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Abstract: A new (2 + 1)-dimensional breaking soliton equation with the help of the nonisospectral
Lax pair is presented. It is shown that the compatible solutions of the first two nontrivial equations
in the (1 + 1)-dimensional Kaup–Newell soliton hierarchy provide solutions of the new breaking
soliton equation. Then, the new breaking soliton equation is decomposed into the systems of solvable
ordinary differential equations. Finally, a hyperelliptic Riemann surface and Abel–Jacobi coordinates
are introduced to straighten the associated flow, from which the algebro-geometric solutions of the
new (2 + 1)-dimensional integrable equation are constructed by means of the Riemann θ functions.

Keywords: breaking soliton equation; algebro-geometric solution; Abel–Jacobi coordinates; Riemann
θ function

MSC: 35Q51

1. Introduction

Algebro-geometric solutions are an important class among exact solutions to nonlin-
ear equations, which were first developed as analogs of inverse scattering theory. They
can be regarded as explicit solutions of the nonlinear integrable evolution equation and
used to approximate more general solutions. Algebro-geometric solutions can not only
reveal the intrinsic structure of solutions, but also characterize the quasi-periodic behavior
of nonlinear phenomena. Various approaches have been developed to obtain algebro-
geometric solutions of soliton equations, such as the algebro-geometric approach [1], the
nonlinearization of Lax pairs [2], the finite-order expansion of the Lax matrix [3], and so
on [4–14].

On the one hand, based on the nonlinearization technique of Lax pairs and di-
rect methods, many algebro-geometric solutions of (1 + 1)-dimensional [4–6], (2 + 1)-
dimensional [3,7], and differential-difference [7,8] soliton equations have been ob-
tained [9,10]. On the other hand, algebro-geometric solutions are successfully extended
from a single equation to a hierarchy [11–13]. Recently, the Riemann–Hilbert method
was also provided to solve algebro-geometric solutions of the Korteweg-de Vries equa-
tion [15]. And the algebro-geometric solutions of the entire Sine–Gordon hierarchy
are constructed by using the asymptotic properties of the meromorphic function [13].
Compared with algebro-geometric solutions of the above well-known soliton equations,
the study of algebro-geometric solutions of breaking soliton equations has received
comparatively less attention.

It is well known that breaking soliton equations are types of nonlinear evolution
equations which can be used to describe the interaction of a Riemann wave along the
y-axis and the wave along the x-axis [16,17]. So, the derivation of new integrable breaking
soliton equations is an interesting topic. In Ref. [18], we have given the algebro-geometric
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solutions of the known (2 + 1)-dimensional breaking soliton equation associated with the
Ablowitz–Kaup–Newell–Segur soliton hierarchy resorting to the direct method.

In this paper, based on the well-known (1 + 1)-dimensional soliton equations, we
propose the following (2 + 1)-dimensional integrable breaking soliton equation:

wt =
i
2

wxy +
1
2
[w∂−1

x (wv)y]x,

vt = − i
2

vxy +
1
2
[v∂−1

x (wv)y]x,
(1)

where x and y are the scaled space coordinates, t is the scaled time coordinate, q and
r are functions of (x, y, t) which represent the wave profiles. To the best of our knowl-
edge, the above (2 + 1)-dimensional breaking soliton equation has not before appeared
in the literature. It is shown that the algebro-geometric solutions of the new (2 + 1)-
dimensional breaking soliton equation are reduced to solving two systems of solvable
ordinary differential equations by the variable separation technique. Thus, with the help of
a hyperelliptic Riemann surface, Abel–Jacobi coordinates, and the Riemann θ functions,
the algebro-geometric solutions of the new (2 + 1)-dimensional integrable equation can
be obtained.

In Section 2 that follows, we construct the new (2 + 1)-dimensional breaking soli-
ton Equation (1) associated with the Kaup–Newell soliton hierarchy. A zero curvature
representation for (1) is presented. Then, in Section 3, based on the the solutions of the
(1 + 1)-dimensional soliton equations and the elliptic coordinates, the solutions of the
new (2 + 1)-dimensional integrable equation are reduced to solving ordinary differential
equations. In Section 4, a hyperelliptic Riemann surface and Abel–Jacobi coordinates are
introduced to straighten the associated flow. Jacobi’s inversion problem is discussed, from
which the algebro-geometric solutions of the new (2 + 1)-dimensional integrable equation
are constructed in terms of the Riemann θ functions. A short conclusion is presented in
Section 5.

