being replaced by biometric identifiers (e.g.,
face, fingerprint, voice, or iris recognition). Biometric recognition refers to the automatic
recognition of individuals based on physiological and/or behavioral traits [3].

Biometric systems have been used in various low-cost devices in recent years; for
example, fingerprint/face recognition has been integrated into smartphones and comput-
ers [4,5]. Unlike traditional systems, biometrics are advantageous as the encryption key [6]
is harder to compromise or duplicate [7]. However, a biometric system is vulnerable to a
variety of attacks designed to undermine the integrity of the authentication process [8,9].

Similarly, personal identification through biometric systems has recently attracted
the attention of the security research community. Thus, one of the main tools for security
systems is the use of personal identification systems. The main spoofing methods used to
attack the security of biometric systems and allow unauthorized persons to access other
people’s data include printing photos or printing 3D masks (for systems based on face
recognition), playing a recorded signal in front of a speech recognition system, or presenting
an eyeball to an iris scanner [10].
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In view of these attacks, the design of new systems involves the identification of unique
(distinct and unique to everyone), permanent (remains relatively constant for a long period
of time), universal (all people possess those biometric traits and could use the system),
and collectable (can be easily quantified through some type of collection process) traits [11].
These requirements form a representative pattern of whether a given biometric-based
authentication system is reliable and useful [12]. In this context, such biometric systems
can be developed using an authentication method based on cognitive traits, dependent
on the autonomic nervous system, involving the acquisition of signals such as EEG (elec-
troencephalogram) [13,14]. EEG signals can be described as distinctive, more difficult to be
artificially generated, and reflect an internal and personal process that cannot be perceived
by others [15]. Also, these are triggered by external stimuli, offering user-specific brainwave
patterns. Different fields, such as healthcare and patient identification (enhancing the secu-
rity of electronic health records), financial services (to secure online banking and financial
transactions, adding an extra layer of protection), data centers and server rooms (securing
critical data centers and server rooms where sensitive information is stored), electronic
voting and ATM machine or private sectors, and different companies and government
offices (in order to authenticate employees) can benefit from the results obtained in this
new active research topic area represented by the study of EEG-based authentication and
identification systems [16,17].

The paper is organized as follows. Section 2 presents the related research work on
brainwave patterns-based biometric systems. Section 3, Materials and Methods, focuses
on materials and methods, providing the concept of authentication and identification
proposed system and detailing the algorithms and mathematical concepts related to channel
selection, password generation (authentication stage) and user identification. A series of
statistical techniques are introduced for the selection of representative channels and the
investigation of medical data dynamics in relation to ensuring the uniqueness of users
within the proposed system. Further, a brief overview of the analyzed database is presented
in Section 4, Experimental design, including the brain signal acquisition protocol and the
EEG montage. The main results related to system performance are addressed and discussed
in Section 5, Results, underlying the security of proposed EEG-based biometric system. In
Section 6, evaluation of proposed system results in terms of security analysis.

2. Literature Review

Over time, brainwave data have proven to be a suitable framework for designing
biometric authentication systems. Researchers have proposed various methods to encrypt
EEG signals, illustrating the tremendous potential of advanced algorithms and machine
learning in behavioral pattern generation and recognition based on prior training. Bey-
routhy et al. [18] describe it as a fusion approach that combines electroencephalography
with Artificial Intelligence (AI) and the Internet of Things (IOT).

The majority of EEG biometric research uses EEG signals captured while the subject
is in a resting state [19]. In this way, for the first time, Poulos et al. [20] successfully
introduced EEG in the context of user authentication, without explicitly evaluating the
security aspects from a biometric perspective. Under resting state eye-closed conditions,
they obtained the EEG data from 4 users and 75 imposters. They obtained an accuracy
score ranging from 72% to 78% when auto-regressive parameters and a Learning Vector
Quantization network were used. Later, Chuang et al. [21] and Curran et al. [22] suggested
a new algorithm for the authentication stage that checks whether the degree of similarity
related to a user is higher than that with other users. This approach tends to ignore
cases where someone is not registered in the system and may attempt to be authenticated
instead of an authenticated user.

Stergiadis et al. [23] developed an EEG-based authentication method using the Auto-
WEKA software package, which contains libraries and predefined functions in Java Script
for implementing machine learning algorithms (ML). The authors proposed as a pattern
descriptor vector with 15 spectral density characteristics of power. The reported average
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results indicate an accuracy of 95%, a true positive rate (sensitivity) of 93%, and a true
negative rate (specificity) of 93%. The dataset contains signals from 15 subjects during resting
state, with eyes open, for a duration of 30 s, in which the participants were asked to keep
their eyes open and focus on an “x”-shaped symbol appearing in the center of the screen.

Introducing external-stimuli-based protocols or mental activity protocols for brain
signal acquisition is a common way to enhance identity authentication systems [24]. For
example, the work of Sooriyaarachchi et al. [25] provides an overview of system authen-
tication for smart devices that use brain waves recorded in the presence of an auditory
stimulus (music). The data from 20 subjects were collected from users while they listened
to two types of music: a famous song in English, and the person’s favorite song. Random
Forest classifiers based on 20 features extracted from EEG separated into sub-bands were
designed for the user identification and verification stages. The reported results for these
experiments were approximately 85% when involving a single channel in the authentication
stage, and 95% when considering two electrodes.

