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Abstract: Spiral bevel gear drives are widely used in mechanical transmission devices due to their
compact structure, smooth transmission, and cost-effectiveness. With the continuous improvement in
mechanical product quality, higher and higher requirements are set for the precision, smoothness,
and power density of gear transmission devices. Chatter can lead to poor workpiece surface finish on
spiral bevel gears, excessive tool wear, and even damage to machine tools. Therefore, the effective
prediction of milling chatter during the processing of spiral bevel gears is essential. Regenerative
chatter is one of the most fundamental types of vibration in machining processes. This paper presents
an improved fully discrete algorithm for predicting the stability of time-delayed cutting in the milling
process of spiral bevel gears. The method is validated using single- and double-degree-of-freedom
models, demonstrating its accuracy and computational efficiency. The results show that the proposed
method improves computational efficiency while ensuring accuracy.

Keywords: milling chatter; full-discretization method; time-delayed; spiral bevel gears
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1. Introduction

In the actual machining process of spiral bevel gears, to improve efficiency, it is com-
mon to increase spindle speed, feed rate, and cutting depth. However, during cutting,
chatter can occur under certain parameter combinations, leading to increased dynamic
loads, affecting the machining quality of spiral bevel gears, reducing efficiency, and im-
pacting the lifespan of machine tools and cutting tools. Therefore, the prediction of chatter
stability is significant for ensuring stable machining and enhancing production efficiency.

Many methods have been proposed for predicting processing stability. Smith and
Tlusty [1] proposed a method for generating stabilization lobes by simulating chirp vi-
brations during milling in the time domain. Sridhar et al. [2] developed a mathematical
model describing the dynamic milling process and solved it numerically. Minis and Yanu-
shevsky [3] proposed a comprehensive analytical method and solved a two-dimensional
milling problem by introducing the periodic differential equation. Altintas and Budak [4]
proposed an analytical method (ZOA method) based on the average of Fourier series
of dynamic milling coefficients for the prediction of milling stable lobes. Yang et al. [5]
proposed a precise integration-based third-order full-discretization method that can be
both accurate and efficient in milling stability prediction without the need for any inverse
matrix calculation. Ji et al. [6] established a new milling dynamical model which simultane-
ously considers the regenerative effect, mode coupling effect, and process damping. Dai
et al. [7] started from the numerical solution of the delay differential equation; this paper
first gave a detailed mathematical derivation to demonstrate the beingness of the numerical
calculation errors at the crucial step for two equal interval calculation methods of cutting
force coefficients and then discussed the impact of the errors on the convergence effect and
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prediction accuracy. Shi et al. [8] developed an algorithm for predicting the stability lobes
for face milling processes. Zhang et al. [9] presented numerical integration scheme-based
semi-discretization methods (NISDMs) for milling stability prediction. Ye et al. [10] pro-
posed a second-order full-discretization method for milling stability prediction based on
the direct integration scheme. Liu et al. [11] proposed a modified full-discretization method
for milling stability prediction based on timestep control. Ding et al. [12] proposed the full-
discretization method (FDM) based on the direct integration scheme to obtain predictions
of SLD efficiently. Sellmeier and Denkena [13] used one of the semi-discretization schemes,
Ackermann’s method, to investigate the stability of an unequally pitched end mill. It was
observed that when the time variance in the system was taken into account, stable islands
would occur in the charts. By using adapted and time-averaged versions of the SDM, Sims
et al. [14] investigated the stability of variable pitch and variable helix end mills and showed
the phenomenon of cyclic-fold bifurcations at low radial immersion milling. Quintana
et al. [15] determined the stability charts of a milling process by applying a sound mapping
methodology. Jin et al. [16] extended this method for milling stability prediction with
multiple delays. Ozoegwu [17] reported high-order vector numerical integration schemes
(ONISMs) to analyze milling stability. D.S. Merdol et al. [18] presented generalized virtual
simulation and optimization strategies to predict and optimize the performance of milling
processes with up to three axes. Jin et al. [19,20] investigated the effect of tool geometry on
the stability trend of variable pitch or variable helix milling using a modified SD algorithm.
Jin et al. [16] proposed an improved semi-discretization method to predict the stability
lobes for milling processes with multiple delays. Dai et al. [21] adopted the explicit precise
integration method (PIM) to predict the chatter stability of the milling process. However,
there is relatively little research on the prediction of stability in the machining process of
spiral bevel gears.

