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Abstract: Real-time monitoring and timely warning of air quality are vital components of building
livable cities and implementing the “Healthy China” strategy. Real-time, efficient, and accurate
detection of air quality anomalies holds great significance. However, almost all existing methods for
air quality anomaly detection often overlook the imbalanced distribution of data. In addition, many
traditional methods cannot learn both pointwise representation and pairwise association, so they
cannot solve complex features. This study proposes an anomaly detection method for air quality
monitoring based on Deep Smooth Random Sampling and Association Attention in Transformer
(DSRS-AAT). Firstly, based on the third geographical law, the more similar the geographical environ-
ment, the closer the geographical target features are. We cluster sites according to the surrounding
geographic features to fully explore latent feature associations. Then, we employ Deep Smooth
Random Sampling to rebalance the air quality datasets. Meanwhile, the Transformer with association
attention considers both prior associations and series associations to distinguish anomaly patterns.
Experiments are carried out with real data from 95 monitoring stations in Haikou City, China. Final
results demonstrate that the proposed DSRS-AAT improves the effectiveness of anomaly detection
and provides interpretability analysis for traceability, owing to a significant improvement with the
baselines (OmniAnomaly, THOC, etc.). The proposed method effectively enhances the effectiveness
of air quality anomaly detection and provides a reference value for real-time monitoring and early
warning of urban air quality.

Keywords: air quality anomaly detection; imbalanced data processing; geographical third law;
transformer; livable cities

MSC: 37M10; 68T07

1. Introduction

Air pollution, as a key factor affecting people’s livelihood and health, has always
been assigned great importance by the Chinese government and people. Therefore, in the
outline of the 14th Five-Year Plan, urban air quality indicators were formally incorporated
into the binding indicators of economic and social development, which indicates that air
quality has become an important part of the process of national development. In order to
continue to promote the blue-sky defense war, people’s health rights must be ensured, and
high-quality economic development must be promoted through continuous improvement
of air quality. The State Council issued the Action Plan for Continuous Improvement of
Air Quality at the end of 2023. The plan clearly puts forward the air quality improvement
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goals during the “14th Five-Year Plan” period and sets a timetable and roadmap for the
continuous improvement of air quality. The implementation of this plan will not only
improve the quality of the environment and enhance the quality of people’s lives but also
promote the optimization and upgrading of the economic structure, promote green and
low-carbon development, and finally lay a solid foundation for achieving the Sustainable
Development Goals.

In order to solve the problem of air pollution, air anomaly detection has become
a key progress. It not only offers early alerts but swiftly responds to abrupt pollution
incidents or unusual weather patterns. This significantly lessens the negative impact on
public health and the environment. It also pinpoints anomalies, enabling further tracking of
pollution sources. This provides crucial data for decision making by the relevant authorities.
Moreover, anomaly detection helps oversee and maintain the data quality of the monitoring
system. This ensures the precision and reliability of the monitoring data. It can also refine
resource allocation, boosting efficiency and cost-effectiveness.

For example, traditional methods for detecting anomalies in air quality primarily
rely on statistical models, data analysis, and simple machine learning models. They lack
flexibility in their determination criteria and struggle to adequately address sudden human-
induced situations [1]. These methods often overlook the spatiotemporal characteristics of
real-world time series data, presenting certain limitations. Moreover, due to the unique
nature of the datasets involved in anomaly detection tasks, the imbalanced feature distribu-
tion causes models to favor the majority class from training to fitting, leading to significant
biases in evaluation metrics such as accuracy, making it difficult to achieve the desired
performance, and significantly increasing the difficulty of improving results [2]. In recent
years, with the upgrading of air monitoring stations, large-scale multimodal data have
become available for research related to air quality. Models based on deep learning show
significant potential in the field of air quality anomaly detection [3]. As data scale increases,
deep learning outperforms traditional machine learning methods in performance and has
more powerful data processing capabilities, more accurate detection capabilities, and better
adaptability [4]. Among them, the attention mechanism brought by the Transformer model
has attracted widespread attention due to its capability to handle sequential data, providing
insights into time series anomaly detection.

In summary, this study focuses on anomaly detection in time series data, exploring
solutions to the challenges faced by anomaly detection tasks on imbalanced datasets. An
in-depth study is conducted to improve the effectiveness of air quality anomaly detection
models. A data processing method named DSRS (Deep Smooth Random Sampling) is
proposed to mitigate the impact of special data distributions and applied to the Transformer
based on the association attention mechanism to accomplish the task of air quality anomaly
detection. Here are the contributions of this study:

• Based on the principle of the geographical third law, combining POI data with the
geographical location information of monitoring stations, exploring the impact of func-
tional zoning on spatiotemporal data, and analyzing the potential environmental feature
associations between stations to improve the effectiveness of anomaly detection;

• In response to the extreme imbalance of air quality datasets in reality, the fusion method
of Deep Smooth Random Sampling (DSRS) is adopted for rebalancing processing to
alleviate its impact on the training of anomaly detection models and improve accuracy;

• Introducing prior associations and sequence associations into the Transformer model
to amplify the differences in performance features between anomaly and normal
points in time series data to improve anomaly detection effectiveness;

• Matching and spatiotemporal analysis of anomaly detection results with complaint
data contribute to addressing practical needs.

This study is structured as follows: First, in Section 2, some research status of unbal-
anced data processing and anomaly detection of time series data are briefly introduced.
Section 3 explains our approach in detail. Section 4 then presents the results of our experi-
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ments, while Section 5 discusses the work we have carried out. Finally, Section 6 describes
the conclusions of the research.

