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Abstract: Clustering data streams has become a hot topic and has been extensively applied to
many real-world applications. Compared with traditional clustering, data stream clustering is more
challenging. Adaptive Resonance Theory (ART) is a powerful (online) clustering method, it can
automatically adjust to learn both abstract and concrete information, and can respond to arbitrarily
large non-stationary databases while having fewer parameters, low computational complexity, and
less sensitivity to noise, but its limited feature representation hinders its application to complex data
streams. In this paper, considering its advantages and disadvantages, we present its flexible extension
for stream clustering, called fractional adaptive resonance theory (FRA-ART). FRA-ART enhances
data representation by fractionally exponentiating input features using self-interactive basis functions
(SIBFs) and incorporating feature interaction through cross-interactive basis functions (CIBFs) at
the cost only of introducing an additionally adjustable fractional order. Both SIBFs and CIBFs can
be precomputed using existing algorithms, making FRA-ART easily adaptable to any ART variant.
Finally, comparative experiments on five data stream datasets, including artificial and real-world
datasets, demonstrate FRA-ART’s superior robustness and comparable or improved performance
in terms of accuracy, normalized mutual information, rand index, and cluster stability compared to
ART and the state-of-the-art G-Stream algorithm.

Keywords: data stream clustering; fractional order; adaptive resonance theory; interactive basis
functions; self-interactive; cross-interactive

MSC: 68W27

1. Introduction

The number of interconnected devices, including sensors, is steadily increasing and
these devices continuously produce massive amounts of data streams at high speed [1,2].
A data stream is an ordered, unbounded sequence of data. Throughout its lifetime, it
frequently undergoes rapid changes, necessitating fast and time-aware tools for analy-
sis. Mining data streams [3–14] has become a hot issue in data analysis, including data
stream clustering, data stream classification, etc. Among these, clustering data streams
has been extensively applied to many applications, including network intrusion detection,
healthcare monitoring, stock market analysis, Internet of Things device tracking, fraud
detection, customer segmentation, and environmental surveillance. Traditional clustering
methods are performed on a static dataset, whereas data stream clustering is subject to
certain constraints, such as single-pass, real-time response, bounded memory, and the
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ability to detect concept drift, due to the dynamic nature of data streams. To tackle these
challenges, the first approach that comes to mind is to adapt traditional clustering methods
to handle data streams. As a result, numerous data stream clustering methods have been
developed including partitioning methods (STREAM [15], streamKM++ [16], streamingK-
Means [17], Adaptive Streaming k-Means [17], FEAC-Stream [18]), hierarchical methods
(E-Stream [19], SWClustering [20], ClusTree [21]), density-based methods (incPreDecon [22],
OPTICS-Stream [23], DenStream [24], CEDAS [25], DBStream [26], Improved Data Stream
Clustering Algorithm [27], ACSC [28]), grid-based methods (MR-Stream [29], D-Stream [30],
MuDi-Stream [31]), and model-based methods (GCPSOM [32], G-Stream [33], SWEM [34],
RPGStream [35]). Table 1 provides a summary of the discussed stream clustering methods
based on the following criteria: (1) the category to which it belongs, (2) the computational
method used (two-phase learning or online learning), (3) the adaptivity of the number of
clusters k, (4) the recognizability of the topological structure, (5) the detectability of concept
drift, and (6) the adaptability to high-dimensional data.

Table 1. Comparison of different data stream clustering algorithms.

Algorithms Category Online Adaptivity Topology Detectability High-Dimensional

STREAM partitioning ✓ × × × ×
streamKM++ partitioning × × × × ×

streamingKMeans partitioning ✓ ✓ × ✓ ✓
Adaptive Streaming k-Means partitioning ✓ ✓ × ✓ ✓

FEAC-Stream partitioning ✓ ✓ × ✓ ✓
E-Stream hierarchical × ✓ × ✓ ×

SWClustering hierarchical × ✓ × ✓ ×
ClusTree hierarchical × ✓ × ✓ ×

OPTICS-Stream density × ✓ × ✓ ×
DenStream density × ✓ × ✓ ×

incPreDecon density ✓ ✓ × × ✓
CEDAS density ✓ ✓ × ✓ ✓

DBStream density × ✓ × ✓ ✓
IDS density × ✓ × ✓ ✓

ACSC density ✓ ✓ × ✓ ×
MR-Stream grid × ✓ × ✓ ×
D-Stream grid × ✓ × ✓ ×

MuDi-Stream grid × ✓ × ✓ ×
G-Stream model ✓ ✓ ✓ ✓ ×
GCPSOM model ✓ ✓ ✓ ✓ ×

SWEM model ✓ ✓ × ✓ ×
RPGStream model ✓ ✓ ✓ ✓ ✓

From Table 1, it is evident that, despite the numerous clustering methods proposed,
model-based algorithms are often the most promising and practical choice for handling
constraints on streaming data, such as bounded memory, real-time response, and single-
pass in general. GCPSOM [32], G-Stream [33], SWEM [34], and RPGStream [35] are all
model-based algorithms. They are all capable of handling concept drift. Although these
algorithms perform a single pass operation, they do not require the number of clusters to be
specified in advance, and can identify clusters of arbitrary shapes, as well as representing
the data structure through a graph. Unfortunately, they have many parameters to be tuned.
In order to cope with this challenge, our aim is to develop a stream clustering algorithm
that is user-friendly and straightforward to implement, while having fewer parameters.