This paper proposes an improved full-discretization method for predicting milling
stability in the processing of spiral bevel gears. The method in this paper fully discretizes
the equations in the computational process and interpolates the fit in each time interval,
allowing the equations to be computed in an accurate numerical quantity while reducing the
number of computational steps and improving the computational efficiency. This method
significantly improves computational efficiency while ensuring prediction accuracy. The
rest of this paper is organized as follows: Section 2 describes the mathematical model and
numerical scheme. Section 3 conducts calculations for both the single- and double-degree-
of-freedom examples, thereby illustrating the computational efficiency of the new method.
Section 4 presents the conclusion.

2. Mathematical Model and Algorithm

Without loss of generality, the dynamics of the spiral bevel gear milling process with
regenerative effects can be described as an n-dimensional linear time-periodic system with
a single discrete time delay. This system is represented in the following state space form:

.
x(t) = A0x(t) + A(t)x(t) + B(t)x(t − T), (1)

where A0 is a constant matrix representing the time-invariant properties of the system,
while A(t) and B(t) are two periodic coefficient matrices satisfying A(t + T) = A(t) and
B(t + T) = B(t), with T being the period of time delay.

The first step in numerically solving Equation (1) involves discretizing the time period
T, dividing it into m small time intervals such that T = mt, where m is an integer. For each
time interval kτ ≤ t ≤ (k + 1)τ, (k = 0, . . . , m), the response of Equation (1) under initial
conditions xk = x(kτ) can be obtained through direct integration as follows:

x(t) = eA0(t−kτ)x(kτ) +

t∫
kτ

{
eA0(t−ξ)[A(ξ)x(ξ) + B(ξ)x(ξ − T)]

}
dξ. (2)



Mathematics 2024, 12, 2061 3 of 9

Equation (2) can be equivalently represented as

x(kτ + t) = eA0tx(kτ) +
∫ t

0

{
eA0ξ

[
A(kτ + t − ξ)x(kτ + t − ξ)

B(kτ + t − ξ)x(kτ + t − ξ − T)

]}
dξ, (3)

where 0 ≤ t ≤ τ. Simultaneously, xk+1, or x(kτ + t), can be obtained from Equation (3)

xk+1 = eA0τx(kτ) +
∫ t

0

{
eA0ξ

[
A(kτ + τ − ξ)x(kτ + τ − ξ)

B(kτ + τ − ξ)x(kτ + τ − ξ − T)

]}
dξ. (4)

The next step involves handling the Duhamel term in Equation (4), i.e., the integral
term. Initially, the time delay x(kτ + τ − ξ − T) term is linearly approximated by xk+1−m
and xk−m, i.e., the two boundary values of the time interval [(k − m)τ, (k + 1 − m)τ], re-
sulting in

x(kτ + τ − ξ)
.
= xk+1−m +

ξ(xk−m − xk+1−m)

τ
. (5)

The state term x(kτ + τ − ξ) in Equation (4) can also be approximated by linear
interpolation using Xk and Xk+1, the two boundary values of the time interval [kτ, (k + 1)τ],
resulting in

x(kτ + τ − ξ)
.
= xk+1 +

ξ(Xk − Xk+1)

τ
. (6)

Similarly, the time-periodic terms A(kτ + τ − ξ) and B(kτ + τ − ξ) in Equation (4)
can be approximated through the linear interpolation of the two boundary values of the
time interval [kτ, (k + 1)τ], resulting in

A(kτ + τ − ξ)
.
= A(k)

0 + A(k)
1 ξ, (7)

where A(k)
0 = Ak+1, A(k)

1 = (Ak − Ak+1)/τ , and Ak represents the value of A(t) at the
sampling time tk = kτ. And

B(kτ + τ − ξ)
.
= B(k)

0 + B(k)
1 ξ, (8)

where B(k)
0 = Bk+1, B(k)

1 = (Bk − Bk+1)/τ , and Bk represents the value of B(t) at the
sampling time tk = kτ.