Moreover, Damaševicius et al. [6] created a paradigm shift in this direction, merging
the native cryptographic algorithms with EEG in a biometric system. The proposed algo-
rithm was tested on a database consisting of 42 subjects, obtaining an average accuracy
of 85%. The authors reported that for some subjects, the accuracy was quite low (45%),
explaining this result as a mismatch between the subject and the BCI system, which is a
phenomenon known as the BCI illiteracy effect. According to the literature, about 15–20% of
people cannot control a brain–computer interface system with high accuracy [26].

Das et al. [27] proposed an unsupervised algorithm based on autoencoders to learn
sparse feature representations to realize the person identification task. This was conducted
in an open-source database containing motor imagery EEG signals from 109 subjects.
The Autoencoder-CNN model yielded the highest recognition rate of 87% for task-based
identification and 99% for resting state recognition. In addition, in their study, Seyfizadeh
et al. [28], using the same dataset, designed a deep learning framework, specifically a neural
network (ResNet) for the identification of distinct individuals based on their brainwaves.
Considering both the time and frequency domain characteristics of the EEG signals, this
model effectively reveals the intricate details present in the data, thereby improving the
overall performance. The proposed approach produced an outstanding classification
accuracy of 99% and an equal error rate of 0.41%.

Yap et al. [29] investigated the potential of developing an EEG biometric system using
a self-collected database of eight participants and an SVM classifier. The subjects were asked
to perform two tasks: resting state with eyes closed, and visual stimulation. The reported
accuracy is 87–99% for the visual stimulation protocol and 83–96% for the resting state.
Sabeti et al. [30] demonstrated that in terms of inter-subject variability, ERP (evoked related
potential)-EEG data are a tremendous biomarker in person identification and verification
systems compared with resting state EEG. To perform the person verification task, they
used three methods, with the average accuracy for the ERP (P300) component as follows:
96% (k-nearest neighbor-kNN), 95% (SVM), and 97% (Random Forest). Moreover, the EER
was estimated to be 0.02% (kNN) and 0.015% (SVM, Random Forest).

The EEG-based biometric procedure consists of an enrolment (authentication) and
verification stage. In the enrolment process, one or more biometric traits of the individual
person are compared to the configured biometric profile [31]. Therefore, the verification
stage requires a one-to-one match to decide the results as a valid user or imposter. Currently,
classification/deep learning methods are used to perform user verification [8]. In this way,
the analyzed literature suggests the following limitations:

• Database: Most of the works that perform brain fingerprint extraction, and, in equal
measure, the design of EEG-based authentication systems, use databases, designed for
other purposes such as emotion recognition or character determination [32–34].

• The protocol used in the EEG signals acquisition: A remarkable number of papers
discuss the opportunity to design an authentication system, using resting state EEG
signals. The resting state is used for the identification of the user and is applied on a
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larger scale as a source of reference. When designing a system for authentication, it is
necessary to account that this approach does not allow for password reset or recovery.
On a large scale, there are two such protocols used for acquisition, namely Rest
Eyes Open (REO) and Rest Eyes Closed (REC) [12,35]. The main disadvantages of this
protocol are the sensitivity of external stimuli, which can disturb users’ attention, or the
modification of signals generated, and artifacts generated by controlled or uncontrolled
movements, such as blinking, as well as significantly affecting the accuracy of the
system [3,36–38].

• Channel selection: The extraction of the representative channels is not based on a
personalized algorithm [23,39].

• Classification: The most popular authentication mechanism relies on classification
algorithms (number of classes = number of users) in order to gain access to the
system. Such an approach, Single-Factor Authentication (SFA) [40], does not take into
consideration the situations in which unknown persons outside of the database are
trying to connect [1,33].

To overcome the aforementioned limitations, we propose a Two-factor authentication
(2FA) system, namely authentication based on the generated password from EEG signals
and identification using a one-vs-all classification algorithm, with each user having a trained
LNDP descriptor- based model. Thus, the proposed system provides an additional level of
protection against attacks, namely an identification stage confirming or rejecting the identity
of the user whose password was previously accepted. Additionally, the identification phase
restricts access to the system for users whose profiles have not been configured.

In this work, we also explored our database, consisting of 25 subjects, created for the
purpose of designing an authentication system. In our experiment, the acquisition protocol
is based on external visual stimuli, recording brain activity in response to the presentation
of various images to each subject.

Protocols based on external stimuli involve the acquisition, preprocessing, and process-
ing of EEG signals obtained following the presentation of a stimulus. Compared to resting
EEG acquisition, resetting user credentials can be accomplished by changing the stimulus
source. Additionally, this protocol may require frequent password resets due to changes
in brain activity over time. Visual evoking potentials (VEP)/steady state visual evoked
potential (SSVEP), rapid serial visual presentation (RSVP), and sound-based protocols are
examples of paradigms used in external stimulus-based protocols.

