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Abstract: The diagnosis of degenerative lumbar spine disease mainly relies on clinical manifestations
and imaging examinations. However, the clinical manifestations are sometimes not obvious, and the
diagnosis of medical imaging is usually time-consuming and highly relies on the doctor’s personal
experiences. Therefore, a smart diagnostic technology that can assist doctors in manual diagnosis
has become particularly urgent. Taking advantage of the development of artificial intelligence, a
series of solutions have been proposed for the diagnosis of spinal diseases by using deep learning
methods. The proposed methods produce appealing results, but the majority of these approaches are
based on sagittal and axial images separately, which limits the capability of different deep learning
methods due to the insufficient use of data. In this article, we propose a two-stage classification
process that fully utilizes image data. In particular, in the first stage, we used the Mask RCNN model
to identify the lumbar spine in the spine image, locate the position of the vertebra and disc, and
complete rough classification. In the fine classification stage, a multi-angle view of the intervertebral
disc is generated by splicing the sagittal and axial slices of the intervertebral disc up and down based
on the key position identified in the first stage, which provides more pieces of information to the
deep learning methods for classification. The experimental results reveal substantial performance
enhancements with the synthesized multi-angle view, achieving an F1 score of 96.67%. This represents
a performance increase of approximately 15% over the sagittal images at 84.48% and nearly 14% over
the axial images at 83.15%. This indicates that the proposed paradigm is feasible and more effective
in identifying spinal-related degenerative diseases through medical images.

Keywords: degenerative lumbar spine disease; multi-angle view of disc; mask RCNN model;
two-staged classification

MSC: 68U10

1. Introduction

With the global modernization of science and technology, prolonged sitting and
standing are becoming increasingly common, resulting in an increased incidence of diseases
such as low back pain, lumbar disc herniation, and vertebral bone spur degeneration.
Lumbar diseases can occur at all ages, mainly in elderly individuals, but in recent years,
an increasing number of young people also suffer from lumbar diseases. The prevalence
of spinal diseases is not only high but also has serious consequences. Low back pain
caused by lumbar disc herniation is the most common disease, with a total incidence
rate of 15–30% in Western countries and as high as 18% in China. Ref. [1], based on the
1990–2016 disease burden report in China and various provinces, quantified the prevalence
and years of disability caused by low back pain in China. He proposed that low back
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pain is the world’s most common cause of disability in people and is also the second
largest cause of disability burden among Chinese people. Therefore, considerable attention
to LBP is needed, especially for the female population. According to the U.S. National
Institutes of Health (NIH), the incidence of degenerative diseases of the spine is as high as
5.7% worldwide. Outpatient epidemiological surveys show that the incidence of spinal
diseases is second only to influenza, and approximately 76% of outpatients experience
symptoms of low back pain. In March 2018, Refs. [2–4] published three reports in the
leading international medical journal The Lancet, calling attention to the global problem of
lower-back pain and urgent action. Therefore, people must pay attention to the prevention
and treatment of lumbar disease. At the same time, the diagnosis of spinal disease is
time-consuming and subjective—radiologists look at images of patients in different frames
to determine what is causing the patient’s clinical presentation. Sometimes doctors come to
different conclusions about the same disease. The diagnostic process for spinal diseases is
so cumbersome that the implementation of intelligent diagnostic systems to assist doctors
is urgent. The difference between normal and suspected patients can be determined before
the radiologist can examine them, which will greatly reduce the workload of doctors and
the cost of testing. It can allow people with slight discomfort to check their bodies in
advance without considering money, to prevent the occurrence of disease in advance.

Medical imaging research is one of the solutions to these problems, and magnetic
resonance imaging (MRI) is generally used as source data for clinical decision-making.
Clinical diagnoses made by doctors are usually based on their personal experience, and
intelligent diagnostic methods or systems provide effective support for the doctors. With
the rapid development of artificial intelligence, machine learning techniques have become
popular and widely accepted by doctors in the field of supporting clinical diagnosis. Ref. [5]
proposed a new fuzzy method called interval type-2 fuzzy regression (IT2FR) to diagnose
schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD). Ref. [6] proposed
a new deep learning method with robust features learned from a generative adversarial
network (GAN) on different datasets of MR images for the purpose of tumor classification.
With the success of previous research, an increasing number of clinical diagnostic applica-
tions have sought support with the proper use of machine learning methods. Diagnostic
studies of spinal diseases also fall into this group. Ref. [7] investigated the effectiveness
of three dimensionality reduction techniques and three feature-selection techniques for
classifying lumbar spine MRI. Ref. [8] proposed a classifier based on a deep convolutional
neural network and considered extensive hyperparameter optimization to improve the
performance of intervertebral disc classification. Ref. [9] considered segmentation of the
region of interest (ROI) in the disc area to improve the classification performance using a
convolutional neural network.