Adaptive Resonance Theory (ART) [36] is considered to be the most advanced cog-
nitive and neural theory in an ever-changing world. It is even capable of learning a data
stream in one learning trial. The concept of vigilance control has been proposed as a means
to adjust the generality of categories in ART. The advantages of ART are its fast speed
to deal with data and the fewer iterations that are required to converge, thus naturally
explaining the fact that ART is particularly suitable for handling large streaming datasets
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that cannot be stored in memory as a whole. Consequently, ART is particularly well suited
for incremental on-line learning, and has been widely utilized in a variety of clustering ap-
proaches found in the literature. For example, ART1 [37] published in 1987 is a pioneering
work, while other well-known extensions including ART2 [38], ART2-A [39], ART3 [40],
Fuzzy ART [41], Gaussian ART [42], Hypersphere ART [43], TopoART [44], DDVFA [45],
and DVFA [46] have been proposed. Among them, Fuzzy ART is demonstrably the most
commonly used to date. It extends the capability of ART1 by incorporating computations
from fuzzy set theory. Typically, it uses complement coding to pre-process samples. The
authors of [47] demonstrate that, with complement coding, the vigilance parameter of a
cluster in Fuzzy ART forms a hyperoctagon region within the high-dimensional feature
space, known as a vigilance region (VR) and the clustering mechanism of Fuzzy ART is
significantly changed. SA-ART [48] extends Fuzzy ART and provides a new strategy for
modeling significant clustering features. Although ART has been greatly improved, it is
still not flexible enough, and can not yield more useful features for clustering. To overcome
these shortcomings, firstly, we find that using fractional order on a single variable can make
its value larger and still fall between 0 and 1. So a fractionally self-interactive approch can
be combined with Fuzzy ART to make it more flexible. Secondly, since feature interaction
information can help enhance data representation, it is natural for us to extend the single
variable to bivariate or multivariate [49]. Thus, fractionally cross-interactive base functions
are introduced. Considering the above motivation, while keeping ART’s advantages and
adapting it to a data stream mining scenario, the aim of this study is to present a novel
data stream clustering method based on ART that leverages fractional order information
and interactive basis functions to enhance flexibility, data representation, and clustering
performance. To summarize, the contributions of this paper are three-fold:

(1) Presenting a novel ART-based data stream clustering method in which we introduce
the fractional order information into ART to make it more flexible and further promote
the ability of data representation.

(2) Extending a Fuzzy ART utilizing novel method for creating flexible decision bound-
aries through the use of fractionally self-interactive or cross-interactive basis functions
(SIBFs or CIBFs). Note our work is the first attempt to employ the interactive basis
function for the data stream clustering problem. Furthermore, non-linear partitions
can also be achieved based on the selected basis functions.

(3) Proposed SIBFs and CIBFs can be precomputed once independently and then used
as an input to any variants of the ART with additional low complexity. As only the
inputs to the algorithm vary, this suggests that basis functions can be utilized in
numerous existing implementations of ART.

The remaining sections of this paper are organized as follows: Section 2 reviews
related work, Section 3 introduces the FRA-ART model (the main contribution of this
work), Section 4 presents the experimental results, and Section 6 concludes the paper.

2. Related Works
2.1. Elementary Frameworks of ART Models

The elementary ART models serve as a robust foundation for constructing intricate
ART-based systems, enabling them to execute all three types of machine learning models,
including unsupervised learning, supervised learning, and reinforcement learning [50].
The fundamental structure of the elementary ART model (Figure 1), comprises an input
field F1 for receiving input patterns and a cluster field F2 for organizing these patterns.
The generic network is described as follows.

• Input filed F1: this is the input layer. The output y(F1) of this layer propagates the input
samples x ∈ Rd to the F2 layer through the bottom-up long-term memory units (LTMs)
θbu. The comparison layer F1 compares the input sample x with the F2’s expectation
and then sends the outcome y(F1) to the orienting subsystem.
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• Category field F2: this is the competitive layer. The network output y(F2) (short-term
memory units) is yielded in this layer. The LTM related to category j is θj = {θbu

j , θtd
j },

j = 1, . . . , N, where θ indicates the LTM of a given category.
• Orienting subsystem: this subsystem controls the learning and search mechanisms by

inhibiting and permitting categories to resonate.

F1 1 2 3 4 d

F2 1 2 3 4 N5 6

STM

STMLTM LTM

y(F2)

y(F1)
𝜃bu 𝜃td

x

𝜌
STM

y(F1)

Attentional

Subsystem

Orienting

Subsystem

Reset/Resonance

Figure 1. The fundamental structure of the ART model.

ART models are dynamic, self-organizing, modular and competitive networks. In gen-
eral, each category represents a hypothesis. Since a new sample x is coming, the neuron J
that maximizes the model’s activation function T for this sample is selected

J = arg max
j

(Tj). (1)

And a vigilance test is next required to evaluate the sufficiency of the chosen category,
that is, the winner category must fulfill a match function. If the value of this test is greater
than the vigilance parameter ρ, a resonance occurs, and learning is then permitted. Or else,
category J is inhibited, the next winner is chosen among the rest of the categories in the
category field, and the search continues. Finally, if no winner meets the necessary resonance
condition (s), then a new category is generated. Note that the parameter ρ controls the
network granularity.

A vigilance region (VR) of a given network category j can be denoted as:

VRj = {x : Mj(x) satis f ies the resonance criteria}, (2)

where Mj is the match function. It is the region encompassing all points where the resonance
criteria are fulfilled. Thus, it can be modeled for the sample which satisfies (or not) the
vigilance test using

1VRj(x) =

{
1 i f x ∈ VRj,

0 otherwise,
(3)

where 1(·)(·) is the indicator function.

2.2. Fuzzy ART

Fuzzy ART, as the foundational model studied in this paper, is demonstrably the
most commonly used ART model so far. Let x denote the input sample in the input
field F1. Specifically, let x = (x1, . . . , xd), where xi ∈ [0, 1] for each index i = 1, . . . , d.
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With complement coding, the original input dimension is doubled while maintaining a
constant norm by applying the transformation (x ← [x, 1− x]):

∥x∥1 =
2d

∑
i=1

xi =
d

∑
i=1

(1− xi) +
d

∑
i=1

xi = d. (4)

LTM. The LTM unit in each category is represented by a weight vector θ = w. By ap-
plying complement coding, the weight vector can be further decomposed as w = [u, vc],
where u represents the lower left corner of the feature range and vc represents the upper
right corner.