Visual evoked potential (VEP) is the most used category of ERP, according to statistical
data reported in [22]. Resetting the user’s credentials, in terms of repeating the enrollment
step, is carried out with a different stimulus, as the brain’s response to a given stimulus
changes over time. In such scenarios, a password reset can only be carried out by replacing
the incentives. Protocols based on external stimuli require repeated measurements of brain
activity to achieve classification algorithms of a high accuracy of.

Therefore, the presence of visual stimuli elicits unique and distinct brain responses
between subjects, enabling the reset of user credentials by applying different images. Con-
sidering that protocols based on external stimuli require repeated measurements of brain
activity to achieve high algorithm accuracy, each subject was presented with 25 categories
of images (hobbies/personal images), with each category containing 32 images.

3. Materials and Methods
3.1. System Overview

The proposed system, created according to the personality and uniqueness of users,
is shown in Figure 1, and is divided into two phases: authentication and identification.
To make a personalized selection of representative channels, a statistical algorithm was
developed. In the authentication stage, for each subject, the password match validator is
computed (validating the generated and system-stored password when the profile of user
is configured with the password when a participant tries to connect). In the identification
stage, in order to enhance system security, a LNDP (Local Neighbor Descriptive Pattern)
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descriptor-based machine learning model is trained, which is a measure that aims to design
an additional layer of user identify verification.
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3.2. Preprocessing

In the preprocessing stage, we filtered the raw data with a Notch filter having a
center frequency of 50 Hz to remove the power line interference, and subsequently, we
applied Independent Component Analysis, to reject the artifacts embedded in the data (e.g.,
eye blinks or eye movements). Data were cleaned and analyzed offline, using MATLAB
(R2022b).

3.3. Channel Selection

Knowing that the presence of a large number of channel recordings increases the
computational complexity of processing signals and the risk of overfitting, a channel
selection based on maximum variance [41] is performed in this area. In order to make a
custom selection, we implemented a statistical algorithm. First of all, for each subject, for
the EEG signal corresponding to each image ( In) which is displayed, we calculated the
variance as follows:

VarIn(c) =
1
k

k

∑
i=1

(x(i)− µ(c))2 (1)

where x, µ, and k are the EEG data, mean, and number of samples of the data acquired on
channel c, respectively.

The channel with maximum variance is selected from each recording In as follows:

Cn = argmax
c

VarIn(c) (2)

Subsequently, for each channel, we computed the probability of being selected as follows:

h(i) =
1
T

T

∑
n=1

δ(Cn − i), (3)

where i = the number of channels (1, 2, 3, . . ., 33) and T = total number of recordings.
In the end, we selected the first N channels, so that the cumulative probability is

greater than the threshold (0.7). Figure 2 depicts the stages of this algorithm.



Mathematics 2024, 12, 1971 6 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 23 
 

 

ℎ(𝑖) = 1𝑇 𝛿 (𝐶 − 𝑖),  (3) 

where i = the number of channels (1, 2, 3, …, 33)  and T = total number of recordings. 
In the end, we selected the first N channels, so that the cumulative probability is 

greater than the threshold (0.7). Figure 2 depicts the stages of this algorithm. 

 
Figure 2. The flowchart of channel selection algorithm. 

3.4. Password Generation 
Different features were extracted and analyzed to generate a password based on EEG 

signal. The features (Table 1) which proved the uniqueness between inter-subjects were 
used as input in our algorithm. Given that the EEG signal is non-stationary, it is very im-
portant to be analyzed in both the temporal and frequency domains. The train set consists 
of 80% of the total samples of each participant, as these models only need positive sam-
ples. The uniqueness notion is described hereunder. 

  

Figure 2. The flowchart of channel selection algorithm.

3.4. Password Generation

Different features were extracted and analyzed to generate a password based on EEG
signal. The features (Table 1) which proved the uniqueness between inter-subjects were
used as input in our algorithm. Given that the EEG signal is non-stationary, it is very
important to be analyzed in both the temporal and frequency domains. The train set
consists of 80% of the total samples of each participant, as these models only need positive
samples. The uniqueness notion is described hereunder.

Table 1. The list of EEG features analyzed in this work.

Category Feature Definition

a. The extracted and analyzed features in time domain.

Ti
m

e
do

m
ai

n
(t

.d
)

1 Average The arithmetic mean of EEG samples
2 Median The middle value when the samples are arranged in ascending order
3 Standard Deviation The dispersion relative to the mean
4 Variance A measure of dispersion around the mean
5 Skewness A measure of asymmetry
6 Kurtosis A measure of a distribution’s tails
7 Number of waves

8 Zero-crossing rate The number of times that signal crosses the
horizontal axis

9 Minimum The minimum value of EEG signal
10 Maximum The maximum value of EEG signal
11 Minimum arguments Inidices of the minimum values
12 Maximum arguments Inidices of the maximum values
13 Activity A measure of the squared standard deviation of the amplitude of the signal
14 Peak-to-peak amplitude The difference between the highest and the lowest values in a waveform
15 Mean square The arithmetic mean of squared amplitude values

16 Mobility The square root of the activity of the first derivative of the signal divided by the
activity of the signal

17 Complexity The ratio between the mobility of the first derivative and the mobility of
the signal

18 Energy The sum of squared amplitude values
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Table 1. Cont.

Category Feature Definition

b. The extracted and analyzed features in frequency domain.