The above-mentioned studies have produced promising results for the diagnosis of
spinal diseases by analyzing magnetic resonance imaging with modern deep-learning
approaches. However, they still have some common drawbacks. First, the majority of
research in the literature has focused mainly on the diagnosis of intervertebral discs, and
few scholars classify both discs and vertebrae. More importantly, their proposed methods
are limited by the insufficient use of MRI data. Normally, in the literature, the classification
results generated by different deep learning approaches are based on the sagittal and axial
view planes independently, which fails to consider the correlations between images of
different planes. For example, Ref. [10] proposed a novel regional feature recalibration
network (RFRecNet) is proposed to achieve accurate and reliable lumbar intervertebral
disc degeneration grading. Ref. [11] proposed a new way for lumbar disc location. These
latest studies still focus on accuracy improvement given a single data source. However,
the fusion of multi-angle information can provide a deeper understanding of the nature of
the target, which is essentially helpful in the classification process when using different
deep-learning approaches. Therefore, this paper proposes a two-stage process to classify
the lumbar spine images through deep learning approaches. In particular, in the first stage,
the Mask RCNN model was used to identify the lumbar spine in the spine image, locate
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the positions of the vertebra and disc, and complete their rough classification. In the fine
classification stage, a synthesized multi-angle view of the intervertebral disc is generated
by splicing the sagittal and axial slices of the intervertebral disc up and down based on the
key positions identified in the first stage. Finally, the VGG, ResNet, and MobileNet models
were introduced for the fine classification of spinal diseases. The entire process allows deep
learning approaches to fully use the information of the MRI image data.

2. Related Works

In the existing clinical diagnosis studies of spinal diseases, relevant studies on the
application of machine learning technology can be divided into the following three parts:
(1) The segmentation of the spine, including the segmentation of the vertebrae and the
intervertebral disc; (2) The localization and labeling of the vertebrae; (3) Clinical auxiliary
diagnosis of spinal diseases, including spinal deformity, spinal degenerative diseases,
outcome prediction, and clinical gait analysis. In the following, a literature review is
delivered based on the three aspects mentioned above.

2.1. Research on Medical Image Segmentation

The segmentation of medical images plays an important role in pathological research
on different parts of the human body. Before performing pathological analysis, doctors
need to determine the location of the diseased area and analyze whether the characteristics
of the diseased area correspond to the characteristics of the previous medical records to
determine the type of disease. Similarly, for a computer, it is necessary to determine the
region of interest before the extraction features of this region can be judged and analyzed.
Therefore, the accuracy of judgment largely depends on the effectiveness of segmentation.

Ref. [12] divided medical image segmentation into two categories: semi-automatic
segmentation and automated segmentation. He proposed that the future segmentation
of medical images should be based on the premise of reducing manual intervention and
improving the computational efficiency and accuracy of the segmentation algorithm. In
recent years, the segmentation of spine lesions has progressively switched from the orig-
inal manual segmentation to fully automatic deep learning-based segmentation. Spine
segmentation was originally based on the shape model. Ref. [13] employed an improved
machine learning algorithm, AdaBoost, to segment spine MR images, which achieved good
robustness and accuracy, outperforming previous algorithms. Ref. [14] introduced the
MRF (Markov Random Field) algorithm to perform well in the segmentation of 3D spine
CT images. Subsequently, an integrated algorithm that can integrate multiple medical
orientation pictures was developed. Ref. [15] broke the routine and used a single model to
segment different orientations of medical images for the first time. Ref. [16] combined FCN
and CNN to attain a fully automatic segmentation method with accurate segmentation and
considerably enhanced segmentation efficiency. Ref. [17] designed Dense-U-Net, an up-
graded network of U-net, which can accurately segment spines without any preprocessing
of the original data.