Substituting Equations (6)–(8) into Equation (4) results in

xk+1 = (F0 + F0,1)xk + Fk+1xk+1 + Fm−1xk+1−m + Fmxk−m, (9)

where
F0 = Φ0, (10)

F0,1 = (Φ2/τ)A(k)
0 + (Φ3/τ)A(k)

1 , (11)

Fk+1 = (Φ1 − Φ2/τ)A(k)
0 + (Φ2 − Φ3/τ)A(k)

1 , (12)

Fm−1 = (Φ1 − Φ2/τ)B(k)
0 + (Φ2 − Φ3/τ)B(k)

1 , (13)

Fm = (Φ2/τ)B(k)
0 + (Φ3/τ)B(k)

1 , (14)

Φ0 = eA0τ , Φ1 =
∫ τ

0
eA0ξ dξ, Φ2 =

∫ τ

0
ξeA0ξ dξ, Φ3 =

∫ τ

0
ξ2eA0ξdξ. (15)

Clearly, Φ1, Φ2, and Φ3 can be represented by matrices Φ0 and A−1
0 , as follows:

Φ1 = A−1
0 (Φ0 − I), (16)

Φ2 = A−1
0 (τΦ0 − Φ1), (17)
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Φ3 = A−1
0

(
τ2Φ0 − 2Φ2

)
. (18)

Additionally, matrices Φ0 − Φ3 in Equation (15) can be numerically computed using
the Precise Time Integration (PTI) method, eliminating the need to calculate the inverse
matrix A−1

0 .
From Equation (9), it is evident that if matrix [I − Fk+1] is non-singular, Xk+1 can be

represented as follows:

xk+1 = [I − Fk+1]
−1(F0 + F0,1)xk

+[I − Fk+1]
−1Fm−1xk+1−m + [I − Fk+1]

−1Fmxk−m.
(19)

If matrix [I − Fk+1] is singular, the state item x(kτ + τ − ξ) in Equation (6) can be
replaced with a zero-order hold term, namely

x(kτ + τ − ξ) = xk. (20)

Subsequently, xk+1 becomes

xk+1 = (F0 + F0,2)xk + Fm−1xk+1−m + Fmxk−m, (21)

where
F0,2 = Φ1 A(k)

0 + Φ2 A(k)
1 . (22)

Based on Equation (19), the discrete mapping can be defined as

yk+1 = Dkyk, (23)

where the n(m + 1)-dimensional vector is represented as

yk = col(xxk−1 . . . xk+1−mxk−m). (24)

And Dk is defined as

Dk =



[I − Fk+1]
−1(F0 + F0,1) 0 0 . . . 0 [I − Fk+1]

−1Fm−1 [I − Fk+1]
−1Fm

I 0 0 . . . 0 0 0
0 I 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0
0 0 0 . . . I 0 0
0 0 0 . . . 0 I 0


. (25)

Now, the transition matrix Φ within a periodic time interval can be constructed using
the discrete mapping sequence Dk, (k = 0 . . . m − 1), that is

ym = Φy0, (26)

where Φ is defined as
Φ = Dm−1Dm−2 . . . D1D0. (27)

Now, according to Floquet theory, the stability of the system can be determined: if all
the eigenvalues of the transition matrix Φ have moduli less than 1, the system is stable;
otherwise, it is unstable.

3. Validation

This paper validates the proposed method using both single- and double-degree-of-
freedom milling models. The biggest difference between the method in this paper and
other methods is that both the time delay term x(kτ + τ − ξ − T) and the state delay term
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x(kτ + τ − ξ) are discretized, and interpolated and fitted in each time interval, so that the
equations can be carried out to please exact numerical computational quantities, to reduce
the number of computational steps and to improve the computational efficiency.

4. Single-Degree-of-Freedom Milling Model

The dynamic equation for the single-degree-of-freedom milling model is

..
x(t) + 2ξωn

.
x(t) + ω2

nx(t) = −wh(t)
mt

(x(t)− x(t − T)), (28)

where ξ represents the relative damping, ωn is the angular natural frequency, w is the
cutting depth, and mt is the modal mass of the tool. The time delay T equals the tool pass
period 60/NΩ, where N is the number of teeth on the tool, and Ω is the spindle speed
(rev/min). h(t) represents the cutting force coefficient, again a periodic function, defined as

h(t) =
N

∑
j=1

g
(
ϕj(t)

)
sin(ϕj(t))

[
Ktcos(ϕj(t)) + Knsin(ϕj(t))

]
, (29)

Kt and Kn are the tangential and normal linear cutting force coefficients, respectively. ϕj(t)
is the angular position of the j-th tooth, defined as follows:

ϕj(t) =
(

2πΩ
60

)
t +

(j − 1)2π

N
. (30)

The function g
(
ϕj(t)

)
is defined as follows:

g
(
ϕj(t)