Fr
eq

ue
nc

y
do

m
ai

n
(f

.d
)

19 Average
20 Median
21 Standard Deviation The dispersion relative to the mean
22 Variance A measure of dispersion around the mean
23 Skewness A measure of asymmetry
24 Kurtosis A measure of a distribution’s tails
25 δ Relative power of δ-band (0.5–4 Hz)
26 θ Relative power of θ-band (4–8 Hz)
27 α Relative power of α-band (8–12 Hz)
28 β Relative power of β -band (12–30 Hz)
29 γ Relative power of β-band (>30 Hz)
30 σ Relative power of σ-band (12–14Hz)
31 β/α

The ratios between relative power bands

32 θ/α
33 θ/β
34 γ/δ
35 (θ + α)/β
36 (θ + α)/(α + β)
37 (γ + β)/(γ + α)

Entropies 38 Shannon Entropy A measure of randomness in the EEG signal
Nonlinear 39 Lyapunov Exponent A measure to determine chaotic behavior

As a next step, we computed across all subjects, for each feature, the first quartile (Q1),
the upper (third) quartile (Q3), the inter-quartile range (IQR), defined as:

IQR = [Q1, Q3] (4)

Targeting the identifying of features that underline the uniqueness of EEG signal, we
applied Algorithm 1 and Figure 3.

Algorithm 1. Identification of uniqueness descriptors

Input: The extracted features, for all subjects
For each feature:

1. The overlap degree between interquartile ranges, corresponding to subjects i and j is
calculated:

θk
overlap(i, j) =

Range
(

IQRi ∩ IQRj

)
Range(IQRi)

100[%] (5)

A symmetric matrix, θk, of dimension (25, 25) is obtained for each feature k.
2. The rate of values θk

overlap(i, j) < 30%, pk is determined.

3. A feature is validated as a descriptor of uniqueness if pk ≥ 70%

Output: The selected features

The procedure used to processing EEG signal in order to generate the password for
each of the participants is shown next (Algorithm 2 and Figure 4).
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Algorithm 2. Processing EEG signals for password generation

Input: The selected features
For each feature that was selected as a descriptor:

1. The minimal value of Q1, mQ, and maximal value of Q3, MQ, are computed considering all
analyzed EEG signals.

2. For the range [mQ, MQ], a uniform quantizer is applied with P levels; P = 2p.
3. For each subject, the probability density function for the values vi obtained when the

quantization is applied.
4. Further on, the value vi with maximum probability, l, is determined. The binary

representation of l using p bits is saved for the next steps.

Output: The value vi with maximum probability with maximum probability for selected features
(for each subject)
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1 

Figure 4. The flowchart of password generation algorithm.

Furthermore, for each subject we employed a distinctive model of linear/polynomial
regression, to prove the uniqueness of EEG signals. For each of them, we found a specific
pair of features which can be fitted by a regression model having R2 > 0.9. Simultane-
ously, our research was concentrated on finding some regression models that can be
applied to all subjects. These can contribute to developing a service, like “reCAPTCHA”,
which protects the biometric system against various attacks (e.g., artificial EEG signals,
noise signals, errors caused by non-compliance with the protocol conditions by users)
designed to undermine integrity.

Finally, the password will be represented as a vector with (φ + 1) × p elements
(Figure 5) where φ represents the number of selected features (Θk) as a descriptor of
uniqueness. Each element is shown as a binary digit. The first p elements are initialized
to 1, corresponding to the identified model regression; otherwise, the elements having an
index between ip + 1 and (i + 1)p contain the binary representation of l, for feature Θi, with
i = 1, 2, 3, . . ., φ − 1, φ. Also, for each attempt, the identified regression equation will be
verified. If the error is lower than 5%, the first p bits are equal to 1; otherwise, they are
equal to 0.
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3.5. User Authentication

The user authentication scheme proposed here is addressed to an algorithm designed
with a symmetric cryptosystem. To define the requirements for the authentication process,
we performed the password matching using Hamming distance, H, defined as follows:

H =
1

(φ+ 1)·p

(φ+1)·p

∑
i=1

Pi ⊕Ai, (6)

where P represents the password generated by the proposed algorithm (stored in the data
base) and A is the generated password when a participant tries to connect φ and p with
the same meaning as in previous paragraphs. Moreover, Pi and Ai represents the value for
the bit placed at index i; ⊕ is the bitwise XOR operator.

