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Abstract: This study investigates dynamic risk spillover effects between renewable energy markets
and Chinese green financial markets from a time-frequency perspective by utilizing weekly data from
two types of markets with a span from January 2010 to August 2022. The results show that the total
spillover and net spillover effects vary widely across time. Short-run spillover is more dominant than
long-run spillover. In most cases, green finance markets play the role of risk receivers in the system,
while renewable energy markets are the main risk transmitters in the short run and the main risk
spillover contributors in the long run. Finally, we determine that the hedging effect of green finance
assets in the renewable energy market may decrease after the COVID-19 pandemic.

Keywords: renewable energy market; green financial market; time–frequency connectedness;
hedging effect

MSC: 91B76

1. Introduction

In recent years, global attention towards climate change and environmental conser-
vation has escalated, prompting nations worldwide to adopt measures shifting towards
sustainable energy and green finance sectors. Renewable energy, as an important part
of the sustainable energy development strategy, is also the key to solving problems such
as climate change and energy security, which have received more and more attention in
recent years [1]. Renewable energy, including wind, solar, nuclear, etc., is regarded as an
alternative to traditional fossil fuels. For instance, it has been found that investment in
solar and wind energy will grow at an annual rate of 18%. The renewable energy market
has been attracting a great deal of investment attention due to the rapid rise in clean energy
technology and the placement of clean energy at the core of the new environmental protec-
tion policy [2]. In 2020, the global investment in renewable energy was USD 137 billion.
The biggest contributor to the development of global clean energy was investment in the
renewable energy market in the Asia–Pacific region [3].

As one of the world’s largest energy consumers, China plays a crucial role in this
transformative process. With robust governmental support and increased investments in
renewable energy, China’s renewable energy market is thriving. For instance, China has
emerged as the world’s largest market for wind and solar power generation. According
to data from the International Renewable Energy Agency, in 2019, China added 28.5 gi-
gawatts of wind power capacity and 30.1 gigawatts of solar power capacity, accounting for
approximately 44% and 30% of the global newly installed capacity, respectively.

Simultaneously, the Chinese government actively promotes the development of green
finance to support sustainable energy and environmental protection projects. According to
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the People’s Bank of China, in 2019, China’s green credit balance reached CNY 11.7 trillion,
and green bond issuances amounted to 1.2 trillion yuan, representing year-on-year growth
rates of 12.7% and 28.3%, respectively. These statistics indicate that China is rapidly
becoming a significant player in the global green financial market and is increasingly
influential in driving sustainable development initiatives.

Despite the rapid growth observed in both China’s renewable energy and green
finance markets, numerous unknown factors remain regarding the dynamic interplay
between these two markets and their effects on each other. Specifically, there is a need to
understand the asymmetric effects of the renewable energy market on the green finance
market, wherein the impact of one market on the other may differ. The existence of such
asymmetric effects could influence market stability and sustainability, underscoring the
importance of conducting in-depth research in this area.

Therefore, this study aims to explore the asymmetric effects of the renewable energy
market on China’s green finance market from the perspective of time and frequency
dynamic connectedness. By analyzing the variations and evolutions in this dynamic
connection, we can gain a better understanding of the interrelationship between these two
markets, providing deeper insights and guidance for China’s sustainable development
trajectory.

2. Literature Review

In recent years, renewable energy and related financial market assets have received
lots of attention ([4–8]). Related topics include renewable energy ([9–11]), green bonds
([12–15]), clean energy stocks ([16–19]), etc. Most of them focus on the correlation between
the renewable energy market and other markets.

Recently, some studies have focused on volatility spillovers among markets ([20–25]).
For the renewable energy market, the positive impact of the energy market on renewable
energy stock prices has been revealed through the VAR model and the linkage between
the physical market and the financial market from a dynamic perspective [26]. There are
weak linkages between green bonds, stock markets, and energy markets [27]. A weak link
has also been found between green energy and financial markets by constructing a green
energy index [28]. Many scholars believe that risk spillovers are derived from asset price
fluctuations within the financial market ([20,29–31]). Moreover, some studies have found
that there is a mutual volatility spillover between the energy market and other financial
markets, which shows heterogeneity in the time and frequency domains ([32–35]).