)
=

{
1
0

if ϕst < ϕj(t) < ϕex
otherwise

, (31)

where ϕst and ϕex are the entry and exit angles of the j-th tooth, respectively.
For up-milling, ϕst = arcos(2a/D − 1) and ϕex = π; for down-milling, ϕst = 0 and

ϕex = arcos(1 − 2a/D), where a/D is the radial immersion ratio.
Let y(t) = mt

.
x(t) + mtξωnx(t) and X(t) =

[
x(t) y(t)

]T . Through some simple
transformations, the state space form of the single-degree-of-freedom milling model can be
represented as

.
X(t) = A0X(t) + A(t)X(t) + B(t)X(t − T), (32)

where

A0 =

[
−ξωn

1
mt

mt
(
ξωn)2 − mtω

2
n −ξωn

]
, A(t) =

[
0 0

−wh(t) 0

]
, B(t) =

[
0 0

wh(t) 0

]
. (33)

To validate the effectiveness of the proposed method, it was compared with the method
from reference [16] using the same parameters. The main parameters include the following:
number of teeth N = 4, natural frequency ωn = 563.6 Hz, relative damping ξ = 0.011,
cutting force coefficient Kt = 679 MPa, Kn = 256 MPa, and modal mass mt = 0.03993 kg.

Figure 1 presents the stability diagrams of the single-degree-of-freedom milling model
for three different immersion ratios a/D of 1, 0.1, and 0.05. As illustrated in Figure 1, under
different radial immersion ratios, the change trend of axial depth cut with the increase
in spindle speed is basically the same as that of the reference method, indicating that
the calculation results of the two methods are basically the same regardless of the size of
the radial immersion ratio. It proves that the method proposed in this paper ensures the
accuracy of the calculation.
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Figure 1. Comparison of single-degree-of-freedom milling model at different immersion ratios [16].

Additionally, Table 1 shows the computation times for different methods. According
to Table 1, the method proposed in this paper demonstrates better computational efficiency
while ensuring calculation accuracy, reducing computation time by approximately 13–21%
under the same parameters.

Table 1. Computational time comparison of single-degree-of-freedom milling model at different
immersion ratios.

a/D Method of This Paper Method Used for
Comparison [16]

1 147.4 170.2

0.1 155.0 197.5

0.05 150.7 182.3

5. Double-Degree-of-Freedom Milling Model

The dynamic equation for the two-degree-of-freedom milling model is[
mt 0
0 mt

][ ..
x(t)
..
y(t)

]
+

[
2mtξωn 0

0 2mtξωn

][ .
x(t)
.
y(t)

]
+

[
mtω

2
n 0

0 mtω
2
n

][
x(t)
y(t)

]
=

[
−whxx(t) −whxy(t)
−whyx(t) −whyy(t)

][
x(t)
y(t)

]
+

[
whxx(t) whxy(t)
whyx(t) whyy(t)

][
x(t − T)
y(t − T)

]
,

(34)
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where ξ is the relative damping, ωn is the angular natural frequency, and mt is the modal
mass of the tool, assumed equal in the x and y directions. Cutting force coefficients hxx(t),
hxy(t), hyx(t), and hyy(t) are defined as

hxx(t) =
N

∑
j=1

g
(
ϕj(t)

)
sin(ϕj(t))

[
Ktcos(ϕj(t))+Knsin(ϕj(t))

]
, (35)

hxy(t) =
N

∑
j=1

g
(
ϕj(t)

)
cos(ϕj(t))

[
Ktcos(ϕj(t)) + Knsin(ϕj(t))

]
, (36)

hyx(t) =
N

∑
j=1

g
(
ϕj(t)

)
sin(ϕj(t))

[
−Ktsin(ϕj(t)) + Kncos(ϕj(t))

]
, (37)

hyy(t) =
N

∑
j=1

g
(
ϕj(t)

)
cos(ϕj(t))

[
−Ktsin(ϕj(t)) + Kncos(ϕj(t))

]
. (38)

The meanings of all parameters are the same as in the single-degree-of-freedom model.
To represent the original system Equation (34) in state space form, let M, C, K, and q(t)

respectively represent the matrices
[

mt 0
0 mt

]
,
[

2mtξωn 0
0 2mtξωn

]
,
[

mtω
2
n 0

0 mtω
2
n

]
, and[

x(t)
y(t)