2. Related Works
2.1. Anomaly Detection

Anomaly detection is a significant issue in computer science. With the development of
big data and sensor technology, researchers utilize collected environmental monitoring data
to establish various models for predicting and identifying anomalies [5]. Current research
shows that traditional statistical methods, machine learning, and deep learning techniques
are widely used in anomaly detection. Although these methods have made certain progress,
they still face challenges such as detection accuracy and model generalization capability.
This section will explore the current research status in the computer science field regarding
anomaly detection and discuss existing technologies and methods.

2.1.1. Traditional Methods

Nearest neighbor-based anomaly detection methods are divided into two categories:
distance-based and density-based detection methods [6]. Distance-based methods detect
anomalies by calculating the distance between abnormal data and normal data. Density-
based techniques [7] compare the estimated density of each data point with its neighboring
data points, considering data with lower estimated density as anomalies. One of the
most classic algorithms is the K-Nearest Neighbors (KNN) algorithm and its variants,
which determine whether a point is an outlier by calculating the distance between it
and its K-Nearest Neighbors. The Local Outlier Factor (LOF) method [8] measures the
relative isolation of given data points; however, its performance on scattered datasets is
poor. Additionally, algorithm performance decreases when the density of abnormal data
points is close to that of their neighborhood density and boundary data points. To further
enhance the efficiency of this method, researchers have proposed improvements such as
Connectivity-Based Outlier Factor (COF), Influence-Based Local Outlier Factor (INFLO),
Label Driven Outlier Factor (LDOF), and Local Association-based Intensity (LOCI) [9].
Clustering-based anomaly detection techniques group data based on similarity or similar
patterns, considering data not belonging to any cluster as anomalies. Common methods
using clustering to detect outliers and noise points include Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [10], which can handle noise-robust datasets and
find all dense regions of samples as clusters; Ordering Points To Identify the Clustering
Structure (OPTICS) [11], which can discover clusters of arbitrary shapes in large-scale
data and has suitable robustness to noise points; and Cluster-Based Local Outlier Factor
(CBLOF) [12], which detects outliers based on the LOF method using clustering. The
core objective of clustering-based methods is to identify the structure of clusters; thus,
these methods may overlook outlier data. The application of the mentioned algorithm in
anomaly detection is manifested in many aspects. In the aspects of financial fraud detection,
intrusion detection system, and industrial production, the abnormal behavior is identified
by comparing. However, the performance of these algorithms in anomaly detection tasks is
also limited by the setting of parameters and the quality of datasets.

2.1.2. Shallow Learning Methods

Machine learning methods are widely used in anomaly detection, including many
classic and convenient algorithms and techniques. For example, Support Vector Machines
(SVM) [13] is a supervised learning algorithm capable of handling nonlinear problems. By
mapping data to a high-dimensional feature space, it finds an optimal hyperplane to best
separate normal points and outliers in the data. Decision Tree (DT) technology [14] is a
simple and intuitive algorithm used for classification tasks. In anomaly detection, it splits
data by selecting a specific feature or attribute, recursively dividing the dataset into smaller
subsets, and guiding the data down different branches based on the different values of this
feature. Random Forest (RF) is another ensemble learning method [15], which constructs
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multiple decision trees and combines them to improve the accuracy and robustness of
anomaly detection models. Similar to traditional methods, shallow learning methods have
a wide range of applications, but they are also limited by the quality of the data set and
difficult to achieve the best performance

2.1.3. Deep Learning Methods

Deep learning models are effective technologies in the field of anomaly detection.
Deep learning-based models have been applied in supervised, semi-supervised, and un-
supervised modes. In supervised mode, models are trained using normal data and then
used for anomaly detection. The key issue in this mode is obtaining precise labels for the
inlier and outlier classes in each domain. In the semi-supervised mode used for anomaly
detection, class labels are only available for inlier points. Unsupervised mode is widely
applicable due to its ability to handle unlabeled datasets. In this mode, networks based on
deep learning attempt to reconstruct the input at the output end, measuring reconstruction
errors to rank outliers in the dataset. Many deep learning techniques, such as Adaptive
Resonance Theory (ART), Generative Adversarial Networks (GAN), and Restricted Boltz-
mann Machines (RBM), have been applied in anomaly detection. Besides these networks,
methods like Recurrent Neural Networks (RNN) are also popular.

Many researchers currently focus on multivariate time series anomaly detection. The
Transformer model [16] has received widespread attention and application in time series
prediction, anomaly detection, and classification due to its ability to handle sequence data.
Ref. [17] proposed a new Multi-Scale Convolutional Recurrent Variational Autoencoder
(MSCRVAE) model, which not only considers the temporal and spatial dependencies but
also captures latent variable representations. Ref. [18] introduced a Dilated Convolutional
Transformer-based GAN (DCT-GAN), which can improve the stability and robustness of
anomaly detection in time series. Ref. [19] presented a lightweight, unsupervised multi-
variate time series anomaly detection algorithm, LUAD, which models multivariate time
series to better capture representations between variables and the influence between time
series. Ref. [20] proposed a dynamic network anomaly edge detection method that com-
bines RegraphGAN with spatiotemporal encoding. Ref. [21] introduced a spatial–temporal
knowledge graph network (STKGN) that uses continuous-time dynamic graphs to simu-
late the influence of events interacting within real nodes. Ref. [22] developed a real-time
adaptive training algorithm, Spatially Adaptive Dynamic Convolutional Autoencoding
ODER Anomaly Detection (STEAMCODER), which can effectively learn spatial features
when the data volume is small and fully learn temporal features when the data volume is
large. Compared with the first two types of methods, deep learning can cope well with
large-scale data and improve computing efficiency and performance. With the maturity of
technology, the application of such anomaly detection methods has gradually become the
mainstream of various applications

In summary, current research on anomaly detection focuses on various application
fields, continuously improving the performance of corresponding deep learning methods in
data preprocessing, adjusting model parameters, and optimizing loss functions. Although
the latest research results have demonstrated the superior performance of unsupervised
deep learning in anomaly detection, its opacity and interpretability remain areas requiring
continuous improvement in practical applications. Moreover, anomaly detection models
also need corresponding improvements and optimizations based on their actual application
scenarios, especially in learning information representation and finding distinguishable
criteria between normal and abnormal data.