Activation. The activity (or choice) function for the jth cluster is defined as:

Tj =
∥x ∧ wj∥1

α + ∥wj∥1
, (5)

where the component-wise fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi, qi),
and α > 0 is the choice parameter which can be considered as a regularization parameter
and is related to the system’s complexity. The activity function evaluates the fuzzy subset-
hood degree of wj in x and leans towards smaller categories. When the winner node J is
selected via the WTA (winner-takes-all) competition, the F2 activity becomes

y(F2)
j =

{
1, i f j = J,

0, otherwise.
(6)

Moreover, the F1 activity follows:

y(F1) =

{
x, i f F2 is inactive,

x ∧ wj, otherwise.
(7)

Match and resonance. The similarity between the winner category J and the input
sample x is assessed through a match function, which is formulated as follows:

MJ =
∥y(F1)∥1

∥x∥1
=
∥x ∧ wJ∥1

∥x∥1
, (8)

where ρ is the vigilance parameter, and ρ ∈ [0, 1], VRJ = {x : MJ(x) ≥ ρ}. Like the activity
function (Equation (5)), the match function also evaluates the fuzzy subsethood degree,
particularly of x in wJ . If learning takes place, the updated category will not exceed the
maximum allowed size. Specifically, the category j’s size is defined to be

Rj =
d

∑
i=1

[(1− wj,d+i)− wj,i] = d− ∥wj∥1, (9)

which is equal to the height plus the width of Rj. Learning increases the size of each Rj.
The vigilance criterion specifies the upper bound of the size of the category represented by
the vigilance parameter ρ

RJ ⊕ x ≤ d(1− ρ), (10)

where RJ ⊕ x stands for the smallest hyperrectangle that can contain the input sample x and
RJ . Thus, high vigilance (ρ ≃ 1) again leads to small RJ while low vigilance (ρ ≃ 0) permits
large RJ . In a fast-learn Fuzzy ART, if j is an uncommitted category, wj = x = (a, ac),
and ∥wj∥ = 2d, the corners of Rj are then given by a and (ac)c = a. Hence, Rj is just the
point a, and so, Rj = −d.

Learning. If the vigilance test of the current winning category does not pass, it will
be inhibited, and we need to select a new winner from the rest of categories. If no winner
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satisfies the vigilance criteria, a new category will be generated to encode the presented
input sample. When category J satisfies the vigilance criterion, its corresponding weight
vector will be updated through a learning function, which is specified as follows:

w(new)
J = (1− β)w(old)

J + β(x ∧ w(old)
J ), (11)

where β ∈ (0, 1] is the learning parameter, and the fast learning mode requires β = 1.

3. The Fractional ART Model for Data Stream Clustering
3.1. Self-Interactive and Cross-Interactive Basis Functions (SIBFs and CIBFs)
3.1.1. Self-Interactive Basis Functions (SIBFs)

In this section, we detail self-interactive basis functions [49]. The basic vectors are
constituted by the features used for training. Two features form a 2D basis, and so on.
Then, a self-interactive basis function is a transformation, which can be denoted as:

f (X) = X (12)

which is a specific instance of a polynomial function, with a = 1:

f (X) = Xa (13)

f (X) = (1− X)a (14)

Furthermore, we can define other basis functions, such as the exponential function:

f (X) = eX (15)

Let us consider the general scenario where K real-valued functions fi with i = 1, . . . , K,
each defined onR→ R, are available as candidate basis functions. And note that { f1, f2, . . . , fK}
are a set of basis functions. Subsequently, we expand the original set of d features by in-
corporating T new features, which are generated through the application of the candidate
basis functions:

X∗ = (X1, . . . , Xd, Xd+1, . . . , Xd+T) (16)

where X∗ ∈ Rd+T , and Xd+i = fsi (Xji ), for i = 1, . . . , T, ji ∈ {1, . . . , d} and si ∈ {1, . . . , K}.
As an example, when the number of dimensions is d = 2, that is, the feature space
consists of two dimensions, represented by X = {X1, X2}. Moreover, K = 1 and T = 1
with f1(x) = x2, thus X∗ = {X1, X2, X3 = X2

1}. Whenever a split s in X3 is selected
by the partitioning mechanism, it is projected in X as X1 =

√
X3, which is a constant.

Therefore, any partitioning of the basis function dimensionality is equivalent to discovering
an orthogonal decision boundary in the original basis.

3.1.2. Cross-Interactive Basis Functions (CIBFs)

Our proposed approach involves utilizing the inter-feature interactions between two or
more features to construct X∗. These interactions are different from self-interactive, and can
be identified by a set of M functions. These functions reproduce functional interactions
among the transformations of the features by the basis functions. Hence, cross-interactive
basis functions are defined as:

gi : RdK → R ( f1(X1), f2(X2) . . . , fK(Xd))→ b (17)

We define X∗ = (X1, . . . , Xd, Xd+1, . . . , Xd+M), with Xd+i = gi( f1(X1), f2(X2) . . . , fK(Xd)),
for i = 1, . . . , M. Thus, by taking the interactions among the features into account,
an oblique partition will be provided, which may also eventually become non-linear.
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For example, when d = 2, that is X = {X1, X2}, K = 1 with f1(x) = x, M = 1 with
g1( f1(X1), f1(X2)) = f1(X1) + f1(X2) = X1 + X2 and X∗ = (X1, X2, X3), we achieve that
the projection of X3 = s on the original basis plane as X2 = s− X1, thereby providing an
oblique partition.

Note that the framework offered by CIBFs not only enables us to acquire oblique
partitions, but also permits us to achieve non-linear decision boundaries. This is accom-
plished by the projection of the equation gi( f1(X1), f1(X2) . . . , fK(Xd)) = b in the subspace
X = {X1, X2, . . . , Xd} spanned by the features in the dataset. For instance, the CIBF
g1( f1(X1), f1(X2)) = f1(X1) f1(X2) with f1(x) = x leads to X1X2. When X1X2 = s is fixed
by a split s and, therefore, X2 = s/X1, thus a hyperbolic partition is generated. As one
other example, the CIBF g1( f1(X1), f1(X2)) = f1(X1) + f1(X2) with f1(x) = x2 leads to
X2

1 + X2
2 . When X2

1 + X2
2 = s is fixed by a split s in the dimension of CIBF, and, therefore,

X2 =
√

s− X2
1 , thus a radial partition is created.

3.2. The FRA-ART Algorithm

In this section, we present a novel unsupervised self-organizing incremental neural
network, called fractional adaptive resonance theory (FRA-ART), to cluster data streams.
The intuition is that by a fractional order conversion of the raw input features, we induce a
single hyperparameter but make the FRA-ART more flexible and can further promote the
ability of data representation.