]
. Then, let P(t) = M

.
q + Cq/2 and x(t) be denoted by

[
q(t) p(t)

]T . Finally, the

double-degree-of-freedom milling model can be represented as

.
x(t) = A0x(t) + A(t)x(t) + B(t)x(t − T), (39)

where

A0 =

[
−M−1C

2 M−1

CM−1C
4 − K −CM−1

2

]
, A(t) =


0 0 0 0
0 0 0 0

−whxx(t) −whxy(t) 0 0
−whyx(t) −whyy(t) 0 0

, B(t) =


0 0 0 0
0 0 0 0

whxx(t) whxy(t) 0 0
whyx(t) whyy(t) 0 0

. (40)

The parameters selected for the double-degree-of-freedom model are the same as those
used in the single-degree-of-freedom milling model. Figure 2 lists the stability diagrams
for both methods under radial immersion ratios of 1, 0.1, and 0.05. As can be seen from
Figure 2, under different radial immersion ratios, the change trend of axial depth cut with
the increase in spindle speed is basically the same as that of the reference method, indicating
that the calculation results of the two methods are basically the same regardless of the size
of the radial immersion ratio. It shows again that the method proposed in this paper is
basically consistent with the results of the reference method, which proves that the method
proposed in this paper ensures the accuracy of the calculation.

Table 2 presents the computation times for different methods. As shown in Table 2,
under the same parameters, the method proposed in this paper reduces computation time
by about 13–18%.

Table 2. Computational time comparison of double-degree-of-freedom milling model at different
immersion ratios.

a/D Method of This Paper Method Used for
Comparison [16]

1 122.6 140.9

0.1 128.1 157.3

0.05 130.6 152.8
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Figure 2. Comparison of double-degree-of-freedom milling model at different immersion ratios [16].

These results further demonstrate that the method proposed in this paper improves
computational efficiency while ensuring calculation accuracy.

6. Conclusions and Future Works

This paper proposes an improved full-discretization algorithm specifically for the
processing of spiral bevel gears, which is utilized to predict the stability of delayed cutting
during the milling process. Considering the regenerative effects in milling, the dynamic
response of the process is described using a linear time-periodic system with multiple
time delays. The algorithm is validated using both single- and double-degree-of-freedom
milling models, and its correctness is confirmed through comparison with previous studies.

Under the same computational parameters, the new method reduces computation
time by 13–21% compared to previous methods while ensuring calculation accuracy.

This paper focuses on the prediction of time-lagged cutting stability in the milling
process of spiral bevel gears by the full-discrete method. In the future, attention should
be paid to the application of the full-discrete method in a more suitable way to the actual
machining process, such as the cutting stability prediction for different machine structures
and different machining environments.

Author Contributions: Conceptualization, C.T. and Y.T.; Methodology, C.T.; Investigation, T.W.;
Writing—original draft, C.T.; Writing—review & editing, T.W.; Supervision, Y.T.; Project administra-
tion, Y.T.; Funding acquisition, T.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [Grant No.
51975407] and National Key R&D Program (Industrial Software) [2022YFB3303601].



Mathematics 2024, 12, 2061 9 of 9

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smith, S.; Tlusty, J. Efficient Simulation Programs for Chatter in Milling. CIRP Ann. 1993, 42, 463–466. [CrossRef]
2. Sridhar, R.; Hohn, R.E.; Long, G.W. A stability algorithm for the general milling process. ASME J. Eng. Ind. 1968, 90, 330–334.

[CrossRef]
3. Minis, I.; Yanushevsky, R. A new theoretical approach for the prediction of machine tool chatter in milling. J. Eng. Ind. 1993, 115,

1–8. [CrossRef]
4. Altintas, Y.; Budak, E. Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 1995, 44, 357–362. [CrossRef]
5. Yang, W.A.; Huang, C.; Cai, X.; You, Y. Effective and fast prediction of milling stability using a precise integration-based

third-order full-discretization method. Int. J. Adv. Manuf. Technol. 2020, 106, 4477–4498. [CrossRef]
6. Ji, Y.; Wang, X.; Liu, Z.; Wang, H.; Jiao, L.; Zhang, L.; Huang, T. Stability prediction with simultaneously considering the multiple

factors coupling effects-regenerative effect, mode coupling, and process damping. Int. J. Adv. Manuf. Technol. 2018, 97, 2509–2527.
[CrossRef]