2. The New (2 + 1)-Dimensional Integrable Breaking Soliton Equation

In this section, we shall construct the new (2 + 1)-dimensional breaking soliton equation
associated with the Kaup–Newell soliton hierarchy. It is well known that the Kaup–Newell
equation is an important nonlinear derivative Schödinger equation. Some corresponding
results for the Chen–Lee–Liu equation and Gerdjikov–Ivanov equation can be obtained
from the Kaup–Newell equation in principle [4,19].

The Kaup–Newell soliton hierarchy is an isospectral evolution equation hierarchy
associated with the spectral problem [20]

ψx = Uψ =

(
−iλ2 qλ

rλ iλ2

)
ψ, λt = 0, ψ = (ψ1, ψ2)

T , (2)

where q and r are two scalar potentials, and λ is a constant spectral parameter. To derive the
hierarchy, we first introduce the Lenard gradient sequence {Sj}∞

j=0 by the recursion relation

KSj−1 = JSj, Sj|(q,r)=(0,0) = 0, S0 = (2r, 2q,−2i)T , (3)

where Sj = (S(1)
j , S(2)

j , S(3)
j ) and

K =

 − i
2 ∂ 0 0
0 i

2 ∂ 0
−q r ∂

, J =

 1 0 −ir
0 1 −iq
−q r ∂

.



Mathematics 2024, 12, 2034 3 of 11

It is easy to see that Sj is uniquely determined by the recursion relation (3). A direct
calculation gives

S1 =

 −irx + qr2

iqx + q2r
−iqr

, S2 =

 − 1
2 rxx − 3i

2 rrxq + 3
4 q2r3

− 1
2 qxx +

3i
2 qqxr + 3

4 q3r2

1
2 (qxr − rxq)− 3i

4 q2r2

,

the auxiliary spectral of (2)

ψtn = Vψ =

(
C B
A −C

)
ψ =

 ∑n
j=0 S(3)

j λ2(n−j)+2 ∑n
j=0 S(2)

j λ2(n−j)+1

∑n
j=0 S(1)

j λ2(n−j)+1 −∑n
j=0 S(3)

j λ2(n−j)+2

ψ, (4)

The compatibility condition between (2) and (4) is the stationary zero curvature equa-
tion

Utn − V(n)
x + [U, V(n)] = 0,

which is equivalent to the well-known Kaup–Newell hierarchy of soliton equations

Xn =

(
qtn
rtn

)
=

(
S(2)

nx

S(1)
nx

)
=

(
0 ∂
∂ 0

)(
S(1)

n

S(2)
n

)
. n = 1, 2, ... (5)

The first two nontrivial members n = 1 and n = 2 in the hierarchy are{
qt1 = iqxx + (q2r)x,

rt1 = −irxx + (r2q)x;
(6)

and 
qt2 = −1

2
qxxx +

3
4
(2iqqxr + q3r2)x,

rt2 = −1
2

rxxx −
3
4
(2irrxq − r3q2)x.

(7)

Let t1 = y, t2 = t and w(x, y, t) = q(x, y, t), v(x, y, t) = r(x, y, t) in (6) and (7); then,
we can obtain

(wvx − vwx +
3i
2
(w2v2))x = (iwv)y. (8)

We substitute (6) into (7) and note that (8) yields the (2 + 1)-dimensional Equation (1).
Therefore, if q and r are the compatible solutions of (6) and (7), we can see that w = q and
v = r are also the solutions of the (2 + 1)-dimensional equation (1), where ∂−1

x represents
an inverse operator of ∂x = ∂/∂x with the condition ∂−1

x ∂x = ∂x∂−1
x = 1, which can be

defined as (∂−1
x f )(x) =

∫ x
−∞ f (y)dy under the decaying condition at infinity.