For the hedging effect of the green financial market, it is suggested that the green
financial market has a better hedging effect on the asset portfolio [36], which is consistent
with the findings from [37]. However, some scholars hold little confidence in the hedging
effect of green financial assets [38,39]. Those studies show evidence that the performance
of green mutual funds is not satisfactory. The green bond market is independent of other
markets and cannot effectively play the role of risk hedging, even becoming a risk exporter
in the system. Therefore, the hedging effect of the green financial market remains to be
examined, especially considering the impact of COVID-19 [40].

On the other hand, the spillover connectedness index of Diebold and Yilmaz [41] has
been widely applied to the dynamic spillover effect between financial markets ([42–47]).
Since the Diebold and Yilmaz (DY) method can only be used in the time domain, time and
frequency dynamic connectedness were proposed by Baruník and Křehlík [48], which can
simultaneously evaluate the magnitude and direction of time and frequency spillovers.
At different time frequencies, the correlation between markets should be different, as
agents with different preferences invest under different investment horizons. Therefore,
the Baruník and Křehlík (BK) method has also been widely used recently ([49–51]).

As indicated above, the current literature focuses on the relationship between the
green financial market and the traditional financial market and renewable energy. Our
research aims to assess time and frequency dynamic connectedness among clean energy,
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Chinese renewable energy stocks, and green bonds by applying the BK model to investigate
the hedging effect of clean energy on China’s green financial assets.

3. Methodology
3.1. Barunik–Krehlik Framework

Based on the definition of generalized variance decomposition [41], Baruník and
Křehlik extended it to the frequency domain and used the spectrum of the generalized
variance decomposition to study the connectedness in the frequency domain and obtain
time-varying results [48]. The generalized causal spectrum at frequency ω can be written
as follows:

( f (ω))k,j =
Σ−1

j,j

∣∣∣(Ψ
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)
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k,j represents the contribution of the shock of variable k to the spectral of
variable j at a given frequency ω, which is the causality within the frequency. On this basis,
the weight function is introduced as follows:
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Given a frequency band d = (a, b), a, b ∈ (−π, π), the generalized variance decompo-
sition on the frequency band d is defined as follows:
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is the connectedness of variable

k to variable j on frequency band d. In addition, the overall connectedness on band d can
be calculated as follows:
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, (5)

where Tr{·} is the trace operator, and ∑
∼
Θd is the sum of all elements of the matrix

∼
Θd.

Given frequency d, the contribution to overall connectedness can be defined by weighting
the internal metric.

SF
d = SW

d ·
∑
∼
Θd

∑
∼
Θ∞

. (6)

SF
d is the frequency connectedness over band d. It should be noted that the frequency

connectedness separates the original connectedness into different parts, namely ∑ds SF
S = S,

where S is the total connectedness of Diebold and Yilmaz [41].
This method can measure the connectedness of market j on all other markets at

frequency band d (To):

Sd
j→k,t = ∑n

k=1,j ̸=k

(∼
Θd

)
k,j

. (7)
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It can also measure the connectedness received by market j from all other markets on
frequency band d (From):

Sd
j←k,t = ∑n

k=1,j ̸=k

(∼
Θd

)
j,k

. (8)

The net connectedness on band d is obtained as follows:

Sd
j,t = Sd

j→k,t − Sd
j←k,t. (9)

3.2. DCC Model

We use the dynamic conditional correlation (DCC) model, proposed by Engle [52],
to investigate the dynamic relationship between renewable energy markets and green
financial markets. The ARMA-GJR-GARCH model is as follows:

rt = c + ∑p
i=1 αirt−i + ∑q

j=0 βjεt−j, (10)

εt = Σtvt, (11)