We assume that we have a data stream consisting of a sequence DS = {x1, x2, . . .}
of n (potentially infinite) data arriving in times t1, t2, . . ., where xi = (x1

i , x2
i , . . . , xd

i ) is an
original vector in the Rd space. The FRA-ART algorithm extends Fuzzy ART with a new
strategy through the use of fractionally self-interactive or cross-interactive basis functions
(SIBFs or CIBFs). Our objective is to assess how these SIBFs or CIBFs perform in FRA-ART.
When a sample x = (x1, x2, . . . , xd) is coming, note that each feature is normalized in [0, 1].
In terms of the SIBFs and CIBFs, We expand the set of d features with d new features:

x∗ = (x1, x2, . . . , xd, xd+1, xd+2, . . . , x2d) (18)

where x∗ ∈ R2d, xd+j = fp(xj), p ∈ {1, . . . , K} when used SIBFs and xd+j = g1( f1(x1),
f2(x2),. . . , fK(xd)) when used CIBFs. We consider the following functions:

f1(xj) = (xj)a (19)

f2(xj) = (1− xj)a (20)

f3(xj) = (exj
)a (21)

xd+j = g1( f1(x1), f2(x2), . . . , fK(xd)) = max min
m∈[1,d] m ̸=j

( f1(xj), f1(xm)) (22)

xd+j = g2( f1(x1), f2(x2), . . . , fK(xd)) =
d

∑
m=1,m ̸=j

( f1(xj) f1(xm))/(d− 1) (23)

where a is a fractional order.
As a new data point xi arrives, the proposed FRA-ART firstly uses IBFs (SIBFs or

CIBFs) to expand the set of d features with d new features. Therefore, the data stream
DS = {x1, x2, . . .} is transformed to X∗ = {x∗1 , x∗2 , . . .} one-by-one, x∗i ∈ [0, 1](i = 1, 2, . . .).
By using complement coding, x∗i and x∗i , where x∗i = 1− x∗i , results in the vector I = (x∗i , x∗i ).
Then, we use Fuzzy ART to cluster this transformed data stream. The specific procedure is
shown in Algorithm 1 and Figure 2.
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Algorithm 1 FRA-ART
Require: DS = {x1, x2, x3, . . .}.
Ensure: set of nodes C = {c1, c2, c3, . . .} and their prototypes W = {wc1 , wc2 , wc3 , . . .}.
1: for each input vector xi do
2: Compute x∗i using Equations (18)–(23);
3: Complement coding x∗i to I = (x∗i , x∗i ) ;
4: Compute activation function using Equation (5) to get the active nodes Ω (Ω ⊆ C) ;
5: Select winner node J: J = argj∈Ωmax(Tj);
6: Compute match function using Equation (8);
7: if MJ ≥ ρ then
8: Update category J using Equation (11);
9: else

10: Deactivate category J: Ω← Ω− J;
11: if Ω ̸= ∅ then
12: Go to step 5;
13: else
14: J = |C|+ 1;
15: Create new category: C ← C ∪ J.
16: Initialize new category: wJ = I.
17: end if
18: end if
19: end for

Figure 2. Flowchart of the FRA-ART algorithm.

3.3. Complexity Analysis

In this section, we discuss the time complexity of FRA-ART from two aspects: using
IBFs to expand the set of d features and extending the Fuzzy ART algorithm to cluster.
For the first case, the addition of SIBFs increases the computational complexity by O(nd),
while CIBFs further increase the complexity by O(nd2), where n is the number of samples,
and d is the number of features. For the second case, Fuzzy ART undergoes three procedures
including complement coding, activity function-based matching cluster identification, and
match function-based template matching, as well as prototype learning or the creation of
new clusters. The corresponding time complexities are O(d), O(kd), and O(d), where
k denotes the number of clusters and d denotes the number of features, respectively.
Consequently, the time complexity of Fuzzy ART is linear. Specifically, it can be expressed as
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O(ndk) [51]. Therefore, the overall complexity of FRA-ART is less than O(nd2) +O(ndk) =
O(nd(d + k)).

4. Experiments

In this section, we present the experimental evaluation of the FRA-ART algorithm.
We compare our algorithm with the stream clustering algorithm G-Stream and the Fuzzy
ART algorithm, which are all model-based stream clustering algorithms. The performance
of G-Stream has been shown to be better than that of many well-known data stream
clustering algorithms. As explained in Section 2, Fuzzy ART is demonstrably the most
commonly used ART model, and we use an online version of Fuzzy ART for data stream
clustering. The experiments were conducted on a PC with Core(TM) i5-3470 running at
3.20 GHz processors, and 16 GB of RAM, which runs the Windows 7 Professional operating
system, using the MATLAB platform.

4.1. Datasets and Parameters Setting

We evaluate the clustering quality and clustering scalability of the FRA algorithm
using not only artificial datasets but also real datasets, the details of which are given in
Tables 2 and 3 below.

Table 2. The details of five datasets.

Dataset Letter4 Kddcup99 CoverType Powersupply Sensor

#samples 9344 494,021 581,012 29,928 2,219,803
#features 2 41 54 2 5
#classes 7 23 7 24 54

• letter4: letter4 is an artificial dataset. It is generated by a Java Code (https://github.
com/feldob/Token-Cluster-Generator, accessed on 1 September 2023). It contains 7
classes and 9344 samples with 2 dimensions.

• Kddcup99 (http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data, accessed
on 1 September 2023): Kddcup99 stream is the dataset used in the KDD CUP challenge
held in 1999. It consists of 23 classes and 494,021 samples with 41 dimensions.

• CoverType (https://archive.ics.uci.edu/ml/datasets/Covertype, accessed on 1 Septem-
ber 2023): The vegetation coverage type dataset includes four wilderness areas in
northern Colorado, USA, located in the Roosevelt National Forest. The total number
of samples is 581,012, each with 54 features and 7 types.

• Powersupply (http://www.cse.fau.edu/~xqzhu/stream.html, accessed on 1 Septem-
ber 2023): Powersupply stream contains hourly power supply data of an Italian
electricity company which records the power from two sources: power supply from
the main grid and power transformed from other grids. This stream contains three-
year power supply records from 1995 to 1998. The concept drift in this stream mainly
comes from season, weather, hours of a day (e.g., morning and evening), and the differ-
ences between working days and weekends. It consists of 29,928 samples, 2 attributes,
and 24 classes.