One can easily notice that H represents a way to evaluate the number of comparisons
in which the corresponding bits are different. To analyze the similarities at the bit level,
Equation (6) is as follows:

H =
1

(φ+ 1)·p

(φ+1)·p

∑
i=1

Pi ⊕Ai, (7)

In this way, the authentication problem is described by finding the optimal value of
H, H∗, so that a claim of a participant to log in will be authorized if H ≥ H∗. Consequently,
H∗ will be treated as a threshold value.

3.6. User Identification

Closely related to the concept of authentication, another important topic is previously
described, discussed in the following paragraphs: identification (Figure 6). In order to
increase the security of the EEG-based system, a machine learning algorithm is integrated.
The great advantage of this approach is that the identity of the user, whose password
has been accepted by the system in the authentication stage, is verified by the designed
algorithm, reducing the error rate in this process.

In this way, the problem of user identification is approached as one of one-vs.-all
classification, producing a model for each subject. According to the characteristics of EEG,
we adopt two different classification methods to obtain a better result: SVM (Support Vector
Machine) and kNN (k-Nearest Neighbors). These are widely used in this field [1]. The
input vector for these algorithms is based on Local Neighbor Descriptive Pattern (LNDP),
described in [42]. To compute 1D-LNDP, we considered 8 neighboring points. Therefore,
each sample from the EEG signal, was encrypted on 8 bits, the range for the decimal value,
thus obtained, being between 0 and 255, like uniform quantization on images (256 gray
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levels). In this case, the 80/20 rule was applied. The proportion of positive and negative
samples in each set is defined as 50%.
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After all signal points’ transformation codes have been computed, the histogram is
extracted as follows:

v1 = γ (LNDP), (8)

where γ( ·) represents the histogram extraction function and v1 the result of histogram
extractions (256 bins).

Next, we computed the down-sampling local neighbor descriptive pattern, at level 2,
3, 4. the down sampling-1D method is presented in [43]. So, mathematically:

v2 = ϑ(LNDP)
v3 = ϑ(v2),
v4 = ϑ(v3)

(9)

where ϑ( ·) represents the down-sampling LNDP function and v2, v3, v4 down-sampling
one-dimensional local neighbor descriptive pattern, at level 2, 3, 4.

Finally, the features that will serve as input for SVM/kNN algorithm will be as follows:
v1, v3, v4 and the average, median, maximum, minimum, variance, kurtosis, and skewness
of v2.

3.7. Evaluation Metrics

The general biometric system performance is given by the specific parameters, namely
false acceptance rate (FAR), false rejection rate (FRR), and equal error point (ERR) which
are defined hereunder.

False acceptance rate quantifies the number of attempts in which an imposter is
identified as a valid user.

FAR =
FA
IA

, (10)

where FA is the number of false acceptances (the situations in which a claim of an imposter
as an authorized user is validated by the system) and IA is the total number of imposter
test samples (imposter attempt).
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False rejection rate represents a way to evaluate the number of attempts in which a
valid user is recognized as an imposter by the system.

FRR =
FR
AA

, (11)

where FR is the number of false rejections (the situations in which a claim of a valid user
to be identified is rejected by the system) and AA the total number of user test samples
(authorized attempt).

Equal error point is defined as a unique point so that the previously described pa-
rameters, FAR and FRR, are equal. A lower EER is associated with a high accuracy. So,
mathematically, we obtain the following:

EER = arg [FAR(Ψ) = FRR(Ψ) ] (12)

In addition, sensitivity, specificity and accuracy can be defined as follows:

Sensitivity = 1 − FRR =
TA
AA

, (13)

where TA is the number of correct acceptances (the situations in which a claim of a valid
user to be identified is accepted by the system).

Speci f icity = 1 − FAR =
TR
IA

, (14)

where TR is the number of correct rejections (the situations in which a claim of an imposter
as an authorized user is rejected by the system).

Accuracy =
C
T

, (15)

where C is the number of correct decisions (valid user/imposter) and T is the total number
of test samples.

The implementation of described methodology was made in MATLAB 2022b on an
Intel (R) Pentium (R) Gold 7505, running at 2.00 GHz, 20 GB RAM in Windows 11.

4. Experimental Design

The database used for this study comprises EEG signals (visual evoked potentials),
from 25 subjects, acquired using a 1000 Hz sampling frequency, on 33 channels, in monopo-
lar montage, with mastoid reference. The electrodes were distributed according to the
extended 10–20 system of Nebraskan’s 128-channels Quick-Cap (this system is seen in
Figure 7, with the used electrodes depicted as filled black circles). During data collection,
the room’s ambient parameters were quiet, soundproofed, with an external environment,
fresh air movement, and no substantial electromagnetic interference.