Σ2
t = Ψ + ϕε2

t−1 + ηε2
t−1dt−1 + ΓΣ2

t−1, (12)

where rt is the return of different markets, vt is the white noise, and Σ2
t represents the

conditional variance. dt−1 = 1 if εt < 0, otherwise dt−1 = 0.
The DCC model is as follows:

Rt = Q∗−1
t QtQ∗−1

t , (13)

Qt =
(

1−∑M
m=1 am −∑N

n=1 bn

)
Q + ∑M

m=1 amτt−mτ′t−m + ∑N
n=1 bnQt−n , (14)

where Qt represents the covariance matrix, Q∗t is the diagonal matrix, and Q is the uncon-
ditional covariance for the standardized residuals. τt−m are the standardized residuals.

Finally, we conduct the portfolios for empirical analysis with the conditional variance
and covariance calculated by the ARMA-GJR-GRACH-DCC model.

3.3. Data

As for the data on the renewable energy market, we use two data as proxies for the
overall situation of clean energy in developed countries. The Wilder Hill Clean Energy
Index (ECO) reflects the state of the U.S. renewable energy market, and the European
Renewable Energy Index (REIX) reflects the European renewable energy market. For
developing countries, we use the Mainland China New Energy Index (CNN), which is a
good proxy for the state of clean energy in developing countries. The wind, photovoltaic,
and nuclear energy markets represent the clean energies of China in detail. The data are
from the Wind database.

The data are weekly frequencies from January 2010 to August 2022. Figure 1 shows the
trends of all indices over the sample period. The raw data in this section are expressed as log
differences. In general, some indices (CNN, wind, photovoltaic, and nuclear) experienced
a pronounced fluctuation around 2015, all related to the Chinese market and may have
been affected by the Chinese stock market crash in 2015. All indices show significant
advances after 2021, which may be attributed to an increase in production demand during
post-COVID-19 economic recovery. Figure 2 shows the returns trend of the indices. While
they did not fluctuate a lot in the whole period, some of them fluctuated significantly
around 2015, which corroborates our previous analysis.
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Figure 2. Returns trends of renewable energy markets and green financial markets.

Table 1 presents the descriptive statistics of all variables. The photovoltaic market
has the highest maximum value of 14.8400, indicating significant positive returns at some
point, while the ECO market has the lowest minimum value of −11.9193, indicating
substantial negative returns. The photovoltaic market has a standard deviation of 1.9885,
suggesting high volatility, while the green bond market has a standard deviation of 0.1316,
indicating low volatility. Negative skewness (e.g., ECO, ERIX, and CNN) indicates that
the distribution tails are longer on the negative side (left), while positive skewness (e.g.,
photovoltaic) indicates longer tails on the positive side (right). Higher kurtosis values
indicate distributions with heavier tails and sharper peaks. The photovoltaic market has a
kurtosis of 9.2536, suggesting a distribution with heavy tails and a sharp peak. All markets
have high J–B test values, significant at the 1% level, indicating that the return distributions
significantly deviate from normality. All markets show significant ADF test values at the
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1% level, indicating that the return series are stationary. Overall, these statistics provide a
comprehensive understanding of the characteristics of various renewable energy markets
and China’s green financial markets, covering aspects from average returns and volatility
to distribution properties. The data indicate notable differences in the volatility and return
distribution characteristics across different markets, particularly between the photovoltaic
and green bond markets.

Table 1. Descriptive statistics of renewable energy markets and China’s green financial markets.