2.2. Research on Medical Image Positioning

In addition to the segmentation of medical images, the location of the lesion is also very
important for identifying and diagnosing the disease. It is time-consuming and laborious
for doctors to manually mark the location of the lesion, and accurate positioning cannot
be guaranteed. An automated positioning method that replaces manual positioning is
particularly important. However, due to the particularity of medical images, positioning is
relatively difficult. For example, some medical images are more complex and it is difficult
to extract features. In addition, there is a possibility that there are deformed lesions, which
can easily cause inaccurate positioning.

The research on medical image positioning has also undergone a transformation from
semi-automatic to fully automatic. Ref. [18] calculated the probability of the position of the
center point of the disc based on MR medical images using a classification tree algorithm
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to locate and mark the disc. Ref. [19] combined ASM (shape model) and GVF-snake
(active contour model of gradient vector flow) and identified a method for extracting shape
features of the disc for the classification of disc degenerative diseases. These methods rely
on image morphology. When there are large changes in shape, such as fracture deformities,
the positioning effect of the target will be considerably reduced. After 2014, most of
the research on the positioning of spine medical images relied on deep neural networks.
Ref. [20] proposed an improved J-CNN model based on the CNN model, which can
adjust and refine the key point positions generated by the random forest. The use of deep
neural networks not only encouraged the transformation of medical image positioning to
automation but also greatly improved the speed of positioning. Ref. [21] proposed the use
of an improved model based on a deep neural network and verified that deep learning can
accelerate the speed of positioning detection under the premise of accuracy. This provides
an immense auxiliary effect for clinical diagnosis.

2.3. Research on Classification of Medical Imaging Diseases

Disease classification of medical images is the ultimate goal of medical image seg-
mentation and positioning, which is also the key to intelligent medical-assisted treatment.
Regarding the classification of spine-related diseases, as early as 1988, [22] used a multi-
layer perceptron network to diagnose low back pain and compared it with three groups
of doctors at the same time. The results showed that the average diagnosis accuracy rate
of the network model was higher than that of the doctors. This is also the first practical
application where neural network algorithms achieve effective performance. Ref. [23]
proposed a Bayesian classifier-based system to help doctors screen and initially diagnose
spinal stenosis.

For the diagnosis of disc herniation, Ref. [24] used the intensity information and
texture features of the disc in the MRI to affect the image as a classification condition and
constructed five classifiers for the diagnosis of lumbar disc herniation. They are SVM,
PCA + LDA, PCA + Naive Bayes, PCA + QDA, and PCA + SVM, and the experimental
results show that SVM works best. Compared with Ghosh, [25] added the shape of the disc
to the classification condition and proposed a classification framework to achieve degener-
ation or non-degeneration of the intervertebral disc based on SVM. Ref. [26] proposed a
new method for automatically diagnosing degenerative disc disease in the median sagittal
plane MRI. This method is based on a machine learning framework and combines the
characteristics of different intervertebral discs to locate, segment, and classify lumbar MRI
images. Ref. [27] used the AdaBoost model to classify intervertebral disc degeneration on
five specific features. Ref. [28] used convolutional neural networks to classify intervertebral
discs into six categories, and the model achieved an accuracy of 95.6% in the detection and
labeling of intervertebral discs. Ref. [29] proposed a feature fusion method to train an SVM
model on the fused feature vector and classify the intervertebral disc.

The above research shows that the classification of spine-related diseases is mainly
based on the classification of intervertebral discs. The mainstream classification methods
are mainly machine learning SVM classifiers. In recent years, deep learning fusion training
methods have gradually appeared. Ref. [7] investigated the effectiveness of three dimen-
sionality reduction techniques and three feature selection techniques on the performance of
classifying lumbar spine MRI. Ref. [8] proposed a classifier based on a deep convolutional
neural network and considered extensive hyperparameter optimization to improve the
performance in intervertebral disc classification. Ref. [9] considered segmentation of the
region of interest (ROI) in the disc area to improve classification performance using a
convolutional neural network. However, very few studies have focused on the classifi-
cation of both discs and vertebrae and the sagittal and axial view plane images are used
independently, which limits the performance of the deep learning approaches due to the
insufficient use of data.
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3. Description of Methods
3.1. Mask RCNN Model