In the course of the acquisition session, different images, representing general hobbies
(e.g., animals, food, travel, reading), are displayed to the subjects. These were grouped into
32 categories, with each category having 32 images, and were shown in the same order to all
subjects. Therefore, for each image, our pipeline acquisition, depicted in Figure 8, adheres
to the following 2.5 s inter-stimulus interval (ISI): 1 s blank gray screen and 1.5 s exposure
to different visual stimuli (images). For capturing the complete temporal dynamics of
neural responses before and after the stimuli, the signals were divided into 3 s epochs as
follows: 0.5 s (blank gray screen before displaying the image), 1.5 s (displaying the image),
and 1 s (blank gray screen after displaying the image). The interval stimuli period was
tailored in relation to the cognitive process involved, namely working memory, attention,
and imagination, as suggested in the literature at around 2 s [44,45], and, at the same time,
was intended to be comfortable for the user. An initial test was performed with users with
varying stimuli lengths and the most comfortable ISI duration was, on average, 2.5 s.
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The dataset is stored and labeled, subject files being organized, according to the following
format 1 × 32 cell, and each cell (corresponding to image categories) 33 × 2999 × 32, 50,
where 33 the represents number of channels, 2999 represents the number of samples, and
32 represents the number of images from a category. Moreover, each category was labelled by
the user, having a three-point Likert scale (1: dislike, 2: neutral, 3: like).

5. Results
5.1. Channel Selection

The results of the channel selection are collated in Table 2. As can be observed, a
diversity is identified regarding the electrodes marked as representative, as each subject
presents a different set of extracted channels compared to the others.

In Figure 9, you can see the probability distribution function (pdf) of selected electrodes.
The most frequently chosen channels were found to be POZ, FZ, POO4, CPPZ, P4, FCz,
and Oz. Looking at the spatial mapping of these electrodes, we can say that this result
is related to cognitive states, specifically to the signal acquisition protocol used, such as
concentration, attention, vision, and sensory integration.
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Table 2. The selected channels for analyzed subjects.

Subject The Number of Selected Channels Selected Channels

1 4 FZ, POZ, FC4, FC3
2 2 FCZ, CZ
3 2 POO4, OZ
4 6 CPPZ, FZ, P4, POZ, C4, FCZ
5 1 CPPZ
6 4 P4, POZ, CPPZ, FZ
7 2 P4, POZ
8 5 P4, POZ, CPPZ, CZ, FZ
9 4 POO4, POZ, CPPZ, FCZ

10 2 CP3, CP4
11 8 FP2, FZ, FCZ, POZ, CZ, P3, F4, FPZ
12 4 POZ, POO4, CPPZ, P4
13 6 POZ, P4, POO4, CPPZ, OZ, CZ
14 4 POZ, FZ, POO4, CPPZ
15 4 POZ, FZ, CPPZ, CZ
16 6 POZ, FZ, C4, FCZ, C3, POO4
17 5 POO4, P4, FCZ, OI2, POZ
18 3 FZ, POZ, C4
19 3 POZ, C3, POO4
20 4 FZ, POZ, POO3, POO4
21 4 FZ, POZ, FCZ, POO4
22 2 OZ, POO3
23 3 OZ, POZ, POO3
24 3 POZ, C4, OI1
25 3 TP7, FP2, F7
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5.2. Password Generation

For establishing the features which describe the uniqueness, we applied Algorithm
2 and investigated pk values (Figure 10—the index on the x-axis is referenced to Table 1).
It can be noticed that the features selected (red bars) for use in the password generation
stage are as follows: variance, standard deviation, peak-to-peak distance, mean square
and energy (time-domain); for the frequency domain, the selected features are as follows:
average, variance, standard deviation, relative power of the β-band (12–30 Hz), and relative
power of the γ-band (>30 Hz).
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Table 3 presents the pair of features, fitted by a regression model (linear/polynomial
so that R2 is maximized).

Table 3. The identified regression model for each subject.

Subject Features The Applied Regression Model R2

1 Complexity—Lyapunov Exponent Polynomial (degree 7) 0.97
2 Relative power of β-band–Variance (f.d) Linear 0.98
3 (θ + α)/β − (θ + α)/β (relative power ratios) Linear 0.98
4 Relative power of δ–band–Variance (f.d) Polynomial (degree 4) 0.98
5 Mobility—Lyapunov Exponent Linear 0.97
6 Relative power of σ-band–Relative power of β-band Linear 0.96
7 Relative power of α-band–Standard deviation (f.d) Polynomial (degree 2) 0.99
8 Relative power of β-band–Minimum Linear 0.95
9 Mean (f.d)–Square mean Polynomial (degree 2) 0.98
10 Minimum–Maximum Polynomial (degree 2) 0.97
11 Relative power of γ-band–Variance (t.d) Linear 0.93
12 θ/β − (θ + α)/β (relative power ratios) Linear 0.97
13 Relative power of θ-band–Standard deviation (f.d) Polynomial (degree 5) 0.98
14 Mean (f.d)–Peak-to-peak distance Polynomial (degree 2) 0.98
15 Relative power of σ-band–Relative power of γ-band Polynomial (degree 2) 0.98
16 Mean (f.d)–Energy Polynomial (degree 2) 0.93
17 Square mean–Maximum value Linear 0.91
18 Standard deviation (f.d)–Maximum value Linear 0.97
19 Zero crossing rate–Mobility Polynomial (degree 2) 0.98
20 Linear 0.92
21 Relative power of σ-band–Standard deviation (f.d) Linear 0.97
22 Relative power of θ-band–Standard deviation (f.d) Linear 0.97
23 Relative power of α-band–Variance (f.d) Linear 0.96
24 Relative power of β-band–Standard deviation (t.d) Linear 0.94
25 Relative power of θ-band–Relative power of σ-band Linear 0.99

Regarding the regression models, that can be applied to all subjects, we identified
the following pair of highly correlated features: variance (t.d)–mean square, mean square–
variance (t.d), and standard deviation (t.d)–peak-to-peak distance.