• Sensor (http://www.cse.fau.edu/~xqzhu/stream.html, accessed on 1 September
2023): Sensor stream contains information (temperature, humidity, light, and sen-
sor voltage) collected from 54 sensors deployed in the Intel Berkeley Research Lab.
The whole stream contains consecutive information recorded over a 2-month period
(1 reading per 1–3 min). It consists of 2,219,803 samples, 5 attributes, and 54 classes.

https://github.com/feldob/Token-Cluster-Generator
https://github.com/feldob/Token-Cluster-Generator
http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
https://archive.ics.uci.edu/ml/datasets/Covertype
http://www.cse.fau.edu/~xqzhu/stream.html
http://www.cse.fau.edu/~xqzhu/stream.html
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Table 3. The parameters of the algorithms.

Dataset Letter4 Kddcup99 CoverType Powersupply Sensor

FRA-ART ρ 0.8 0.8 0.8 0.95 0.8
Fuzzy ART ρ 0.8 0.8 0.8 0.95 0.8

G-Stream amax = 250, weightmin = 2 , ϵb = 0.01 , ϵn = 0.001, λ1 = 0.2, λ2 = 0.2
|reservoir| = 400, |window| = 600, and β = 300

4.2. Evaluation Criteria

We adopt the common evaluation criteria, including Accuracy (Acc), Normalized
Mutual Information (NMI), and the Rand index (RI), to evaluate the performance of
clustering, following the approach of [33].

1. Accuracy is calculated by:

Acc =
∑K

i=1
|Cd

i |
|Ci |

K
× 100% (24)

where K denotes the number of clusters. |Cd
i | denotes the number of points with the

dominant class label in cluster i. |Ci| denotes the number of points in cluster i. Acc
measures the purity of the clusters in terms of the true cluster (class) labels that are
known for our datasets, and the value of it is in the range [0, 1].

2. Normalized Mutual Information evaluates the similarity of two clustering results
from an information theoretic point of view. The value is in the range [0,1]. A higher
value means that more information is shared with the true results, and the clustering
performance is better. Unlike Acc, NMI is independent of the absolute values of the
labels, a permutation of the class or cluster label values will not change the score value
in any way. Considering the two clustering labels, m(a) and m(b), associated with the
groups of k(a) and k(b), respectively. We can denote the number of objects in cluster Ch

corresponding to m(a) as n(a)
h , and the number of objects in cluster Cl corresponding

to m(b) as n(b)
l . Furthermore, let us denote the number of objects that fall into both

clusters Ch and Cl as nh,l . Next, the NMI is denoted as:

NMI(m(a), m(b)) =

∑k(a)

h=1 ∑k(b)
l=1 nh,l log( n·nh,l

n(a)
h n(b)

l

)√
(∑k(a)

h=1 n(a)
h log n(a)

h
n )(∑k(b)

l=1 n(b)
l log n(b)

l
n )

(25)

3. The Rand index is defined as:

RI =
n11 + n00

C2
n

. (26)

where n11 is the number of pairs of points that exist in the same cluster in both given
correct labels and the clustering result, n00 is the number of pairs of points that exist
in different subsets for both given correct labels and the clustering result. The value
of RI is also in the range [0, 1].

4.3. Comparison on Clustering Performance

We first compare the FRA-ART algorithm with the G-Stream algorithm and Fuzzy
ART algorithm, respectively, on various datasets to evaluate the clustering performance of
the FRA-ART algorithm. In terms of the SIBFs and CIBFs, we use Equations (13)–(15) and
the following five functions:

xd+j = g1( f1(x1), f1(x2), . . . , f1(xd)) = max min
m∈[1,d] m ̸=j

( f1(xj), f1(xm)) (27)
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xd+j = g1( f2(x1), f2(x2), . . . , f2(xd)) = max min
m∈[1,d] m ̸=j

( f2(xj), f2(xm)) (28)

xd+j = g1( f3(x1), f3(x2), . . . , f3(xd)) = max min
m∈[1,d] m ̸=j

( f3(xj), f3(xm)) (29)

xd+j = g2( f1(x1), f1(x2), . . . , f1(xd)) =
d

∑
m=1,m ̸=j

( f1(xj) f1(xm))/(d− 1) (30)

xd+j = g3( f1(x1), f1(x2), . . . , f1(xd)) =
d

∑
m=1,m ̸=j

min( f1(xj), f1(xm))/(d− 1) (31)

The clustering results are shown in Tables 4–6. From Tables 4–6, we can discover the
following noteworthy observations:

(1) The Accuracy values, NMI values and RI values of Fuzzy ART are all higher than
those of the G-Stream algorithm except for the Powersupply dataset. However, FRA-
ART using fractional order has a different degree of improvement compared with
Fuzzy ART on five datasets. Interestingly, FRA-ART with CIBFs achieves much
better performance than the counterpart with SIBFs. The reason may be that after the
process of normalization and fractionally cross-interactive basis functions, the value
of each feature is magnified while also falling between 0 and 1, which combines many
individual features and provides information useful for clustering, thus making the
FRA-ART more flexible.

(2) As shown in Table 4, the proposed FRA-ART using Equation (28) obtains better
performance than Fuzzy ART across letter4, Kddcup99, Powersupply datasets in
terms of Accuracy. Surprisingly, on letter4, it achieves the best result 0.9998 with
a = 1/4, on Kddcup99, it achieves the best result 0.9874 with a = 1/5, on Powersupply,
it achieves the best result 0.1786 with a = 1/4. Meanwhile, the proposed FRA-ART
using Equation (31) performs significantly better than Fuzzy ART on CoverType and
Sensor. On CoverType, it obtains the best result 0.6014 with a = 1/2 when using
Equation (13), on Sensor, it obtains the best result 0.0704 with a = 1/3 when using
Equation (30). The most striking implication of the results in the table is that when
using an exponential function, the results are significantly better.

(3) As seen from the Table 5, the NMI value of the proposed FRA-ART using Equation (31)
is higher than that of Fuzzy ART on letter4, CoverType, and Sensor. In particular,
letter4 obtains the best result 0.8558 with a = 1/4, which is about 10% higher than
that of Fuzzy ART.

(4) Table 6 shows the RI value of the comparison among three algorithms. The RI
value on letter4 is significantly improved except Equation (15). FRA-ART has been
improved in Equations (27)–(29) on Kddcup99, and Equations (29)–(31) on CoverType,
Powersupply, and Sensor.