2.2. Imbalanced Data Processing

In the context of anomaly detection in air quality, there is a significant disparity in
the number of samples between different classes. The process of rebalancing aims to alter
the distribution of imbalanced datasets through some mechanism to obtain a relatively
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balanced dataset. Existing rebalancing methods mainly include data-level and algorithm-
level approaches.

Data-level rebalancing methods involve oversampling, undersampling, and mixed
sampling techniques. Undersampling is a simple method of adjusting data distribution
balance by removing the majority of class samples from the original dataset. Common
undersampling methods include Ensemble Nearest Neighbors (ENN) [23], Self-Paced En-
semble (SPE) [24], Balanced Cascade [25], and Near Miss [26]. However, deleting sample
data may lead to the loss of valuable information, potentially causing classifiers to miss
important information related to the majority class, leading to overfitting. When the data
imbalance problem is severe, this method is not feasible. Oversampling involves syn-
thesizing minority samples according to certain rules to achieve data rebalancing. This
includes methods such as Easy Ensemble [27], Synthetic Minority Oversampling Tech-
nique (SMOTE) [28], and Adaptive Synthetic Sampling Approach for Imbalanced Learning
(ADASYN) [29]. However, this method is susceptible to noise and can prolong the training
time of these models, and overfitting issues remain unresolved. Mixed sampling algo-
rithms combine the advantages of undersampling and oversampling methods. Examples
include the Synthetic Minority Oversampling Technique with TOMEK, an undersampling
algorithm that aims to reduce the number of sample classes by removing those pairs that
are closest to each other while retaining as much information as possible, and Quadratic
Correction (SMOTETOMEK), Synthetic Minority Oversampling Technique with Ensemble
of Nearest Neighbors (SMOTE-ENN) [30], and Integrated Forests for Synthetic Minority
Oversampling Technique (IForest-SMOTE) [31], which have shown better performance
in recent years. Many of the methods mentioned above are classical methods of data
imbalance processing, which have a high degree of recognition and have been widely used,
but the processing methods of time series data are still lacking in research.

At the algorithm level, there are techniques such as cost-sensitive learning [32], transfer
learning [33], and self-supervised imbalanced learning for data rebalancing [34]. Cost-
sensitive learning trains classifiers to set different penalties for different classification errors
to reduce the model’s preference for majority class samples. However, if the evaluation
criteria of cost-sensitive learning overly emphasize a small portion of samples, it can be
unfair to the majority of samples, and the algorithm may have weak generalization ability
on datasets with different sample proportions. Transfer learning models the majority class
samples and minority class samples separately and transfers the learning information
of the majority class samples to the minority class samples. Self-supervised learning is
an unsupervised learning method that mainly uses surrogate tasks to extract supervised
information from large-scale unlabeled data to train models, thereby learning valuable
representations for downstream tasks.

In summary, research on rebalancing imbalanced data is currently a hot topic [35].
Most researchers utilize various sampling methods to sample and rebalance data in specific
domains, which, to some extent, alleviates the ratio of positive and negative samples in
imbalanced data. However, these methods do not consider the distribution characteristics
of time series data. Rebalancing for discrete points can instead disrupt the temporal
characteristics of the corresponding task datasets, leading to a complete disconnection
from reality.

3. DSRS-AAT
3.1. Overall Architecture

First, we conduct statistical analysis on the air pollution data and meteorological data
from each monitoring site and integrate these data for preliminary data preprocessing,
including data cleaning and filling in missing values. Next, based on the theory of the
third law of geography, we merge the air pollution and meteorological data of the target
observation station and its strongly correlated observation stations to explore the complex
spatiotemporal relationships. By spatial clustering of Points of Interest (POI) and spatial
variability analysis, we select strongly correlated stations that co-vary with the target station,
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clustering sites with similar environments and extracting high-quality multidimensional
time series data sequences, thus efficiently constructing the air quality dataset. After
the initial construction of the dataset, we use the DSRS method to smooth and sample
the data to alleviate the impact of imbalanced data, effectively improving the quality
of the dataset. Subsequently, we input the processed dataset into a model based on the
association mechanism and optimize the model parameters to achieve optimal performance.
Finally, through comparative analysis with other baseline models and different ablation
experiments, we demonstrate the superiority of our proposed method in performance and
showcase the importance of each part of the design. The corresponding technical roadmap
is shown in the Figure 1 below.
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3.2. Deep Smooth Random Sampling

In order to address the challenge of extreme imbalance in data for anomaly detection
tasks, this study proposes a method based on Deep Smooth Random Sampling (DSRS) to
mitigate the impact of imbalanced datasets and improve the performance of anomaly
detection models. The advantage of this method lies in its integration of traditional
sampling techniques while considering the contextual features of multidimensional time
series data, thus preserving the original characteristics of the dataset while optimizing its
quality to the fullest extent.

Inspired by the statistical properties of similar features in neighboring points with
continuous target values [36], this study introduces the concept of deep smoothing, which
essentially involves propagating statistical information of features within neighboring
intervals. The main purpose of this process is to calibrate potentially biased estimates
of feature distributions, especially for target values with few samples. Specifically, for a
feature element z:

µb =
1

Nb

Nb

∑
i=1

Zi (1)

Σb =
1

Nb − 1

Nb

∑
i=1

(zi − µb)(zi − µb)
T (2)

where Nb is the total number of samples that have been divided into small segments with
intervals of b, a symmetric kernel k(yb, yb′) is applied to smooth the feature mean and
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covariance over the entire statistical heap β based on the given feature data. The results are
as follows:

∼
µb = ∑

b′∈β

k(yb, yb′)µb′ (3)

Σ̌b = ∑
b′∈β

k(yb, yb′)Σb′ (4)

After obtaining both {µb, Σb} and
{∼

µb,
∼
Σb
}

simultaneously, the representation features
of each input sample are calibrated according to the article [37].