ECO ERIX CNN Wind Photovoltaic Nuclear Green Bond

Mean −0.0001 0.0530 0.0472 0.0728 0.1159 0.0490 0.0423

Max 7.4541 6.1409 5.2281 7.0870 14.8400 7.3265 0.8027

Mini −11.9193 −9.3372 −7.4162 −11.4976 −10.3534 −10.9154 −0.8062

S. D. 2.0960 1.8466 1.8208 1.8388 1.9885 1.7937 0.1316

Skew −0.2693 −0.4967 −0.5188 −0.5363 0.0048 −0.6173 −0.2998

Kurt 5.4684 4.6132 4.4821 6.3211 9.2536 6.4719 9.5702

J–B 172.08 *** 96.76 *** 88.24 *** 328.35 *** 1054.28 *** 366.05 *** 1173.41 ***

ADF −25.04 *** −25.76 *** −24.36 *** −22.90 *** −22.96 *** −23.59 *** −17.15 ***

Note: ECO, REIX, and CNN represent the renewable energy market of the US, Europe, and developing countries.
The wind, photovoltaic, and nuclear energy markets represent the clean energies of China in detail. The Jarque–
bera test is used to examine the normality of the series. ADF is the unit root test. *** denotes statistical significance
at the 1% level.

Figure 2 shows a pairwise linear correlation. The result shows that the relationships
between green financial assets are very similar. At the same time, the relationship between
the renewable energy markets of developed and developing countries also shows a high
correlation. In addition, the green finance market and the renewable energy market show a
weak correlation, and this correlation is heterogeneous for different financial assets. For
example, ECO has a weak positive correlation with Photovoltaic but a weak negative
correlation with Nuclear, which is beneficial for our portfolio diversification. Figure 3
shows the pairwise linear dependence heat map.
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Table 2 shows the Johansen cointegration test results. We construct four models to
explore the cointegration relationships between China’s green finance market and the
renewable energy market: Wind energy (WIND ECO ERIX CNN), photovoltaic energy
(PV ECO ERIX CNN), nuclear energy (NUCLEAR ECO ERIX CNN), and bonds (BOND
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ECO ERIX CNN). The Johansen cointegration test, including the trace test and maximum
eigenvalue test, is employed, revealing significant long-term cointegration relationships
across all models. This indicates stable long-term connections between the green finance
markets, including wind energy, photovoltaic energy, nuclear energy, bonds, and the
renewable energy market in China during the studied time series. To further analyze
the dynamic relationships between variables, the BK model is utilized to differentiate
between long-term and short-term spillover effects from a frequency-domain perspective.
Through BK model analysis, a clearer understanding of the mutual influences of variables
at different time frequencies is obtained. This comprehensive analysis sheds light on the
impact mechanisms and transmission pathways between various green finance markets
and the renewable energy market over different periods, providing crucial theoretical
support and empirical evidence for research and policy formulation in related fields.

Table 2. Johansen cointegration test.

WIND PV NUCLEAR BOND

None 758.1335 *** 779.079 *** 755.5319 *** 692.3415 ***

At most 1 504.1855 *** 532.308 *** 504.5015 *** 445.6898 ***

At most 2 299.6901 *** 324.3131 *** 300.0749 *** 239.8589 ***

At most 3 131.8823 *** 129.5433 *** 123.3614 *** 103.9834 ***
Note:*** denotes statistical significance at the 1% level.

4. Empirical Results
4.1. Time–Frequency Dynamic Connectedness

Tables 3 and 4 show static connectedness results between renewable energy markets
and China’s green financial assets in the short and long run. The table presents the dynamic
spillover effects among various indices, including ECO, ERIX, CNN, wind, photovoltaic,
nuclear, and green bonds. The values represent the percentage of spillover from one index
to another. In detail, the CNN index shows substantial spillover effects both received (from)
and transmitted (to), indicating significant interaction with other indices. The CNN index
has high volatility, with a notable amount of spillover received from other indices (10.93%)
and transmitted to others (7.97%). The wind index exhibits strong spillover effects in both
directions, particularly receiving spillovers from nuclear and transmitting to photovoltaic
and CNN. It also shows significant volatility, receiving 9.26% of spillovers and transmitting
10.10%, indicating it plays a crucial role in the dynamic network. The nuclear index has a
strong spillover effect, particularly towards photovoltaic energy and CNN, and also receives
significant spillovers from other indices. The nuclear index’s volatility is highlighted by
its substantial spillover received (9.44%) and transmitted (9.39%), showing its central role
in the network. The photovoltaic index is a net receiver in the short term but a significant
contributor in the long term, transmitting substantial spillovers to other indices. Notably,
the photovoltaic index demonstrates considerable volatility, with 9.52% spillover received
and 10.60% transmitted, underlining its dynamic interaction within the market. As for ECO
and ERIX, both indices primarily transmit spillovers to other markets, with ECO having a
net positive spillover effect (1.09%) and ERIX being net negative (−0.35%). The green bond
index mainly receives spillovers, indicating its stability and hedging attributes.