In the following, we can check that the (2 + 1)-dimensional Equation (1) has non-
isospectral zero curvature representation:

Mt − Nx + [M, N]− λMy = 0,

which can be deduced from the compatibility condition of the following equations:

φx = Mφ, φt = λφy + Nφ, λt = λλy,

where λ = λ(y, t), and

M =

(
−iλ λw

v iλ

)
, N =

(
− iλ

2 ∂−1
x (wv)y

λ
2 (iwy + w∂−1

x (wv)y)
1
2 (−ivy + v∂−1

x (wv)y)
iλ
2 ∂−1

x (wv)y

)
. (9)
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Therefore, the new (2 + 1)-dimensional Equation (1) is integrable in the Lax sense.
The parameter λ satisfies a Riemann equation λt = λλy, so (1) is also a breaking soliton
equation, which is not the same as that in Ref. [16]

3. Variable Separation

In this section, we shall show how the (1 + 1)-dimensional (6) and (7) are reduced to
solvable ordinary differential equations. Assume that (2) and (4) have two basic solutions
ψ = (ψ1, ψ2)

T and ϕ = (ϕ1, ϕ2)
T . We define a matrix W of three functions f , g, h by

W =
1
2
(ϕψT + ψϕT)σ =

(
f g
h − f

)
, σ =

(
0 −1
1 0

)
.

It is easy to verify by (2) and (4) that

Wx = [U, W], Wtn = [V(n), W], (10)

which imply that the function detW is a constant independent of x and t. Equation (10) can
be written as

gx = −2igλ2 − 2q f λ, hx = 2ihλ2 + 2r f λ, fx = λ(qh − rg), (11)

and
gt = 2gA − 2 f B, ht = 2 f C − 2hA, ft = hB − gC. (12)

Now, suppose that the functions f , g, and h are finite-order polynomials in λ:

f =
N

∑
j=0

f2j+1λ2(N−j)+1, g =
N

∑
j=0

g2jλ
2(N−j), h =

N

∑
j=0

h2jλ
2(N−j). (13)

Substituting (13) into (11) yields

KGj−1 = JGj, JG0 = 0, KGN = 0, Gj = (h2j, g2j, f2j+1)
T . (14)

It is easy to see that JG0 = 0 has the general solution

G0 = α0S0, (15)

where α0 is a constant of integration. So, KerJ = {cS0|∀c}. Acting with the operator
(J−1K)K+1 upon (15), we can obtain from (3) and (14) that

Gk =
k

∑
j=0

αjSk−j, k = 0, 1, ... (16)

where α0, ..., αk are integral constants. Substituting (16) into (14) obtains the following
stationary evolution equation:

α0KSN + ... + αNKS0 = 0. (17)

This means that expression (13) is existent.
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In what follows, we decompose (6) and (7) into systems of integrable ordinary differ-
ential equations. Without loss of generality, let α0 = 1. From (3) and (14), we have

g0 = 2q, h0 = 2r, f1 = −2i, f3 = −iqr + α1,

g2 = iqx + q2r + iqα1, h2 = −irx + qr2 + irα1,

g4 = −1
2

qxx +
3i
2

qqxr +
3
4

q3r2 +
α1

2
(iq2r − qx) + iα2q,

h4 = −1
2

rxx −
3i
2

rrxq +
3
4

q2r3 +
α1

2
(iq2r + rx) + iα2r,

f5 =
1
2
(qxr − rxq)− 3i

4
q2r2 +

α1

2
(qr) + α2, ...

(18)

We can write g and h as the following finite products:

g = 2q
N

∏
j=1

(λ2 − µ2
j ) = 2q

N

∏
j=1

(λ̃ − µ̃j), h = 2r
N

∏
j=1

(λ2 − ν2
j ) = 2r

N

∏
j=1

(λ̃ − ν̃j), (19)

where λ2 = λ̃, µ2
j = µ̃j, ν2

j = ν̃j. Comparing the coefficients of λ̃N−1 and λ̃N−2, we obtain

g2 = −2q
N

∑
j=1

µ̃j, h2 = −2r
N

∑
j=1

ν̃j,

g4 = 2q ∑
i<j

µ̃iµ̃j, h4 = 2r ∑
i<j

ν̃i ν̃j.
(20)

Thus, from (18) and (20), we obtain

∂xlnq − iqr + α1 = 2i
N

∑
j=1

µ̃j,

− ∂xlnr − iqr + α1 = 2i
N

∑
j=1

ν̃j.