(5) As Tables 4 and 6 show, although the Accuracy and RI values of Fuzzy ART are
lower than those of G-Stream on Powersupply, the performance of FRA-ART has been
greatly improved.

Table 4. The comparison results of FRA-ART and other data stream clustering algorithms measured
by Accuracy(Better results in the table are shown in bold).

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

G-Stream - 0.9515 0.9814 0.5201 0.1752 0.0551

Fuzzy ART - 0.96 0.9827 0.5935 0.1748 0.0676

FRA-ART (SIBFs using Equation (13))

a = 1/2 0.9891 0.9009 0.6014 0.1748 0.0616
a = 1/3 0.996 0.985 0.573 0.174 0.067
a = 1/4 0.972 0.901 0.569 0.173 0.0608
a = 1/5 0.9403 0.9862 0.6008 0.17 0.0606
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Table 4. Cont.

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

FRA-ART (SIBFs using Equation (14))

a = 1/2 0.983 0.9855 0.5908 0.1774 0.0583
a = 1/3 0.9967 0.9868 0.5841 0.174 0.0597
a = 1/4 0.9832 0.9858 0.5876 0.1748 0.0584
a = 1/5 0.9608 0.9874 0.5914 0.1715 0.0575

FRA-ART (SIBFs using Equation (15))

a = 1/2 0.9599 0.9802 0.5963 0.1735 0.0658
a = 1/3 0.9599 0.9838 0.596 0.1755 0.0665
a = 1/4 0.9635 0.9849 0.5962 0.1761 0.0635
a = 1/5 0.9633 0.9852 0.5883 0.1757 0.0626

FRA-ART (CIBFs using Equation (27))

a = 1 0.9142 0.984 0.5935 0.1746 0.064
a = 1/2 0.9129 0.9835 0.6014 0.1758 0.0626
a = 1/3 0.9585 0.9818 0.5734 0.1757 0.0652
a = 1/4 0.961 0.9833 0.5689 0.173 0.0659
a = 1/5 0.973 0.9822 0.6008 0.175 0.0626

FRA-ART (CIBFs using Equation (28))

a = 1 0.9889 0.9827 0.5935 0.1749 0.0677
a = 1/2 0.9605 0.9855 0.5908 0.1777 0.0627
a = 1/3 0.9991 0.9868 0.5841 0.1757 0.061
a = 1/4 0.9998 0.9858 0.5876 0.1786 0.0657
a = 1/5 0.9891 0.9874 0.5914 0.1766 0.055

FRA-ART (CIBFs using Equation (29))

a = 1 0.9401 0.8981 0.5726 0.1734 0.0639
a = 1/2 0.9224 0.9805 0.5963 0.1735 0.0663
a = 1/3 0.9258 0.9838 0.596 0.1742 0.0668
a = 1/4 0.9318 0.9838 0.5962 0.1731 0.0649
a = 1/5 0.9185 0.9664 0.5883 0.173 0.0679

FRA-ART (CIBFs using Equation (30))

a = 1 0.9458 0.9799 0.576 0.1739 0.0663
a = 1/2 0.9045 0.9854 0.5601 0.1762 0.0687
a = 1/3 0.9343 0.9843 0.5918 0.1733 0.0704
a = 1/4 0.9652 0.9168 0.577 0.173 0.0635
a = 1/5 0.9891 0.9874 0.5997 0.1756 0.062

FRA-ART (CIBFs using Equation (31))

a = 1 0.9142 0.9164 0.5833 0.1746 0.0704
a = 1/2 0.9129 0.9533 0.5978 0.1758 0.0674
a = 1/3 0.935 0.9842 0.5838 0.1757 0.0636
a = 1/4 0.961 0.9849 0.5959 0.173 0.0658
a = 1/5 0.973 0.9536 0.5973 0.175 0.0691

Table 5. The comparison results of FRA-ART and other data stream clustering algorithms measured
by NMI(Better results in the table are shown in bold).

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

G-Stream - 0.5991 0.6449 0.0919 0.1732 0.0679

Fuzzy ART - 0.7368 0.7347 0.1732 0.186 0.0879

FRA-ART (SIBFs using Equation (13))

a = 1/2 0.842 0.6316 0.1709 0.1833 0.078
a = 1/3 0.8545 0.7365 0.1477 0.1844 0.0816
a = 1/4 0.8162 0.617 0.1548 0.1854 0.0762
a = 1/5 0.8106 0.7454 0.1583 0.1865 0.0686

FRA-ART (SIBFs using Equation (14))

a = 1/2 0.8135 0.7835 0.1558 0.1865 0.0704
a = 1/3 0.8372 0.7756 0.1465 0.185 0.0733
a = 1/4 0.8152 0.7294 0.1494 0.1863 0.0782
a = 1/5 0.8457 0.7613 0.1496 0.1859 0.0705



Mathematics 2024, 12, 2049 13 of 20

Table 5. Cont.

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

FRA-ART (SIBFs using Equation (15))

a = 1/2 0.7387 0.7086 0.1593 0.1856 0.0816
a = 1/3 0.7381 0.748 0.1676 0.1878 0.0835
a = 1/4 0.7351 0.7287 0.165 0.186 0.0813
a = 1/5 0.74 0.7568 0.1678 0.1851 0.0767

FRA-ART (CIBFs using Equation (27))

a = 1 0.7308 0.7194 0.1732 0.186 0.0791
a = 1/2 0.7392 0.7292 0.1709 0.1845 0.0749
a = 1/3 0.7641 0.7301 0.1477 0.1829 0.0803
a = 1/4 0.796 0.7397 0.1548 0.1834 0.078
a = 1/5 0.8235 0.7209 0.1583 0.1824 0.0753

FRA-ART (CIBFs using Equation (28))

a = 1 0.7897 0.7347 0.1732 0.184 0.0866
a = 1/2 0.7398 0.7835 0.1558 0.186 0.0795
a = 1/3 0.8078 0.7756 0.1465 0.1844 0.0803
a = 1/4 0.8558 0.7294 0.1494 0.1834 0.0838
a = 1/5 0.842 0.7613 0.1496 0.1819 0.0693

FRA-ART (CIBFs using Equation (29))

a = 1 0.7403 0.6063 0.1624 0.1849 0.0746
a = 1/2 0.7364 0.7275 0.1593 0.1843 0.0808
a = 1/3 0.7328 0.7658 0.1676 0.1833 0.0798
a = 1/4 0.7558 0.7468 0.165 0.1851 0.0769
a = 1/5 0.7446 0.6952 0.1678 0.1857 0.0848