Table 4 shows the long-term results of connectedness. The total spillover effect is
47.85%, which is very close but smaller than the short-term spillover effect. Similar to the
short-term, the contribution to the system from green stock assets is the most obvious. For
renewable energy markets, the contribution of CNN is significantly improved compared
with short-term results. On the other hand, photovoltaic energy is the main transmitter,
followed by CNN, wind, and nuclear energy. In addition, the three green financial assets
also receive the most spillover shocks, while the impact of green bond assets is only 0.71%.
In terms of net spillover effects, renewable energy markets are the main net recipients,
while green financial assets are the main net contributors. This result is quite different
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from that in the short term. Specifically, renewable energy markets (ECO,1.44%; ERIX,
1.39%; CNN, 0.73%) all play the role of a transmitter in the long run, while ECO is only a
transmitter in the short run. In the long term, the relationship between the fluctuations of
the green finance market and the renewable energy markets is similar to the short-term
situation. The green finance market is mainly influenced by other markets, while its impact
on other markets is relatively small.

Table 3. Connectedness between renewable energy markets and green financial markets in the
short run.

ECO ERIX CNN Wind Photovoltaic Nuclear Green Bond From

ECO 35.96 13.18 0.04 0.05 0.10 0.03 0.20 4.25
ERIX 14.56 36.82 0.07 0.02 0.12 0.04 0.47 4.78
CNN 0.91 0.4 16.49 10.88 12.73 9.68 0.35 10.93
Wind 0.37 0.08 8.01 14.56 10.38 10.57 0.18 9.26

Photovoltaic 0.59 0.21 9.4 10.36 14.15 9.65 0.23 9.52
Nuclear 0.46 0.08 7.92 10.97 10.47 15.43 0.29 9.44

Green Bond 0.19 0.21 0.02 0.03 0.09 0.06 31.66 0.18
To 5.34 4.43 7.97 10.10 10.60 9.39 0.53 Total = 48.37

Net 1.09 −0.35 −2.96 0.84 1.08 −0.05 0.35

Note: ECO, REIX, and CNN represent the renewable energy market of the US, Europe, and developing countries.
The wind, photovoltaic, and nuclear energy markets represent the clean energies of China in detail. The values of
From represent the amount of spillover that the index in the first column received from other indices. The values
of To represent the amount of spillover that the index in the first row transmitted to other indices. Net is the net
value after those two are offset. Total is the total spillovers between renewable energy markets and green financial
markets in the short run.

Table 4. Connectedness between renewable energy markets and green financial markets in the
long run.

ECO ERIX CNN Wind Photovoltaic Nuclear Green Bond From

ECO 32.25 13.97 0.25 0.01 0.07 0.13 0.08 4.12
ERIX 12.76 31.54 0.07 0.02 0.10 0.13 0.13 3.75
CNN 2.78 1.55 14.7 8.35 9.87 8.03 0.09 8.71
Wind 1.19 0.66 10.73 15.61 11.86 11.76 0.11 10.31

Photovoltaic 1.49 0.91 11.98 11.39 15.31 10.69 0.08 10.38
Nuclear 1.04 0.60 9.81 12.08 11.03 15.74 0.17 9.86

Green Bond 0.33 0.40 0.39 0.46 0.51 0.40 58.47 0.71
To 5.56 5.14 9.44 9.18 9.50 8.85 0.19 Total = 47.85

Net 1.44 1.39 0.73 −1.13 −0.88 −1.01 −0.52

Note: ECO, REIX, and CNN represent the renewable energy market of the US, Europe, and developing countries.
The wind, photovoltaic, and nuclear energy markets represent the clean energies of China in detail. The values of
From represent the amount of spillover that the index in the first column received from other indices. The values
of To represent the amount of spillover that the index in the first row transmitted to other indices. Net is the net
value after those two are offset. Total is the total spillovers between renewable energy markets and green financial
markets in the long run.