(21)

If using the third expression in (12) with m = 1, we have

(−iqr)y = h2iqx + h42q + g2irx − g42r, (22)

which, together with (20), yields

∂y(lnqr) = 2
N

∑
j=1

ν̃j∂xlnq + 4i ∑
i<j

(µ̃iµ̃j − ν̃i ν̃j) + 2
N

∑
j=1

µ̃j∂xlnr. (23)

On the other hand, noticing (6) and (21), we obtain

∂y(lnqr) = (i∂xlnq + qr)x + (−i∂xlnr + qr)x + i(∂xlnq − iqr)2 + i(i∂xlnr + qr)2 − ∂x(qr)

= −2∂
N

∑
j=1

(µ̃j + ν̃j) + 4i((
N

∑
j=1

ν̃j)
2 − (

N

∑
j=1

µ̃j)
2) + 4α1

N

∑
j=1

(µ̃j − ν̃j)− ∂x(qr),

which, together with (21) and (23), implies

∂x(qr) + 2i
N

∑
j=1

(ν̃j − µ̃j)qr

= −2∂
N

∑
j=1

(µ̃j + ν̃j) + 4i((
N

∑
j=1

ν̃j)
2 − (

N

∑
j=1

µ̃j)
2) + 2α1

N

∑
j=1

(µ̃j − ν̃j)− 4i
N

∑
i<j

(µ̃iµ̃j − ν̃i ν̃j).
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Therefore,

qr = exp[2i
∫ N

∑
j=1

(µ̃j − ν̃j)dx]
∫
[−2∂

N

∑
j=1

(µ̃j + ν̃j) + 6i((
N

∑
j=1

ν̃j)
2 − (

N

∑
j=1

µ̃j)
2)

+2α1

N

∑
j=1

(µ̃j − ν̃j) + 2i(
N

∑
j=1

µ̃j
2 −

N

∑
j=1

ν̃j
2)]exp[2i

∫ N

∑
j=1

(ν̃j − µ̃j)dx]dx,

(24)

in view of the equality

2
N

∑
i<j

ξiξ j = (
N

∑
i=1

ξi)
2 −

N

∑
i=1

ξ2
i . (25)

Let us consider the function detW, which is a (2N + 1)-order polynomial in λ with
constant coefficients of the x flow and tn flow

−detW = f 2 + gh = −4
2N+1

∏
j=1

(λ2 − λ2
j ) = −4

2N+1

∏
j=1

(λ̃ − λ̃j) ≡ −4
R(λ̃)

λ̃
. (26)

Substituting (13) into (26), comparing the coefficient of λ̃2N and λ̃2N−1, and consider-
ing (18), we can obtain

2 f1 f3 + g0h0 = 4
2N+1

∑
j=1

λ̃j, 2 f1 f5 + f 2
3 + g0h2 + h0g2 = −4 ∑

i<j
λ̃iλ̃j. (27)

Together with (18), we have

α1 = i
2N+1

∑
j=1

λ̃j, α2 = −i ∑
i<j

λ̃iλ̃j +
i
4
(

2N+1

∑
j=1

λ̃j)
2. (28)

From (26), we see that

f |λ̃=µ̃k
= 2i

√
R(µ̃k)/µ̃k, f |λ̃=ν̃k

=
√

R(ν̃k)/ν̃k. (29)

Using (11) and (19), we obtain

gx|λ̃=µ̃k
= −2q

√
λ̃ f |λ=µk = −2qµkx

N

∏
j=1,j ̸=k

(µ̃k − µ̃j),

hx|λ̃=ν̃k
= 2r

√
λ̃ f |λ̃=ν̃k

= −2rν̃kx

N

∏
j=1,j ̸=k

(ν̃k − ν̃j).