FRA-ART (CIBFs using Equation (30))

a = 1 0.7738 0.7165 0.1725 0.1878 0.0939
a = 1/2 0.7205 0.7317 0.1746 0.185 0.0971
a = 1/3 0.7222 0.7029 0.1834 0.1847 0.0941
a = 1/4 0.7793 0.6214 0.1718 0.184 0.0928
a = 1/5 0.842 0.7613 0.1771 0.1833 0.0755

FRA-ART (CIBFs using Equation (31))

a = 1 0.7308 0.6226 0.1849 0.186 0.1014
a = 1/2 0.7392 0.6625 0.1812 0.1845 0.1078
a = 1/3 0.7781 0.7106 0.1787 0.1829 0.0971
a = 1/4 0.796 0.7206 0.1747 0.1834 0.0852
a = 1/5 0.8235 0.6655 0.1684 0.1824 0.0932

Table 6. The comparison results of FRA-ART and other data stream clustering algorithms measured
by RI(Better results in the table are shown in bold).

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

G-Stream - 0.8095 0.817 0.6158 0.9464 0.8703

Fuzzy ART - 0.8588 0.9363 0.6492 0.9412 0.9122

FRA-ART (SIBFs using Equation (13))

a = 1/2 0.9089 0.8599 0.6482 0.9387 0.9208
a = 1/3 0.9133 0.9455 0.6394 0.9361 0.921
a = 1/4 0.9028 0.856 0.6383 0.9324 0.9119
a = 1/5 0.9032 0.9494 0.6371 0.9277 0.8789

FRA-ART (SIBFs using Equation (14))

a = 1/2 0.8957 0.9546 0.6449 0.933 0.8885
a = 1/3 0.8956 0.954 0.6302 0.9314 0.9208
a = 1/4 0.8901 0.9352 0.6386 0.9303 0.893
a = 1/5 0.9116 0.9497 0.6302 0.927 0.8664

FRA-ART (SIBFs using Equation (15))

a = 1/2 0.8568 0.9253 0.6493 0.9422 0.9166
a = 1/3 0.8561 0.946 0.6525 0.9411 0.9244
a = 1/4 0.8524 0.9422 0.6441 0.9376 0.9201
a = 1/5 0.854 0.9504 0.6618 0.9426 0.9145
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Table 6. Cont.

Algorithm Datasets Letter4 Kddcup99 CoverType Powersupply Sensor

FRA-ART (CIBFs using Equation (27))

a = 1 0.8588 0.9294 0.6492 0.9476 0.9359
a = 1/2 0.8642 0.9363 0.6482 0.9457 0.8966
a = 1/3 0.8781 0.9411 0.6394 0.9447 0.9233
a = 1/4 0.8893 0.9432 0.6383 0.9405 0.9004
a = 1/5 0.9063 0.9425 0.6371 0.9406 0.9039

FRA-ART (CIBFs using Equation (28))

a = 1 0.8842 0.9363 0.6492 0.948 0.9137
a = 1/2 0.8619 0.9546 0.6449 0.9438 0.9082
a = 1/3 0.8809 0.954 0.6302 0.9434 0.8868
a = 1/4 0.9111 0.9352 0.6386 0.9364 0.9053
a = 1/5 0.9089 0.9497 0.6302 0.9372 0.8523

FRA-ART (CIBFs using Equation (29))

a = 1 0.8626 0.8418 0.6542 0.9458 0.9275
a = 1/2 0.8654 0.9341 0.6493 0.948 0.9331
a = 1/3 0.8638 0.9519 0.6525 0.9476 0.9214
a = 1/4 0.8731 0.9426 0.6441 0.9506 0.9388
a = 1/5 0.8706 0.9201 0.6618 0.9487 0.935

FRA-ART (CIBFs using Equation (30))

a = 1 0.8814 0.9358 0.6837 0.9487 0.9395
a = 1/2 0.8523 0.9345 0.6897 0.9503 0.9176
a = 1/3 0.862 0.9296 0.6802 0.9486 0.9438
a = 1/4 0.8814 0.8572 0.6773 0.9481 0.9343
a = 1/5 0.9089 0.9497 0.6732 0.9454 0.9291

FRA-ART (CIBFs using Equation (31))

a = 1 0.8653 0.8527 0.6955 0.9476 0.9365
a = 1/2 0.8642 0.9034 0.6801 0.9457 0.9492
a = 1/3 0.8847 0.9321 0.6838 0.9447 0.9245
a = 1/4 0.8893 0.9343 0.6579 0.9405 0.9299
a = 1/5 0.9063 0.8973 0.6566 0.9406 0.9249

4.4. Effect of Non-Stationarity

In addition to the above experiments, we also explore the effectiveness of the proposed
algorithm in dealing with non-stationary data streams. In many real-world scenarios,
the distribution of data changes dynamically, making the data non-stationary. For example,
after all data points of the first class have arrived, all data points of the second class have
also arrived, and finally the third class, and so on. In this case, with the arrival of new data
points, old concepts will disappear, new concepts may be generated, and concept drift will
likely occur [52].

4.4.1. Concept Drift

We assess the effectiveness of FRA-ART in handling streaming datasets, which arrive
in a sequential manner based on class labels, by utilizing CIBFs for performance evaluation.
We use the CIBFs function Equation (31) and set the vigilance parameter ρ = 0.95 for the
Powersupply dataset and ρ = 0.8 for the other datasets. Figures 3–5 display the results of
the FRA-ART measured by Accuracy, NMI, and RI, respectively, as the value of parameter
a varies, both with and without class label ordering. Our results indicate that the FRA-ART
with class label ordering can attain results that are in line with, or even comparable to, those
achieved without ordering on the letter4, CoverType, Powersupply, and Sensor datasets.
Only on Kddcup99, the Accuracy and NMI of FRA-ART decrease slightly. Furthermore,
on letter4 and Sensor, our results demonstrate that the FRA-ART with class label ordering
outperforms the version without ordering. With the change in parameter a, the performance
of FRA-ART remains consistent. Based on the results presented above, it can be inferred
that the FRA-ART effectively handles concept drift during the study, achieving comparable
clustering results regardless of whether the classes are arranged in a specific order or not.