Therefore, from the perspective of time-varying spillovers, short-run risk spillover
effects are more significant. Additionally, the total spillover effects of long-term and
short-term volatility are shown in Figure 4. The short-term risk spillover effects are more
significant in most cases, as indicated by the figure and description. Particularly, around
2020, the short-term spillover level reached its highest point. This could be related to
specific market events or increased global economic uncertainty. Short-term spillover
effects exhibit high dynamic changes, reflecting the market’s sensitivity and quick reaction
to sudden events in the short run. Although short-term spillover effects are more significant,
there are periods when long-term spillover effects lead to short-term effects. For instance,
around 2016, long-term spillover effects were ahead. Long-term spillover effects are
relatively more stable, indicating the market’s response to systemic risks and trends over a
long time horizon. This stability might be influenced by structural changes or long-term
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policy impacts. Time-varying spillover effects show how spillover effects change over
different periods. The figure illustrates that the dominance of short-term and long-term
spillover effects varies over time. Further information on the time and frequency domains
in the dynamic connectedness results can provide insights into spillover effects at different
frequencies. While static results show the average effect, dynamic analysis can reveal
details and fluctuations of spillover effects at specific times and frequencies.
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Notes: The blue-colored area indicates the total spillover in the short term. The red-colored area
reflects the spillover in the long term.

In summary, short-term spillover effects are generally more significant, especially
during periods of market disruptions. Long-term spillover effects, while more stable,
sometimes take the lead over short-term effects. Time and frequency domain dynamic
analysis can provide a detailed understanding of market connectedness changes over
different periods and frequencies.

Figure 5 shows the time-varying net spillover effect results. Most markets have a high
net spillover effect in the system. For the net spillover of the renewable energy markets,
ECO, ERIX, and CNN are the net recipients in the short run but net contributors in the long
run. Specifically, the US renewable energy market (ECO) and China’s renewable energy
market (CNN) both show stronger net spillover effects. The spillover effects were more
obvious around 2015 and 2020, and ECO turned into a net spillover contributor in the
short term in 2020, which may be due to the shock of COVID-19 and fluctuations in the
financial market.

Similar performances are observed in the net spillover of four different Chinese green
finance assets. Firstly, wind energy, nuclear energy, and green bonds are the net spillover
transmitters in the short term and the main contributors in the long term. Secondly,
the net risk spillovers of all green financial instruments show strong volatility, reflecting
great fluctuation of the asset price around 2015 and 2020, when the net spillover wind,
photovoltaic, and nuclear energy reached the highest level.