7. Dai, Y.B.; Li, H.; Liu, B.; Yang, C. Calculation boundary vulnerability of numerical algorithm in milling stability prediction. Int. J.
Adv. Manuf. Technol. 2022, 119, 8271–8286. [CrossRef]

8. Shi, Z.; Liu, L.; Liu, Z.; Zhang, X. Frequency-domain stability lobe prediction for high-speed face milling process under
tool-workpiece dynamic interaction. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 231, 2336–2346. [CrossRef]

9. Zhang, C.; Yan, Z.; Jiang, X. Numerical integration scheme–based semi-discretization methods for stability prediction in milling.
Int. J. Adv. Manuf. Technol. 2021, 115, 397–411. [CrossRef]

10. Ding, Y.; Zhu, L.M.; Zhang, X.J.; Ding, H. Second-order full-discretization method for milling stability prediction. Int. J. Mach.
Tools Manuf. 2010, 50, 926–932. [CrossRef]

11. Cheng-Ying, L.; Jie, Z.; Wei, L.; Zhi, Z. A Full-discretization Method for Milling Stability Predication Based on Time-step Control.
Modul. Mach. Tool Autom. Manuf. Tech. 2017, 12, 59–61.

12. Ding, Y.; Zhu, L.; Zhang, X.; Ding, H. A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf.
2010, 50, 502–509. [CrossRef]

13. Sellmeier, V.; Denkena, B. Stable islands in the stability chart of milling processes due to unequal tooth pitch. Int. J. Mach. Tools
Manuf. 2011, 51, 152–164. [CrossRef]

14. Sims, N.; Mann, B.; Huyanan, S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J.
Sound Vib. 2008, 317, 664–686. [CrossRef]

15. Quintana, G.; Ciurana, J.; Ferrer, I.; Rodrı´guez, C.A. Sound mapping for identification of stability lobe diagrams in milling
processes. Int. J. Mach. Tools Manuf. 2009, 49, 203–211. [CrossRef]

16. Jin, G.; Qi, H.J.; Cai, Y.J.; Zhang, Q.C. Stability prediction for milling process with multiple delays using an improved semi-
discretization method. Math. Methods Appl. Sci. 2015, 39, 949–958. [CrossRef]

17. Ozoegwu, C.G. High order vector numerical integration schemes applied in state space milling stability analysis. Appl. Math.
Comput. 2016, 273, 1025–1040. [CrossRef]

18. Merdol, D.S. Virtual Three-Axis Milling Process Simulation and Optimization. Ph.D. Thesis, University of British Columbia,
Vancouver, BC, Cananda, 2008.

19. Jin, G.; Zhang, Q.; Hao, S.; Xie, Q. Stability prediction of milling process with variable pitch cutter. Math. Probl. Eng. 2013, 2013,
932013. [CrossRef]

20. Jin, G.; Zhang, Q.; Hao, S.; Xie, Q. Stability prediction of milling process with variable pitch and variable helix cutters. Proc. Inst.
Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 281–293. [CrossRef]

21. Dai, Y.; Li, H.; Xing, X.; Hao, B. Prediction of chatter stability for milling process using precise integration method. Precis. Eng.
2017, 52, 152–157. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0007-8506(07)62486-X
https://doi.org/10.1115/1.3604637
https://doi.org/10.1115/1.2901633
https://doi.org/10.1016/S0007-8506(07)62342-7
https://doi.org/10.1007/s00170-019-04790-z
https://doi.org/10.1007/s00170-018-2017-7
https://doi.org/10.1007/s00170-021-08443-y
https://doi.org/10.1177/0954405416629587
https://doi.org/10.1007/s00170-021-07069-4
https://doi.org/10.1016/j.ijmachtools.2010.05.005
https://doi.org/10.1016/j.ijmachtools.2010.01.003
https://doi.org/10.1016/j.ijmachtools.2010.09.007
https://doi.org/10.1016/j.jsv.2008.03.045
https://doi.org/10.1016/j.ijmachtools.2008.11.008
https://doi.org/10.1002/mma.3543
https://doi.org/10.1016/j.amc.2015.10.069
https://doi.org/10.1155/2013/932013
https://doi.org/10.1177/0954406213486381
https://doi.org/10.1016/j.precisioneng.2017.12.003

	Introduction 
	Mathematical Model and Algorithm 
	Validation 
	Single-Degree-of-Freedom Milling Model 
	Double-Degree-of-Freedom Milling Model 
	Conclusions and Future Works 
	References