Considering the database organization, for each subject, a group consisting of three
passwords is generated, corresponding to the labels of visual stimuli (like/dislike/neutral).
Finally, the most suitable types of images which should be displayed to the user will be
chosen, so that the system has the highest performance; in terms of accuracy, this is either
FAR or FRR.
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Taking into account the fact that we selected φ = 10 features as descriptors of unique-
ness and a quantization was realized on 16 levels (p = 4), each password will be represented
as a vector having 11 (10 features + 1 identified correlation) × 4 = 44 bits.

In order to compute H∗, we calculated FAR and FRR for different proposed threshold
values and proposed the following scenarios:

Scenario 1: Authentication can be achieved if the password is verified at the level
of at least one selected channel. The FAR and FRR curves are shown in Figure 11a. The
intersection point is: (32, 0.038); we can say that ERR = 0.038 for the threshold value of 32.
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Scenario 2: Authentication can be achieved if the password is verified at the level of at
least two selected channels. The FAR and FRR curves are depicted in Figure 11b. In this
case, ERR = 0.084 and the threshold value is 28.

Analyzing these results, it can be seen that in the first case, the EER is lower (0.038
vs. 0.084) and the threshold value is higher (32 vs. 28 bits). The main aim of this stage is
to minimize the false rejection rate, the identification stage limiting the authentication of
imposters and enhancing the overall performance. Also, in order to increase the system
security, it is very important to set a threshold value as high as possible: lowering H∗

will make the system more tolerant (FAR will increase) and increasing H∗ will make
the system more secure (FAR will decrease) [16]. By taking these facts into account,
one can easily find the authentication requirements of H∗ = 32, (meaning that up to
44 − 32 = 12 bits of error are tolerated) as a necessary condition to be fulfilled at the level
of at least one selected channel.

We can obtain a mean sensitivity (equivalent to mean true acceptance rate, TAR) of
0.89, and mean specificity (expressed by mean true rejections rate) of 0.97. Figure 12 depicts
the distribution of overall sensitivity, specificity, and accuracy by violin plots.

Figure 13 shows the cumulative distribution function (cdf) for system accuracy after
the authentication stage (red) and after the identification stage (blue). One can see that
after the authentication stage, in 20% of subjects, the accuracy is lower than 88%, while
in the final, the minimal value is 88%. Also, for 50% of the subjects, the initial accuracy
is higher than 90.5%, while in the final, higher than 92.5%. Therefore, the improvement
of overall accuracy by including the identification algorithm is clearly noticed. Important
percentage differences, in this representation, are observed, especially in the first part of the
range (corresponding to the values near the lower limit). Also, the mean overall accuracy
after the first stage is 92%, while in the end, it is 93.50%.
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Figure 14a exposes the accuracy for each of the subjects. It can be noticed that while
overall accuracy was increasing following the addition of the machine learning one-vs.-all
classification algorithm for user identification, for some subjects a decrease was recorded.
To explain this idea, we analyze the system performance in terms of FAR and TAR.
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Regarding the FAR parameter, Figure 14b demonstrates a remarkable improvement,
showing that this system is strongly resistant to imposter attacks. One can find that the
ratio between the authentication and identification stage accuracy is 0.12/0.02 = 6, which
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means the number of false authorizations was reduced by approximately 6 times. The TAR
parameter (Figure 14c) slightly decreased when the identification stage was added (average
values: 0.97 vs. 0.90), as a result of the fact that the classification algorithm implemented
does not offer 100% sensitivity, but no major differences are identified. In the light of the
security measures and design requirements, these results can be considered accepted, the
system reliably preventing impostors from gaining access as an authorized user.

To compare the performance of the proposed system with other relevant recognition
technologies, a series of characteristics, namely universality, uniqueness, collectability, and
permanence, was analyzed (Table 4):

Table 4. Comparison with other biometric technologies; ■—high; ▲—medium; #—low; n/a—not
available.