(30)

Together with (29), we obtain

µ̃kx =
2i
√

R(µ̃k)

∏N
j=1,j ̸=k(µ̃k − µ̃j)

, ν̃kx =
−2i

√
R(ν̃k)

∏N
j=1,j ̸=k(ν̃k − ν̃j)

. (31)

Similarly, using (4) (n = 1, n = 2), (13), (19), and (29), we obtain

gt1 |λ̃=µ̃k
= −2qµ̃kt1

N

∏
j=1,j ̸=k

(µ̃k − µ̃j) = −4iq
√

R(µ̃k)(2µ̃k − 2
N

∑
j=1

µ̃j − iα1),

ht1 |λ̃=ν̃k
= −2rν̃kt1

N

∏
j=1,j ̸=k

(ν̃k − ν̃j) = 4ir
√

R(ν̃k)(2ν̃k − 2
N

∑
j=1

ν̃j − iα1),

(32)
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gt2 |λ̃=µ̃k
= −4iq

√
R(µ̃k)(2µ̃2

k − (2
N

∑
j=1

µ̃j + iα1)µ̃k + 2 ∑
i<j

µ̃iµ̃j +
iα1

2
(2

N

∑
j=1

µ̃j + iα1)− iα2),

ht2 |λ̃=ν̃k
= 4ir

√
R(ν̃k)(2ν̃2

k − (2
N

∑
j=1

ν̃j + iα1)ν̃k + 2 ∑
i<j

ν̃i ν̃j +
iα1

2
(2

N

∑
j=1

ν̃j + iα1)− iα2),

(33)

which give

µkt1 =
2i
√

R(µ̃k)

∏N
j=1,j ̸=k(µ̃k − µ̃j)

(2µ̃k − 2
N

∑
j=1

µ̃j − iα1),

νkt1 =
−2i

√
R(ν̃k)

∏N
j=1,j ̸=k(ν̃k − ν̃j)

(2ν̃k − 2
N

∑
j=1

ν̃j − iα1),

(34)

and

µkt2 =
2i
√

R(µ̃k)

∏N
j=1,j ̸=k(µ̃k − µ̃j)

(2µ̃2
k − (2

N

∑
j=1

µ̃j + iα1)µ̃k + 2 ∑
i<j

µ̃iµ̃j +
iα1

2
(2

N

∑
j=1

µ̃j + iα1)− iα2),

νkt2 =
2
√

R(νk)

∏N
j=1,j ̸=k(νk − νj)

(2ν̃2
k − (2

N

∑
j=1

ν̃j + iα1)ν̃k + 2 ∑
i<j

ν̃i ν̃j +
iα1

2
(2

N

∑
j=1

ν̃j + iα1)− iα2).

(35)

In summary, if λ̃1, ..., λ̃2N+2 are 2N + 2 distinct parameters, µ̃k, ν̃k(k = 1, · · · , N)
are compatible solutions of differential Equations (31), (34) and (35). Then, q and r de-
termined by (21) and (24) is the compatible solution of (6) and (7), which means the
(1 + 1)-dimensional soliton Equations (6) and (7) are decomposed into solvable ordinary
differential equations with the help of the coordinates µ̃k, ν̃k(k = 1, · · · , N), so we can see
that w and v is also a solution of the (2 + 1)-dimensional Equation (1).

4. Algebro-Geometric Solution

In this section, in order to obtain the algebro-geometric solutions of the (2 + 1)-dimensional
breaking soliton Equation (1), we first introduce the hyperelliptic Riemann surface

Γ : ξ2 = R(λ̃), R(λ̃) =
2N+2

∏
j=1

(λ̃ − λ̃j),

with genus g = N. On Γ, there are two infinite points, ∞1 and ∞2, which are not branch
points of Γ. Equip Γ with the canonical basis of cycles a1, ..., aN ; b1, ..., bN , and the holomor-
phic differentials

ω̃l =
λ̃l−1dλ̃√

R(λ̃)
, l = 1, 2, ..., N.

Then, the period matrices A and B, which are N ∗ N invertible matrices [21], are
defined by

Aij =
∫

aj

ω̃i, Bij =
∫

bj

ω̃i.

Using A and B, we can define matrices C and τ, where

C = (Cij) = A−1, τ = (τij) = CB = A−1B,



Mathematics 2024, 12, 2034 8 of 11

then, matrix τ can be shown to be symmetric and it has a positive defined imaginary part.
We normalize ω̃j into the new basis ωj

ωj =
N

∑
l=1

Cjlω̃l , l = 1, 2, ..., N,

which satisfy

∫
ak

ωi =
N

∑
l=1

Cjl

∫
ak

ω̃l =
N

∑
l=1

Cjl Alk = δjk,
∫

bk

ωi =
N

∑
l=1

Cjl

∫
bk

ω̃l =
N

∑
l=1

Cjl Blk = τjk.