∼
z =

∼
Σb

1
2
Σb

− 1
2 (z − µb) +

∼
µb (5)

After obtaining the calibrated representation features, a random spatial sampling
technique is employed based on an effective fully random tree proposed in [38]. In this
process, the data space is randomly partitioned into multiple subspaces until each data
element in an independent subspace belongs to the same type. This method achieves
time efficiency by randomly partitioning the space and selecting a split value in randomly
chosen attributes, thus reducing the cost of computing information gain to find the splitting
attribute and position. Below is the pseudocode for this method (Algorithm 1).

Algorithm 1: Random Space Division Sampling.

Input: Dataset S =(s1, s2, s3, . . . sn), si = (x, y), i = 1, 2, 3, . . . n, the number of trees
NTree in a CRF
Output: Dataset D after sampling

1. NTree= log2d + 1;
2. if NTree is an even then
3. NTree = NTree + 1;
4. end if
5. Construct NTree complete random trees;
6. Find label noise points according to criterion
7. while the detected label noise is changed do
8. Construct two more complete random tree, and NTree

= NTree + 2;
9. Mark the label of each node with the majority label in
10. the two new trees;
11. for each sample P do
12. Judge label(P) = label(parent(P));
13. end for
14. end while
15. Remove all label noise points
16. Sample the class C with the largest number of samples, denote its sampled result as

C′ and the rest as R
17. Return D = R + C′

3.3. Association Attention in Transformer
3.3.1. Problem Definition

Considering a multivariate time series of length T:

X = (x1, x2, . . . , xT) (6)

Each data point is obtained from a monitoring station at timestamp t, with data
dimension d. The problem addressed in this study can be viewed as providing a time series
sequence X as input. For a test sequence Xtest of the same size as the training sequence,
with length T′, the goal is to predict ytest = (y1, y2, . . . , yT′), where yt ∈ {0, 1}. Here,
1 represents an anomalous data point, and 0 represents a normal data point. The core issue
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of unsupervised time series anomaly detection is determining whether xT is anomalous
without labels.

As mentioned above, the emphasis in unsupervised time series anomaly detection
is on learning informative feature representations and finding discriminative criteria for
anomalies and non-anomalies. To some extent, the underlying basis of the model is similar
to that of the anomaly Transformer [39], aiming to discover more information associations
and address the problem by learning association differences. Association differences
essentially amplify the impact of anomalies and non-anomalies in the evaluation, thereby
enhancing the model’s effectiveness in a more concise and efficient manner.

3.3.2. Core Mechanism of Association Attention

Taking into account the limitations and deficiencies of the Transformer model in
handling anomaly detection tasks, this study draws inspiration from the more targeted
anomaly Transformer model. It has been demonstrated to be effective on various types of
time series datasets, optimizing the relevant techniques of association differences to better
meet the demands of the task at hand (Figure 2).
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The input time series X ∈ RN×d consists of elements X l ∈ RN×dmodel , l ∈ {1, · · · , L}
representing the input to the l-th layer with dmodel channels, where the initial input
X 0 = Embedding(X ) represents the raw data processed through embedding. The as-
sociation attention (·) function is used to compute the association attention, which is the
core component for distinguishing between anomalous and non-anomalous points.

As mentioned in the Transformer model, the single-branch self-attention technique
cannot simultaneously handle prior association and sequence association. To jointly process
these two types of associations and effectively identify the differences between anomalous
and non-anomalous points, a dual-branch architecture inspired by the anomaly Trans-
former is adopted, as illustrated in the above figure. This structure enables more effective
derivation of association attention and subsequent determination based on it.

Firstly, the parameters are initialized:

Q, K, V, σ = Xl−1W l
Q, Xl−1W l

K, Xl−1W l
V , Xl−1W l

σ (7)

Here, Q, K, V, σ represent the query, key, and value for the self-attention mechanism.
To better understand the differences in associations and clarify the methods of the

model presented in this paper, it is necessary to delve deeper into prior associations and
sequential associations.
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For the prior association branch, this paper employs a learnable Gaussian kernel to
measure the priori of relative temporal distances. This design leverages the unimodal
characteristic of the Gaussian kernel, thus structurally focusing more on the immediate
time range. Moreover, a learnable scale parameter σ is introduced for the Gaussian kernel,
allowing the prior associations to adapt to different patterns of time series, such as variations
in the length of anomaly segments.

Regarding the series association branch, this paper aims to learn the associations from
the original sequences, enabling it to adaptively identify the most effective correlations.
Notably, both methods maintain the time dependency of each time point, providing richer
information than point-by-point representation. They reflect the prior associations based on
adjacency sets and the learned actual associations, respectively, and the difference between
these two should be capable of distinguishing between normal and abnormal states.

Below, we introduce the formulas for prior association P l and series association S l .

P l = Rescale

[ 1√
2πσi

exp

(
−
∣∣j − i|2

2σ2
i

)]
i,j∈{1,··· ,N}

 (8)

S l = Softmax

(
QKT
√

d

)
(9)

In the prior association, P l ∈ RN×N is generated based on the learned vector

σ ∈ RN×
.
1, where the i-th element σi corresponds to the i-th time point. Specifically,

for the i-th time point, its association weight with the j-th point is calculated using the

Gaussian kernel function G(|j − i|; σi) = 1√
2πσi

exp(−|j−i|2

2σ2
i
). Additionally, the function

Rescale (·) is used to convert the association weights into a discrete distribution P l , and
Sof tmax(·) function is used to normalize the attention weights.