Ref. [30] proposed the Mask RCNN model which is based on the Faster-RCNN
model proposed by [31]. This model is more effective in detecting small targets. The
training process is as follows. First, a fixed-size image is passed to the backbone network
which includes ResNet 18, 34, 50, and 101 for feature extraction, and the feature maps
are generated using an FPN (feature pyramid network) [32]. Second, the output feature
maps pass through an RPN layer for extraction of region proposals. Then, two FCNs (fully
connected layer) are used to classify whether the object is the foreground or background
and adjust each anchor using bounding box regression. Finally, through the ROI Align
method, the region proposal is pooled to the corresponding size and placed into the fully
connected layer and the softmax function for classification and bounding box regression.
At the same time, the mask branch will segment the target from the image at the pixel level.
The framework of Mask RCNN is shown in Figure 1. The specific process is shown below:

Figure 1. The framework of the Mask RCNN. Mask RCNN uses ResNet and FPN as the backbone
network for feature extraction and uses the RPN network to extract target recommendation frames.

1. Using ResNet as the backbone, it will output five feature maps with reduced sizes
and different depth features, denoted as Cn, n = 1, 2, 3, 4, 5, 6, (where C1 has a larger size
and occupies too much memory, so it will not be used). It is obvious that the deeper the
layers, the fewer detailed features of the spatial information indicated by the feature map
and the stronger the semantic information displayed.

2. Mask RCNN utilizes FPNs (feature pyramid networks) to make full use of different
levels of features, which consist of a feature map Mn attained by a 1 × 1 convolution
operation to modify the channel of Cn and an addition with Mn+1. According to this
method, M5, M4, M3, and M2 can be obtained, respectively, as follows:

Mn =

{
Conv(Cn), n = 5
Upsample(Mn+1) + Conv(Cn), n = 2, 3, 4

(1)

After that, 3 × 3 convolution blocks are used to eliminate the aliasing effect from
upsampling, outputting Pn. P6 is used for the 5th anchor scale in RPN Generated by
subsampling from P5 with a stride of 2.

3. Pn, n = 2, 3, 4, 5, 6 are passed into the RPN to obtain the ROIs. The RPN traverses
the feature map with a fixed-sized sliding window whose center position is the anchor.
Each anchor has a corresponding scale coordinate in the original image and each of these
coordinates can be mapped to the original image according to the scale. Therefore, RPN
will output all anchor boxes and then generate positive and negative sample labels through
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the classification network, and at the same time, adjust the bounding boxes through the
regression method. In this process, the RPN multi-task loss consists of classification loss
and bounding box regression loss:

L({Pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i )+

λ
1

Nreg
∑

i
p∗i Lleg(ti, t∗i )

(2)

Lcls = − log(pi) (3)

Lreg(ti, t∗i ) = ∑
i

smoothL1(ti − t∗i ) (4)

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(5)

Pi indicates the probability that the ith anchor is predicted to be the true label, P∗
i is 1 for

positive samples and 0 for negative samples, ti =
[
tx, ty, tw, th

]
, which represents the bound-

ing box regression parameters of the ith anchor, t∗i =
[
t∗i , t∗y , t∗w, t∗h

]
indicates the bounding

box regression parameter of the ith anchor corresponding to the GT Box, Ncls is the number
of all samples in the first mini-batch, and Nreg is the number of anchor positions.

4. The RPN network can extract a lot of anchor boxes but not all of them need to be
predicted. By screening the top 6000 probabilities and then removing the anchor boxes that
exceed the image boundary, 2000 ROIs can finally be selected.

5. Select the feature map Pk from Pn, n = 2, 3, 4, 5 and intercept the ROI according to
the following formula:

k =
[
k0 + log2(

√
wh/224)

]
(6)

where k0 is the number of layers corresponding to an ROI with an area of 224 × 224, and w
and h are the width and height of each ROI. The formula is easy to understand. Large-scale
ROIs should be cut from low-resolution feature maps, which are conducive to recognizing
large targets, and small-scale ROIs should be cut from high-resolution feature maps, which
are conducive to detecting small targets.

6. Furthermore, classify ROI adjust its position, and perform mask segmentation.
The multi-task loss is defined as the same as [30], which is L = Lcls + Lbox + Lmask. Lcls is
classification loss, Lbox is bounding-box loss, and Lmask is mask loss.