However, we can still observe the time-varying volatility of net spillover effects in
green financial markets. Specifically, green bonds were the main net receivers over the
long term during the sample period, indicating their susceptibility to external shocks and
internal factors within this system. In contrast, photovoltaic markets showed a lower net
effect, demonstrating stability in both receiving and transmitting aspects. This further un-
derscores photovoltaic energy stocks’ strong hedging properties within portfolios. Overall,
the dynamic net spillover transmission from renewable energy markets to the system is sig-
nificant over the long term, while these markets are more susceptible to short-term impacts
from financial markets. These findings align with the results of static connectivity analysis.
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To further discuss the pairwise spillover effect between different markets, we con-
ducted network spillover structures of different markets in the short and long-run system,
which are shown in Figures 6 and 7. It was noted in Figure 6 that wind and photovoltaic
energy receive strong spillover effects from ERIX and CNN markets in the short term, and
the green bond market is a weak receiver of risk spillovers within the system, which shows
that the impact from renewable markets to green financial markets cannot be ignored in the
short term. In other words, investors with green financial assets in their portfolio should
pay attention to the spillovers from specific renewable energy markets. From Figure 7, we
also note that in the long run, the green bond market turns into a strong receiver while it is
a weak receiver in the short run. This spillover affects green bonds received not only from
the renewable energy market but also from other green financial markets. The results also
show that the spillover effect is obvious due to the linkage between green finance markets
and new energy markets in the long term. In the long run, renewable energy markets
remain a contributor to long-term spillover, although the spillover effects are weak between
the renewable energy market and the green financial market. Specifically, the direction
of the spillover effect is more manifested from the renewable energy market to the green
finance market, which further leads to transmission inside green financial markets.
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Figure 6. Net pairwise spillover network between renewable energy markets and green financial
markets in the short run. Notes: A node of red (green) color indicates it is the most significant
net transmitter (receiver) of spillover. The edge colors rank the strength of the pairwise directional
spillover from red (strongest) to purple, pink, blue, light blue, and green (weakest). The edge arrow
thickness also indicates the strength of the net pairwise spillover.
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4.2. Hedging Effect

In this section, the DCC model is applied to conduct portfolios with renewable energy
markets and green financial markets. By measuring the optimal portfolio weight, hedge
ratio, and hedging effectiveness, we attempted to provide some investment advice for
global investors at different times.

Firstly, assuming that investors have a portfolio with renewable energy and China’s
green financial markets, it is necessary to measure optimal portfolio weights to better apply
cryptocurrencies to hedge risks. This can be defined according to the seminal work of [53]:

ωrg,t =
hg,t − hrg,t

hr,t − 2hrg,t + hg,t
, with ωrg,t = {0, i f ωrg,t < 0 ωrg,t, i f 0 < ωrg,t < 1 1, i f ωrg,t > 1, (15)

where ωrg,t is the optimal portfolio weight, and hr, t and hg,t are the conditional variance
for renewable energy and green financial markets, separately. The optimal weight for the
green financial market is 1 − ωrg,t.

Secondly, we measured the hedging ratio βrg [54] and calculated the minimum risk in
our portfolio:

βrg,t = hrg, t/hg,t (16)

Then, we calculated the hedging efficiency by applying the hedging effectiveness (HE)
index [30] to determine the differences between the benchmark portfolio and the optimal
portfolio. We can define it as follows:

HE = 1−
Varp

Var0
, (17)

where Varp and Var0 are the variance of optimal portfolios and benchmark portfolios,
respectively.

The sample was divided into pre-COVID-19 and post-COVID-19. More details about
the results are shown in Table 5. We can determine some implications from the empirical
results. Firstly, most of the optimal portfolios have a small weight except for green bonds,
which suggests that the hedging effect can effectively be achieved with a small proportion
of green financial assets in one portfolio. Most hedge ratios are positive, meaning that
a short position in green finance assets can help hedge a long position in the renewable
energy market. Secondly, the hedging effect of green financial assets is stronger than post-
COVID-19, which proves that COVID-19 has changed the hedging effect of green financial
assets and the economic and policy uncertainty brought by the COVID-19 pandemic to
the financial market reduces the hedging efficiency of financial assets. Finally, the hedging
effect varies in portfolios with different green financial markets, while the photovoltaic
stock market has the best hedging effect followed by wind and green bonds. In other words,
the risk of the portfolio with photovoltaics is more diversified.
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Table 5. Optimal portfolios’ weights, hedge ratios, and hedging effectiveness between renewable
energy markets and green financial markets.