This study formalizes the association difference as the symmetric Kullback–Leibler
(KL) divergence between the prior association and the sequence association, which repre-
sents the information gain between these two distributions. By averaging the association
differences over multiple layers, the associations of multiple layers are combined into a
more informative measure for a more balanced evaluation of the loss function, as follows:

Loss =

[
1
L

L

∑
l=1

(
KL
(
P l

i,: ∥ S l
i,:

)
+ KL

(
S l

i,: ∥ P l
i,:

))]
i=1,··· ,N

(10)

where KL(·||·) computes the degree of association between the discrete distributions
P l ,S l in the same event space. The loss function measures the pointwise association
difference of X l relative to the multi-layer prior association P l and sequence association
S l , where the result of the i-th element is associated with the i-th time point in the time
series. From the previous analysis, it can be inferred that the loss of anomalous points will
be smaller than that of normal data points, which can serve as a potential differentiator.
Unlike most reconstruction frameworks, which use a reconstruction component, this
method does not utilize reconstruction. Although reconstruction can help detect anomalous
behavior different from expected behavior, reconstructing the entire time series to obtain
a reconstruction loss is not straightforward. Therefore, this approach can, to some extent,
improve efficiency by reducing the impact of insufficiently considered latent information
on representation information.

Incorporating normalized association differences into the anomaly detection criterion
allows for balancing between representation information of the time series and association
differences.

Anomaly Score(X ) = Softmax(Loss) (11)



Mathematics 2024, 12, 2048 10 of 21

This represents an anomaly score for each data point in the time series, where data
points corresponding to anomalies typically exhibit lower anomalous associations. There-
fore, based on a hyperparameter δ, one can determine whether a point is anomalous
or not.

Yi =

{
1 : anomaly Anomaly Score(Xi) ≥ δ
0 : normal Anomaly Score(Xi) < δ.

(12)

4. Experiments
4.1. Datasets

The study area chosen for this research is Haikou City in Hainan Province, China.
Hourly air pollution concentration data and corresponding meteorological data were
collected from a total of 95 air monitoring stations distributed across four districts: Xiuying
District, Longhua District, Qiongshan District, and Meilan District. These sites are shown
in Figure 3 below. These data were used to construct the original dataset. The data span
from2021-05-26 to 2023-03-11, encompassing features such as PM2.5, PM10, CO, NO2,
SO2, O3, air pressure, humidity, temperature, wind direction, and wind speed, totaling
11 variables. Table 1 presents the dataset used in the experiments.
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Table 1. Description of experimental data sets.

Type Name Units of Measurement

POI data Longitude -
Latitude -

Air quality data

PM2.5 µg/m3

PM10 µg/m3

CO µg/m3

NO2 µg/m3

SO2 µg/m3

O3 µg/m3

Meteorological data

Air pressure hPa
Humidity %

Temperature ◦C
Wind direction -

Wind speed km/h
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Additionally, in order to facilitate the interpretability of the anomaly detection results
later on, this study also incorporates a public complaint corpus dataset. The dataset
encompasses six attribute columns: “event_startTime”, “event_endTime”, “event_title”,
“event_content”, “reply_department”, and “event_result”, with a total of 3734 entries
(Table 2).

Table 2. Complaint corpus dataset information.

Field Name Comments Type

event_startTime The time when the complainant initiated the complaint Date
event_endTime Completion time of processing by relevant departments Date

event_title Complaint event name Natural language
event_content Complaint event detail Natural language

reply_department Department for dealing with complaint event Natural language
event_result Result Natural language

4.2. Data Preprocessing

Due to environmental factors, the data collection phase may encounter issues such as
equipment malfunctions and transmission errors, leading to outliers and missing values.
To maintain the continuity and integrity of the analysis, during the data preprocessing
stage, this study employs linear interpolation to fill short-term missing values observed
at some monitoring stations, while long-term missing values were addressed through
multiple imputations.

Furthermore, considering the third law of geography, which suggests that similar
geographic environments result in similar geographic features, analyzing the similarity and
spatial association patterns among air quality data from monitoring stations can improve
the quality of the air quality anomaly detection dataset and further optimize the effective-
ness of air quality anomaly detection. In this study, POI (Points of Interest) data for the
research area were obtained through Baidu’s open API interface. POI data include various
geographic entities such as commercial areas, cultural facilities, and transportation hubs.
Subsequently, hierarchical clustering was employed to cluster all stations spatially. The
hierarchical clustering method constructs a hierarchical tree structure to combine spatially
adjacent and similar stations into clusters. This method does not require predefining the
number of clusters, thus enabling the exploration of potential geographical patterns within
the research area without prior knowledge. Analyzing the clustering results can help
understand the geographic relationships among stations and thereby identify datasets with
similar features for experimentation.

Using the hierarchical clustering method, all 95 monitoring stations were clustered,
resulting in four different clusters. Combined with POI data, the visualization of the clusters
is shown in Figure 3. Research reveals that stations in Cluster 1 and Cluster 3 are located in
the city center with dense building facilities, including prominent urban structures such
as commercial buildings, cultural institutions, and shopping centers. Stations in Cluster
2 are situated in peripheral areas, surrounded mainly by schools and parks. Stations in
Cluster 4 are located in comprehensive areas, surrounded by various activity facilities.
After clustering, four clusters of air quality monitoring datasets were obtained at the station
level. Considering data quality and the direction of subsequent research, stations in Cluster
1 were selected as the experimental baseline data.

For the anomaly detection criterion, this study employs a statistical method known as
the Interquartile Range (IQR), which measures the variability of data by dividing the dataset
into quartiles. Specifically, 1.5 times the IQR was used as the threshold for identifying
outliers in air quality data. Any data point exceeding 1.5 times the IQR was labeled as an
anomaly. Additionally, based on actual complaints about air quality anomalies, manually
labeled data points that conformed to the criterion were reviewed and incorporated to
account for real-world scenarios. This method demonstrates advantages such as low



Mathematics 2024, 12, 2048 12 of 21

complexity, fast computation speed, minimal tuning effort, and suitable interpretability in
the experimental scenario of this study.