For a fixed point p0, then we introduce an Abel–Jacobi coordinate as follows:

ρm = (ρ
(1)
m , ρ

(2)
m , · · · , ρ

(N)
m )T , m = 1, 2, (36)

where

ρ
(j)
1 (x, y, t) =

N

∑
k=1

∫ µ̃k(x,y,t)

p0

ωj =
N

∑
k=1

N

∑
l=1

∫ µ̃k(x,y,t)

p0

Cjl
λ̃l−1dλ̃√

R(λ̃)
, (37)

ρ
(j)
2 (x, y, t) =

N

∑
k=1

∫ ν̃k(x,y,t)

p0

ωj =
N

∑
k=1

N

∑
l=1

∫ ν̃k(x,y,t)

p0

Cjl
λ̃l−1dλ̃√

R(λ̃)
. (38)

From (37) and the first expression of (31), we obtain

∂xρ
(j)
1 =

N

∑
k=1

N

∑
l=1

Cjl
µ̃l−1

k µ̃kx√
R(λ̃)

=
N

∑
k=1

N

∑
l=1

Cjl
2iµ̃l−1

k

∏N
j=1,j ̸=k(µ̃k − µ̃j)

= 2iCjN = Ω(j)
0 , j = 1, · · · , N, (39)

with the help of the following equality:

N

∑
k=1

µ̃l−1
k

∏N
j=1,j ̸=k(µ̃k − µ̃j)

= δjN , l = 1, · · · , N.

In a similar way, we see from (31), (34), (35), (37), and (38) that

∂yρ
(j)
1 = 2i(Cj,N−1 − iα1CjN) = Ω(j)

1 ,

∂tρ
(j)
1 = 2i(Cj,N−2 − α1Cj,N−1 + (α2

1 − α2)CjN) = Ω(j)
2 ,

∂xρ
(j)
2 = −Ω(j)

0 , ∂yρ
(j)
2 = −Ω(j)

1 , ∂tρ
(j)
2 = −Ω(j)

2 .

On the basis of these results, we obtain the following:

ρ
(j)
1 (x, y, t) = Ω(j)

0 x + Ω(j)
1 y + Ω(j)

2 t + γ
(j)
0 , ρ

(j)
2 (x, y, t) = −Ω(j)

0 x − Ω(j)
1 y − Ω(j)

2 t + γ
(j)
1 ,

where

γ
(j)
0 =

N

∑
k=1

∫ µk(0,0,0)

p0

ωj, γ
(j)
1 =

N

∑
k=1

∫ νk(0,0,0)

p0

ωj.

An Abel map on Γ is defined as

A(p) =
∫ p

p0

ω, ω = (ω1, · · · , ωN)
T , A(∑ nk pk) = ∑ nk A(pk).
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Consider two special divisors ∑N
k=1 p(k)m (m = 1, 2), and we have

A(
N

∑
k=1

p(k)1 ) =
N

∑
k=1

A(p(k)1 ) =
N

∑
k=1

∫ µ̃k

p0

ω = ρ1,

A(
N

∑
k=1

p(k)2 ) =
N

∑
k=1

A(p(k)2 ) =
N

∑
k=1

∫ ν̃k

p0

ω = ρ2,

(40)

where p(k)1 = (µ̃k, ξ(µ̃k)), p(k)2 = (µ̃k, ξ(µ̃k)). The Riemann θ function of Γ is defined as

θ(ζ) = ∑
z∈ZN

exp(πi⟨τz, z⟩+ 2πi⟨ζ, z⟩), ζ ∈ CN ,

where ζ = (ζ1, · · · , ζN)
T , ⟨ζ, z⟩ = ∑N

j=1 ζ jzj. According to the Riemann theorem, there exist
two constant vectors, M1, M2 ∈ CN , such that