Pre-COVID-19 Post-COVID-19 Full Sample

Wt βt HE (%) Wt βt HE (%) Wt βt HE (%)

ECO

Wind 0.4798 0.0515 56.15% 0.6902 0.0503 32.37% 0.5227 0.0513 50.53%
Photovoltaic 0.4447 0.0733 61.17% 0.6979 0.1097 26.29% 0.4964 0.0807 54.63%

Nuclear 0.4827 0.0127 58.35% 0.7618 −0.0052 26.23% 0.5397 0.0091 53.82%
Green Bond 0.9949 0.5083 −0.04% 0.9996 0.9522 0.60% 0.9958 0.5989 0.02%

ERIX

Wind 0.5225 0.0607 55.26% 0.5564 0.0319 39.73% 0.5294 0.0548 51.68%
Photovoltaic 0.4883 0.0735 60.64% 0.5561 0.0658 33.64% 0.5022 0.0719 55.67%

Nuclear 0.5244 0.0397 57.39% 0.6493 0.0246 27.21% 0.5499 0.0366 53.19%
Green Bond 0.9976 0.7897 0.10% 0.9996 1.0992 −0.08% 0.9980 0.8529 0.08%

CNN

Wind 0.4843 0.8674 11.78% 0.5600 0.6125 19.60% 0.4997 0.8154 13.58%
Photovoltaic 0.2815 0.8188 25.60% 0.5912 0.9150 3.82% 0.3447 0.8384 21.51%

Nuclear 0.4847 0.8318 16.03% 0.6881 0.5720 5.03% 0.5262 0.7788 14.46%
Green Bond 0.9912 −0.0712 2.03% 0.9960 −0.0948 0.20% 0.9922 −0.0760 1.88%

Note: HE represents the hedging effectiveness. Wt is the optimal portfolio weight. βt is the hedge ratio, and
HE represents the hedging effectiveness. The full sample set is divided into two parts due to the outbreak of
COVID-19.

5. Conclusions

This paper analyzes the dynamic connectedness of the renewable energy market
and the green finance market in both the time and frequency domains, dividing the data
into pre-COVID-19 and post-COVID-19 periods to investigate how the pandemic affected
portfolio hedging effects.

In the static analysis, we found that green finance markets play the role of contributors
in the system, while renewable energy markets are the main receivers in the short run.
However, in the long run, the roles reverse, with renewable energy markets becoming
the primary spillover contributors. The dynamic connectedness results indicate that the
short-term total spillover effect is stronger than the long-term in most cases, with net
spillover effects significantly increasing during the 2015 stock market crash and the COVID-
19 pandemic. Specifically, green bonds act as the main spillover receivers in the long term,
while photovoltaic assets remain stable and exhibit hedging attributes. Network analysis
revealed that wind and photovoltaic sectors receive strong net spillover from ERIX and
CNN in the short term, while the long-term spillover effect between the renewable energy
market and the green finance market is weak.

These findings have several important implications for hedging strategies and policy-
making. For investors, the observed decrease in the hedging effect of green finance assets
in the renewable energy market post-COVID-19 suggests a need to adjust the weight of
these assets in their portfolios. Diversifying investments to mitigate risk exposure in times
of market instability can improve portfolio performance.

For the public sector, understanding the connectedness between the renewable energy
market and the green finance market provides crucial insights into systemic risks. Iden-
tifying the main risk receivers and transmitters can help policymakers develop targeted
interventions to stabilize financial markets. This is particularly important for achieving Sus-
tainable Development Goals, as stable financial markets are essential for funding renewable
energy projects and other green initiatives.

Moreover, promoting stronger integration between renewable energy and green fi-
nance markets can enhance their resilience against future shocks. Governments could
consider incentivizing the development of green financial products and encouraging in-
vestment in renewable energy sectors through subsidies, tax incentives, and supportive
regulatory frameworks. These measures would not only contribute to market stability but
also accelerate the transition to a sustainable economy.
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Additionally, collaboration between the public and private sectors can be strengthened
to address market vulnerabilities. For instance, creating public-private partnerships focused
on green investments can attract more private capital into renewable energy projects,
reducing the reliance on government funding alone.

In conclusion, the findings of this study highlight the dynamic interplay between
the renewable energy market and the green finance market, emphasizing the need for
adaptive strategies in portfolio management and policy-making. By leveraging these
insights, both private and public sectors can better navigate market complexities, enhance
financial stability, and contribute to sustainable development goals.
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