Following the methods described above, the processed original experimental dataset
is presented in the Tables 3 and 4 below.

Table 3. Original data set information.

Type Amount Anomaly/Normal Ratio

Features 11 —
Test data 68,803 0.10

Train data 126,163 0.10

Table 4. Data set information after resampling.

Method Amount Feature Dimension

ENN 123,496 11
ABSMOTE 257,904 11

RSDS 43,800 11

4.3. Evaluation Metrics

Precision is the most commonly used criterion for evaluating deep learning anomaly
detection models. However, since anomaly detection tasks are aimed at learning from
imbalanced data, using precision alone cannot effectively reflect the overall performance
and results of the model in identifying anomalies in the entire dataset. To meet the practical
needs of anomaly detection, precision (p-value), recall (R-value), and the harmonic mean
of precision and recall (F1-value) are further adopted as evaluation metrics. Among these
three metrics, anomaly detection focuses on the F1-value, where a higher value indicates
better performance of the model. Table 5 presents the confusion matrix for air quality
anomaly detection, where True Positive (TP) indicates the number of anomalous data
points predicted as anomalous air quality, False Positive (FP) indicates the number of
normal data points predicted as anomalous air quality, False Negative (FN) indicates the
number of anomalous data points predicted as normal air quality, and True Negative (TN)
indicates the number of normal data points predicted as normal air quality.

Table 5. Confusion matrix.

Actual Outlier Actual Normal Point

Predicted outlier True Positive (TP) False Positive (FP)
Predicted normal False Negative (FN) True Negative (TN)

Combining the definitions from the confusion matrix, the evaluation metrics used
in this study, including precision (P), recall (R), and F1-score (F1), are represented by the
following formulas:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 − score =
2 × Precision × Recall

Precision + Recall
(15)

Furthermore, to better assess the model’s performance, the ROC-AUC curve is in-
cluded. It plots the True Positive Rate (TPR) against the False Positive Rate (FPR) as
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coordinates to depict the classifier’s performance at different thresholds. The formulas for
TPR and FPR are as follows:

TPR =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

AUC (Area Under the ROC Curve) is the area under the ROC curve, used to measure
the performance of a classifier. The closer the AUC value is to 1, the better the classifier’s per-
formance; conversely, the closer the AUC value is to 0, the worse the classifier’s performance.

In summary, the ROC curve and AUC value are two important indicators used to
evaluate the performance of binary classification models. Through the ROC curve, we can
intuitively understand the performance of the classifier at different thresholds, while through
the AUC value, we can quantitatively evaluate the overall performance of the classifier.

4.4. Results
4.4.1. Baselines

In this study, we evaluate several representative baseline models, including Omni-
Anomaly [40], Deep-SVDD [41], and THOC [42], based on the DSRS-AAT model. Addi-
tionally, we compare two different sampling methods: undersampling, represented by
ENN, and oversampling, represented by ABSMOTE [43]. All of the baseline models above
take default parameters and can be implemented in the sklearn library or in the GitHub
link given in the citation study. Through these comparative experiments, our aim was to
demonstrate the superiority of the proposed method in anomaly detection tasks.

According to the results in Table 6, it can be observed that our proposed method achieved
the best performance under the widely used F1-score metric. Without balancing processing,
the F1-score of this model was, on average, 22% higher than that of the baseline models. After
applying the imbalance processing method proposed in this study, the performance of each
baseline model improved by approximately 22% on average. Overall, our method improves
the performance by approximately 20% in the task of air quality anomaly detection.

Table 6. Main results.

Method None ENN ABSMOTE RSDS

Metrics P R F1 P R F1 P R F1 P R F1

AAT 81.12 40.91 54.39 80.96 42.09 55.38 79.39 38.78 51.57 85.64 53.35 65.69

Deep-SVDD 69.46 31.08 46.32 65.34 33.61 47.16 67.06 33.45 44.36 72.26 43.89 53.56

Isolation Forest 72.29 34.16 48.28 65.7 27.08 38.35 40.85 20.98 27.66 50.85 75.7 60.95

BeatGAN 62.18 33.04 46.07 63.86 31.14 45.89 60.46 30.29 42.16 75.61 37.16 51.06

LOF 67.41 30.6 43.86 66.37 29.06 42.15 66.78 31 42.56 68.15 30.15 44.16

LSTM-VAE 68.24 30.95 45.89 67.78 29.16 43.49 63.71 30.46 40.03 82.16 39.45 53.17

OCSVM 14.8 77.51 24.85 14.89 77.95 25 12.37 66.16 20.85 16.41 89.64 27.74

OmniAnomaly 78.01 34.01 49.78 72.56 31.05 49.02 72.59 37.23 50.54 79.16 48.26 61.26

CL-MPPCA 65.61 30.17 46.16 74.89 34.64 48.76 65.02 35.26 45.87 77.82 40.23 54.06

THOC 79.81 36.46 50.67 79.01 37.59 50.43 72.01 38.16 51.26 78.16 46.16 60.16

Furthermore, data analysis shows that traditional random processing methods such as
ENN and ABSMOTE did not perform well on time series data tasks. These methods did not
significantly improve the overall performance of the task and may even disrupt sequence
features, leading to performance degradation in some cases. This further highlights the
advantage of DSRS in addressing the imbalance problem in time series data. In the subsequent
ablation experiment section, we will further support this conclusion with experimental results.