Mathematics 2024, 12, 2049 15 of 20

letter4 Kddcup99 CoverType Powersupply Sensor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets(a=1)

A
cc

ur
ac

y

 

 

Ordered
Unordered

(a) a = 1

letter4 Kddcup99 CoverType Powersupply Sensor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets(a=1/2)

A
cc

ur
ac

y

 

 

Ordered
Unordered

(b) a = 1/2

letter4 Kddcup99 CoverType Powersupply Sensor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets(a=1/3)

A
cc

ur
ac

y

 

 

Ordered
Unordered

(c) a = 1/3

letter4 Kddcup99 CoverType Powersupply Sensor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets(a=1/4)

A
cc

ur
ac

y

 

 

Ordered
Unordered

(d) a = 1/4

letter4 Kddcup99 CoverType Powersupply Sensor
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets(a=1/5)

A
cc

ur
ac

y

 

 

Ordered
Unordered

(e) a = 1/5

Figure 3. Accuracy of FRA-ART with and without class label ordering.
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Figure 4. NMI of FRA-ART with and without class label ordering.
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Figure 5. Rand index of FRA-ART with and without class label ordering.

4.4.2. Visualization

Figure 6 shows the set of nodes by applying Fuzzy ART and FRA-ART on the letter4
dataset (seven colors of points represent data points of the data stream and purple dots
are the set of nodes). Since letter4 is a 2-dimensional dataset, with complement coding
and CIBFs, the number of dimensions changes to 8. In order to visualize the results in
2-dimensional space, we use random projection [35] to reduce the dimensions and draw
the diagram. Meanwhile, by using the same random matrix, the cluster nodes are projected
into the same space, as Figure 6 shows. As illustrated in this figure, we can see that the
FRA-ART algorithm manages to recognize the clusters of the data stream and can separate
these clusters with an optimal visualization. Comparing the two plots in Figure 6, it can
be observed that, compared to Fuzzy ART, FRA-ART, through the introduction of SIBFs
and CIBFs, has effectively enhanced the data representation capability, leading to tighter
clustering of the same class and better separation between different classes. This indicates
that the FRA-ART algorithm can better identify the clustering structure of the data stream
and provide a more optimal visualization.

(a) Fuzzy ART
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0

0.5
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x

y

ART Nodes (purple dots)

(b) FRA-ART

Figure 6. Nodes are the set of node created by Fuzzy ART and FRA-ART in dataset letter4.



Mathematics 2024, 12, 2049 17 of 20

4.5. Effect of Vigilance Parameter

We assess the effectiveness of FRA-ART as the vigilance parameter ρ varies, which
controls when resonance happens and whether or not to allow learning samples of that
class. Choosing an appropriate vigilance value ρ can identify useful clusters without
adjusting many sensitive parameter values. Figure 7 shows the sensitivity of FRA-ART
to the vigilance parameter ρ using Accuracy, NMI, and RI on five datasets. We use the
CIBFs function Equation (31). As shown in Figure 7, the values of Accuracy, NMI, and RI
decrease with increase in ρ on the letter4 and Kddcup99 datasets. The values of NMI and
RI increase with increase in ρ on the CoverType and Sensors datasets, but the Accuracy
values decrease. On Powersupply, the value of NMI decreases a little bit.
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Figure 7. Sensitivity of FRA-ART to the vigilance parameter ρ.

5. Discussion

Through the above experimental comparisons, the proposed FRA-ART algorithm
outperforms the traditional Fuzzy ART algorithm and G-Stream algorithm in clustering
performance on various datasets. Firstly, the FRA-ART algorithm incorporates fractional
order and cross-interactive basis functions (CIBFs) to improve clustering performance.
The use of fractional order enables the FRA-ART algorithm to adapt to the changing data
distribution, thereby enhancing its ability to handle concept drift in streaming datasets.
Moreover, the CIBFs function magnifies the value of each feature, making it easier to com-
bine individual features and provide information useful for clustering. This results in better
Accuracy, NMI, and RI values compared with the traditional Fuzzy ART algorithm and G-
Stream algorithm. Secondly, the FRA-ART algorithm shows promising results when using
different equations. Specifically, on the letter4, CoverType, and Sensor datasets, the NMI
value of the proposed FRA-ART using Equation (31) is significantly higher than that of the
traditional Fuzzy ART algorithm. On Kddcup99, FRA-ART has been improved in several
equations, and on CoverType, Powersupply, and Sensor, FRA-ART has been significantly
improved in multiple equations. Lastly, the use of SIBFs and CIBFs is attractive because it
allows different shapes of segmentation to be implemented with low computational cost.
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Furthermore, the underlying recursive partitioning algorithm is not modified, which means
IBFs can be used with any existing ART algorithm variant software implementation.

Despite its advantages, the FRA-ART algorithm has some limitations that need to be
addressed in future research. Firstly, the FRA-ART algorithm requires careful selection
of the vigilance parameter ρ and the parameter a to achieve optimal clustering perfor-
mance. Future research can focus on developing more efficient methods for automatically
selecting these parameters. Secondly, the FRA-ART algorithm may not be suitable for
high-dimensional datasets. In the future, the FRA-ART algorithm can be extended to
handle high-dimensional data by incorporating dimensionality reduction techniques.

In conclusion, the proposed FRA-ART algorithm shows promising results in clustering
performance on various datasets, demonstrating its ability to handle concept drift in
streaming datasets. However, further research is needed to address its limitations and
improve its computational efficiency. Furthermore, Multiview data stream clustering is an
emerging topic to be explored further.

6. Conclusions

In this paper, we propose FRA-ART, a novel unsupervised self-organizing incremental
neural network for clustering evolving data streams. The contributions of this paper
are three-fold. Firstly, we introduce the fractional order operation into ART to make its
representation more flexible and richer. Secondly, for the first time, the fractionally self-
interactive or cross-interactive basis functions (SIBFs or CIBFs) are employed for data stream
clustering. Thirdly, the proposed SIBFs and CIBFs can be precomputed once independently
and thus used in any variants of the ART. Finally, comparative experiments on five data
stream sets show that FRA-ART is more robust than Fuzzy ART, as well as the state-of-the-
art data stream clustering algorithm G-Stream, and it consistently achieves results better or
comparable to their performances.
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