Biometrics
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Performance

Face ■ # ▲ #
[46] 40 Accuracy: Group: 88%, Individual: 75%
[47] 48 Accuracy: 98%

ECG ■ # ■ ▲ [48] 1020 False positive rate: 0.39% False negative
rate: 1.57%

Fingerprint ■ ■ ■ ■ [49] 10 Accuracy: 70%

Voice ▲ # ▲ #
[50] 10 Accuracy: 94%
[51] 330 Accuracy: 93%

Iris eye movement
[52] 8 Accuracy: 89%

■ ■ ▲ ▲ [53] 24 Accuracy: 79%
[54] 109 Accuracy: 85%

Posture pattern ▲ # ▲ # [55] 30
True positive rate:91%

False positive rate: 033%
False negative rate: 8.68%

Wrist movement ■ # # ▲ [56] 20 Accuracy: 85%
Our work ▲ ■ ▲ n/a 25 Accuracy: 93.5%

Also, for each subject, according their feedback, the types of images (like/dislike/neutral)
which maximize the results, in terms of analyzed metrics, are identified. The obtained result
has a major influence in the system configuration, because the images to be presented to the
subject are chosen so that the performance of the application is maximized (Figure 15).
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6. Security Analysis

The proposed brainwave-based biometric system does not store the password combina-
tion set but preserves the pattern obtained after the EEG processing (for the authentication
stage) and the AI model (for the identification stage). Thus, considering the aforementioned
testing scenarios, our login mechanism is robust to a false acceptance attack (defined as the
case in which the system overrides processing and decision data because descriptors have
an increased degree of similarity, accepting the user even though they are not the intended
user). Also, the proposed system is robust to presentation attack and hill climbing attack (a
form of brute force attack). For this type of attack, various instruments (such as camera,
mask, silicone fingerprints, or synthetic voice generations) cannot impersonate the system
because brainwave signals are unique, as we have demonstrated in this paper. Moreover,
the EEG recording protocol (visual evoked potential) contributes in a fundamental and
decisive way to system’s resistance against this type of attacks, users cannot control these.
According to [57], other recognition factors such as fingerprint, face, voice, and iris are
vulnerable to enumerated profiles of imposters.

Otherwise, the implemented two-factor mechanism creates a strong resistance to
the mentioned sources of vulnerability. Compared to SMS-based 2FA or time-based one-
time passwords where an attacker can intercept the code (man-in-the-middle attack),
successful authentication is achieved by the results of the machine learning algorithm,
in the identification stage. After logging with predefined credentials (more specifically,
username and EEG-based password), the personalized one-vs.-all classifier, built on specific
descriptors, verifies the identity, without necessitating transmitting a code over the network
or generating it via device.

7. Conclusions

The focus of this research has been on the configuration of an authentication and
identification application based on the brain fingerprint.

Universality, uniqueness, collectability and permanence are the criteria used for designing
the fingerprint-based authentication and identification proposed system. The authentica-
tion process is based on the recording and processing of visual evoked potentials (images),
so it cannot be used by blind or severely neurologically impaired/visually impaired people.
By using tactile or sound stimuli, the proposed algorithm can be used by people with differ-
ent pathologies that make visual evoked potentials acquisition impossible; thus, universality
is achieved.

The second requirement, uniqueness, was at the core of this work, since to extract
the brain fingerprint means to determine a template applicable only to that subject. All
approaches, namely channel selection, feature extraction for password configuration, and
implementation of user identification algorithms, were subject-centered and aimed at
maximizing inter-subject variation. The robustness of the system is supported on one hand
by the authentication application, and on the other by the identification application. The
performance, expressed in terms of a false acceptance rate of 0.025, true acceptance rate
of 0.89, or accuracy: of 0.93, underlines, in a promising way, the significantly increased
resistance to possible impostors after the identification stage. Moreover, these results are
supported by the remarkable results obtained, worthy of comparison with the ones present
in the literature. Table 5 shows a comparison of our method with previous studies.

The issue of permanence remains uncertain, as the literature does not report approaches
to the study of the stationarity of the brain fingerprint and EEG signals, and there are
no databases created for this purpose. Considering the fourth requirement, collectability,
there are several limitations as it requires the use of high-performance equipment (the EEG
headset). Also, the electrodes must be placed in approximately the same position each time,
which requires end-user training.
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Table 5. Comparison of statistical metrics with the existing approaches.

Work Method Accuracy (%) FAR FRR

Proposed method 93.50 0.025 0.021

[23] Classification procedure:
the algorithm “WEKA” 95.60 0.023 0.023

[24] Classification procedure: CNN 92.40 0.067 0.021
[8] Classification procedure: SVM 98.00
[6] Cryptographic algorithms 89.50 0.026
[7] Cryptographic algorithms 96.23 0.003 0.0003

To sum up, this paper presents a novel approach for EEG-based authentication and
identification designing, considering essential concepts such as the two-factor authen-
tication (2FA) system, resistance to the imposter attacks, and personalized algorithms.
EEG-based authentication and EEG-based identification have been addressed singularly
before in the literature, and it is well known that combining these methods can contribute
to enhancing the system performance. The promising advantage of the thinking flow
proposed in this article is users’ improved power to control their data as well as the
increased security and privacy.

Finally, regarding the future directions, the study of the stationarity of the brain
fingerprint is considered, as it represents a milestone in the validation of the algorithm
and the system. It should be considered whether the presence of fatigue or stress states
fundamentally modifies the system performance. Also, the fact that the analysis has only
been performed at the extraction feature level may not fully exploit the performance of the
proposed customized system, which can be further improved by introducing features re-
lated to microstates analysis. Another direction should consider the database organization,
finding a pattern for each image category.
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