Fm = θ(A(p)− ρm − Mm), m = 1, 2

have exactly zeros at µ̃1, · · · , µ̃N for m = 1 or ν̃1, · · · , ν̃N for m = 2. To make the function
single valued, the surface Γ is cut along all ak, bk to form a simple connected region, whose
boundary is denoted by γ. Notice the fact that the integrals

1
2πi

∫
γ

λ̃kdlnFm(λ̃) = Ik(Γ), k ≥ 1,

are constants independent of ρ1, ρ2 with I = I(Γ) = ∑N
j=1
∫

aj
λ̃kωj. By the residue theorem,

we have

Ik(Γ) =
N

∑
l=1

µ̃k
l +

2

∑
s=1

Resλ̃=∞s
λ̃kdlnF1(λ̃),

Ik(Γ) =
N

∑
l=1

ν̃k
l +

2

∑
s=1

Resλ̃=∞s
λ̃kdlnF2(λ̃).

(41)

Here, we need only compute the residues in (41) for k = 1, 2. In a way, this is similar
to calculations [3,4]. So, we finally obtain

Resλ=∞s λdlnFm(λ) = − i
2
(−1)s−1∂xlnθ

(m)
s , s = 1, 2; m = 1, 2,

Resλ=∞s λ2dlnFm(λ) = − i
4
(−1)s−1∂ylnθ

(m)
s +

1
4

∂2
xlnθ

(m)
s , s = 1, 2; m = 1, 2.

(42)

where θ
(1)
s = θ(Ω0x + Ω1y + Ω2t + πs), θ

(2)
s = θ(−Ω0x − Ω1y − Ω2t + ηs), πs, and ηs are

constants. Thus, from (41) and (42), we arrive at

N

∑
j=1

µj = I1 −
i
2

∂xln
θ
(1)
2

θ
(1)
1

,
N

∑
j=1

νj = I1 −
i
2

∂xln
θ
(2)
1

θ
(2)
2

, (43)

N

∑
j=1

µ2
j = I2 −

i
4

∂yln
θ
(1)
2

θ
(1)
1

− 1
4

∂2
xlnθ

(1)
1 θ

(1)
2 ,

N

∑
j=1

ν2
j = I2 −

i
4

∂yln
θ
(2)
1

θ
(2)
2

− 1
4

∂2
xlnθ

(2)
1 θ

(2)
2 .

(44)
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Substituting (43) and (44) into (21), (24) and considering (25), then we obtain the
algebro-geometric solutions for (1):

w = q =
θ
(1)
2

θ
(1)
1

exp[
∫
(i(2I + Θ)− α1)dx],

v = r =
θ
(2)
2

θ
(2)
1

exp[
∫
(−i(2I + Θ) + α1)dx],

(45)

where

Θ =
θ
(1)
2

θ
(1)
1

θ
(2)
2

θ
(2)
1

∫
[−4∂x I1 + i∂2

xln
θ
(1)
2

θ
(1)
1

θ
(2)
1

θ
(2)
2

+ (
1
2

∂y − iα1∂x − 6∂x)ln
θ
(1)
2

θ
(1)
1

θ
(2)
2

θ
(2)
1

− 3i
2

∂xln
θ
(2)
1

θ
(2)
2

θ
(1)
2

θ
(1)
1

∂xln
θ
(2)
1

θ
(2)
2

θ
(1)
1

θ
(1)
2

− i
2

∂2
xln

θ
(1)
1

θ
(2)
1

θ
(1)
2

θ
(2)
2

]
θ
(1)
1

θ
(1)
2

θ
(2)
1

θ
(2)
2

dx.

(46)

Expression (45) is the algebro-geometric solution of the new (2 + 1)-dimensional
integrable breaking soliton Equation (1).

5. Conclusions

A new (2 + 1)-dimensional integrable breaking soliton equation is presented with the
help of (1 + 1)-dimensional soliton equations associated with the Kaup–Newell soliton
hierarchy. The (2 + 1)-dimensional integrable equation is reduced into solvable ordinary
differential equations. By introducing the hyperelliptic Riemann surface and Abel–Jacobi
coordinates, the associated flow is straightened. Then, the algebro-geometric solutions of
the new (2 + 1)-dimensional integrable equation are constructed by means of the Riemann
θ functions. It should also be pointed out that the method used here is suitable for other
soliton hierarchies.
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