In the Figure 4, the height of the bars represents the F1-score values obtained from the
experimental results for the respective methods after their integration with the model. A
higher bar indicates a better performance, as demonstrated by the model.
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The Receiver Operating Characteristic Curve (ROC curve) is a graphical tool that
illustrates the performance of a classifier, showing the relationship between the True
Positive Rate (TPR) and the False Positive Rate (FPR) of the classifier at different thresholds.
The Area Under the Curve (AUC) value represents the area under the ROC curve, which
is used to measure the performance of the classifier. A higher AUC value, closer to 1,
indicates better classifier performance, while a lower AUC value, closer to 0, indicates
poorer classifier performance. The gray dashed line in the graph represents an AUC value
of 0.5, indicating a random classifier. It can be observed that under the DSRS method
proposed in this study, the classifier’s performance has significantly improved (Figure 5).
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4.4.2. Ablation Study

To gain deeper insights into the impact of the core components of our proposed
method on the experimental results, we conduct a series of comparative experiments.
As shown in the table below, by introducing the sequence association mechanism, the
model’s performance improved from 54.39 to 65.69, indicating that the sequence association
mechanism played a crucial role in capturing the sequential relationships in the time series
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data. Building upon the association attention mechanism in Transformer (AAT), we apply
the DSRS method to rebalance the experimental data, which significantly enhances the
model’s performance. Compared to other rebalancing methods, DSRS demonstrated
superior performance in this experiment, demonstrating its effectiveness in addressing
the imbalance issue in time series data. Regarding the selection of the kernel function
for prior association, we compare the learnable power kernel function and the Gaussian
kernel function. Although the power kernel function also achieves satisfactory results, the
parameters of the Gaussian kernel function were easier to optimize and exhibited better
performance in the experiment. For the statistical distance representing the loss function,
we compare the L2 distance and the Jensen–Shannon divergence (JSD). The experimental
results indicate that the L2 distance was not well suited for anomaly detection tasks,
while JSD achieves better results, suggesting that JSD was more effective in measuring the
distribution differences in time series data (Table 7).

Table 7. Ablation study result.

Architecture Imbalanced
Method

Prior
Association Loss Distance Avg F1-Score

(%)

Transformer DSRS × × 50.62

Ours

None Gaussian KL 54.39

DSRS

Fix KL 50.16

Power KL 62.01

Gaussian
L2 38.26

JSD 62.78

KL 65.69

4.4.3. Anomaly Traceability Analysis

Existing research on air quality anomaly detection often struggles to balance the need
for real-world contextual analysis with high precision on datasets, lacking interpretability in
the results and requiring verification of the credibility of anomaly detection outcomes. This
study further conducts a spatiotemporal analysis of pollution based on the actual air quality
data of Meilan District in Haikou City, leveraging the experimental results of air quality
anomaly detection. We match the pollution complaint corpus information spatiotemporally
to achieve traceability in air quality anomaly detection, thereby expanding the continuity
of anomaly detection tasks and enhancing their impact on real-world scenarios.

In this section, we analyze the complaint corpus dataset described above and intro-
duce their spatiotemporal characteristics to match the results of anomaly detection. Spatial
analysis of the latitude and longitude information in complaint corpus data can assist in
verifying the effectiveness of the anomaly detection results in this study, further demon-
strating the superiority of the proposed method. By matching the feedback of these two
types of anomalies, we can attribute air pollution sources to both anthropogenic pollution
and natural meteorological changes to some extent, aiding in optimizing the layout of air
quality monitoring and improving the efficiency of environmental governance tasks by
government departments.

We utilize reverse geocoding to restore the extracted geographical location information
to latitude and longitude coordinates and visualize the geographical information in the
pollution complaint data. Figure 6 illustrates the spatial distribution characteristics of the
complaint corpus information using a heatmap. The results indicate that complaints are
mainly concentrated in the comprehensive areas where residents are active, which is highly
consistent with the selection of clustering sites in our experiments. This finding not only
demonstrates the rationality and practical value of our selected site group in reflecting
residents’ concerns about air quality but also further validates the effectiveness of the site
selection method.



Mathematics 2024, 12, 2048 16 of 21Mathematics 2024, 12, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 6. Spatial heat map of complaint corpus. 

To analyze the performance and results of anomaly detection from a perspective dif-

ferent from traditional numerical analysis, this section compares the data from air moni-

toring stations in Haikou City with the addresses and pollutant information extracted in 

this study. We select the nearby area within one kilometer. Since the Earth is a sphere, 

calculations need to be performed using curved formulas. In this case, we use the Haver-

sine formula to calculate the corresponding latitude changes within one kilometer, com-

bined with the latitude and longitude coordinates of Haikou City (110.198, 20.044). Ac-

cording to this formula, the conversion formulas for latitude and longitude are as shown 

in Equations (12) and (13). The calculation of the longitude difference within one kilometer 

is as follows: 

𝛿𝑙𝑜𝑛 =
1

(6371 km)/2𝜋
≈ 0.008983° (18) 

The calculation for latitude difference is as follows: 

𝛿𝑙𝑎𝑡 =
1

((6371 km)/2𝜋)cos(20.044°)
≈ 0.011406° (19) 

Therefore, this study selects stations with latitude and longitude deviations between 

0.008983 and 0.011406 for the analysis of anomalies. Here, the analysis is conducted on the 

data of station CEG41930016 on 29 December. This station is located at the intersection of 

Wenming East Road and Meiyuan Road, under the street lamp at Banqiao Seafood Plaza 

Wenming East Branch, with coordinates (110.371013, 20.037951). Specific geographic in-

formation is shown in the Figure 7. 

Figure 6. Spatial heat map of complaint corpus.

To analyze the performance and results of anomaly detection from a perspective differ-
ent from traditional numerical analysis, this section compares the data from air monitoring
stations in Haikou City with the addresses and pollutant information extracted in this study.
We select the nearby area within one kilometer. Since the Earth is a sphere, calculations
need to be performed using curved formulas. In this case, we use the Haversine formula to
calculate the corresponding latitude changes within one kilometer, combined with the lati-
tude and longitude coordinates of Haikou City (110.198, 20.044). According to this formula,
the conversion formulas for latitude and longitude are as shown in Equations (12) and (13).
The calculation of the longitude difference within one kilometer is as follows:

δlon =
1

(6371 km)/2π
≈ 0.008983◦ (18)

The calculation for latitude difference is as follows:

δlat =
1

((6371 km)/2π)cos(20.044◦)
≈ 0.011406◦ (19)

Therefore, this study selects stations with latitude and longitude deviations between
0.008983 and 0.011406 for the analysis of anomalies. Here, the analysis is conducted on the
data of station CEG41930016 on 29 December. This station is located at the intersection
of Wenming East Road and Meiyuan Road, under the street lamp at Banqiao Seafood
Plaza Wenming East Branch, with coordinates (110.371013, 20.037951). Specific geographic
information is shown in the Figure 7.

By querying the map information, it is found that the distance between the two points
is approximately 800 m, which meets the proximity principle of the station.

To trace the anomalies and demonstrate the association, the Figure 8 shows a segment
of air quality time series data after 17:00 on that day.

From the Figure 8, it is evident that the air quality data sharply rose after 18:00 on
that day, surpassing the anomaly baseline after 20:00, which was detected as an anomaly.
However, the meteorological data shown in Figure 9 indicate that during this period,
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variables such as air pressure, wind speed, and temperature did not exhibit significant
fluctuations. Therefore, it can be ruled out that the air quality anomaly was caused by
meteorological changes.
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Figure 8. Complain about air quality data during the time of the incident.

Based on the provided information, “A resident complains of a gas leak at the Witte
Cable Yard next to Phase II Blue Water Bay in Meilan”, it was discovered that at 18:37 on
the same day, a resident complained of a “gas leak” smell near the “Weite Cable Yard”
next to “Lanshuibay Phase II” in Meilan District. Due to the similarity in timing between
the incident and the detection, it was revealed by professionals during an inspection at
19:20 that it was the “gear oil odor” from the construction site rather than a gas leak. It is
speculated that the volatile chemical substances in the gear oil evaporated and, combined
with the air, caused a rapid increase in ozone in the air, thereby affecting the overall air qual-
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ity. Furthermore, considering the subsequent decrease in data and no further complaints,
it further confirms this sudden pollution caused by gear oil. This also demonstrates the
comprehensiveness and accuracy of our air quality anomaly detection work. Not only can it
accurately capture human-induced air pollution, but it also provides an additional channel
for tracing complaints from residents, thereby adding value to improving air quality and
meeting the needs of the people.
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5. Discussion
5.1. The Advantages of Proposed Work

The anomaly detection method proposed in this study has demonstrated its superiority
across various experiments on real-world data. Our approach achieved the best results
on three different methods and nine baseline model conditions. This approach, which
addresses the issue of class imbalance in time series datasets for anomaly detection tasks,
is a novel perspective to enhance detection performance. It offers a new entry point for
research in anomaly detection, not limited to incremental improvements within different
model architectures.

In addition, the association difference adopted in this paper can effectively amplify
and identify the different performance patterns of abnormal points and normal points,
thereby improving the detection effect. The new introduction of sequence associations
enables architectures based on the Transformer model to be used in tasks dealing with time
series data.

This integrated method can provide more inspiration for our subsequent studies. The
method presented in this study also awaits validation on other types of time series datasets,
with the hope of generalizing this approach to universal time series anomaly detection tasks.

5.2. Limitations in Experiment Settings

Despite the promising results demonstrated by the experiments, this study still has
certain limitations. A significant amount of effort was devoted to processing the dataset,
striving to maximize the distinction between anomalous and normal patterns without
compromising the temporal features. However, our dataset is not yet robust enough, which
remains a challenging issue that urgently needs to be addressed in time series anomaly
detection tasks. In view of the above problems, we will continue to collect more relevant
data to make up for potential problems.
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In comparison experiments with baseline models, the parameter setting process also
requires further optimization. The lack of systematic verification could potentially lead to
unexpected outcomes in experiments. Moreover, we also only conduct experiments on the
air quality anomaly detection task data set in this paper, lacking the ablation comparison of
multiple categories of data. In future work, we will try to use systematic tuning methods
such as optimization algorithms to ensure the rationality of our parameter settings and
avoid potential overfitting problems.

Subsequently, we also hope to enrich the evaluation index system to more effectively
prove the advantages of our method. Because a single F1-score cannot be used as a complete
performance index of the anomaly detection model, this point needs to be further explored
and studied.

6. Conclusions

In this study, we utilize air quality data and meteorological data from 95 observation
sites in Meilan District, Hainan Province, which constituted multidimensional time series
data sequences, laying the foundation for dataset construction. Based on the third law
of geography, we employ spatial clustering methods to associate data with similar envi-
ronmental characteristics to enhance the quality of the dataset. To address the issue of
imbalanced distribution of data in anomaly detection tasks, we propose the Deep Smooth
Random Sampling (DSRS) method to resample existing datasets, which aims to alleviate
the impact of data imbalance on the final results of anomaly detection tasks. Then, we
integrate the Transformer model with the introduced association attention mechanism to
magnify the difference between abnormal and normal patterns.

Under the above fusion method, the influence of data set imbalance on anomaly detec-
tion is successfully mitigated. In the comparison experiment with multiple baseline models
and imbalance processing methods, the comprehensive performance of our method on real
data sets is improved by about 20%, which is a relatively comprehensive improvement.
In the future, we plan to explore a more robust evaluation index system to enrich the
demonstration of the superiority of our method and strive to test it on air quality datasets
from different regions under various circumstances.
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