3.2. VGG

In the 2014 ImageNet Challenge, Ref. [33] achieved first and second places in the
localization and classification tracks, respectively, which presented a significant aspect
of CNNs: their depth. The VGG model takes 11–19 weight layers to ensure learning of
more complex patterns. To push the depth to 11–19 and also at a smaller cost, the VGG
model uses two convolutional kernel sizes of the same size (3 × 3) instead of the previous
convolutional kernel size (5 × 5). In other words, the VGG model accomplishes the learning
task of the same size perceptual field by overlaying two hidden layers with a size of 3 × 3,
and this module enhances the network depth and improves the learning ability of the
network to a certain extent.

3.3. ResNet

The deep convolutional residual learning network proposed by [34] won first place in
the ImageNet competition, and the error rate of the network in the competition reached 3.57%.
The proposal of the ResNet network solves the problem in which the number of network
training layers cannot be deeper. Compared with ordinary networks, ResNet has many more
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shortcut paths. Its network is a block structure, which is very easy to modify and expand.
By adjusting the number of channels in the block and the number of stacked blocks, you
can easily adjust the width and depth of the network. In this way, networks with different
expression capabilities can be obtained without worrying too much about the degradation of
the network. As long as the training data are sufficient and the network is gradually deepened,
better performance can be obtained.

3.4. MobileNet

Ref. [35] introduced MobileNetV1 in 2017 as a lightweight CNN network with a
focus on mobile and embedded devices. The depthwise convolution proposed by this
network significantly reduces the amount of training and the number of parameters of the
model, compared to, for example, VGG networks and ordinary convolutional networks,
although there is a small decrease in accuracy, but the network efficiency is greatly enhanced.
Compared to MobileNetV1, MobileNetV2, which was proposed by [36], has a smaller model
with more accuracy, and the inverted residual and linear bottleneck modules have been
introduced to the network. Ref. [37] then adjusted the bottleneck of inverted residuals
in MobileNetV2, applied a neural architecture search approach to search for parameters,
re-analyzed the running duration of each layer in the network, and reconfigured the time-
consuming layers. In terms of precision and latency, MobileNetV3 Large and MobileNetV3
Small are superior to MobileNetV2.

4. Experiment and Design

In brief, the logic flow of the proposed two-stage classification process is shown in
Figure 2. In this study, we initially employed the Mask RCNN model to localize and classify
the lumbar spine’s intervertebral discs and vertebrae in sagittal spine images. Although we
used masks parallel to the image to cover the regions of interest, misalignment between the
masks and the actual regions of interest could potentially affect the classification results.
However, by using the center points of the bounding boxes as the locational references, the
deviations were kept within acceptable limits.

Subsequently, we employed quadratic spline interpolation to further refine the spinal
curve based on the preliminary localization results. This process not only facilitated more
precise center point determination but also compensated for any predictive points that the
Mask RCNN may have missed. The accurately fitted spinal curve allowed for sagittal slices
along the spinal axis to be more perpendicular to the spinal curve, effectively covering the
target area and reducing irrelevant noise interference.

In processing the intervertebral discs, we proportionally trimmed the sagittal slices
of the discs and their corresponding central axial slices, and then vertically concatenated
them to create multi-angle views of the discs. This not only increased the features available
but also significantly enhanced the accuracy of disc classification. For the vertebrae, we
directly used the trimmed sagittal slices for model training.

Finally, the multi-view images of the discs and the sagittal slices of the vertebrae
were fed into various classification networks including ResNet, VGG, and MobileNet for
feature extraction and further classification. These steps ensured the ability to evaluate and
classify from multiple perspectives, thereby enhancing the overall robustness and accuracy
of the model.
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Figure 2. Research method for the rough and fine classification process.

4.1. Spine Dataset

The spinal data for this experiment come from the “Alibaba Cloud Tianchi Algorithm
Competition “Spark” Digital Human AI Challenge-Intelligent Diagnosis of Spine Diseases”,
which is provided by Wanli Cloud and AllinMD Orthopaedics. It provides T1 and T2
sagittal images of the spine and T2 axial position (FSE/ TSE) images, and the picture format
is DCM. Figure 3 displays example plots of T1-weighted sagittal, T2-weighted sagittal,
and T1-weighted axial images in the dataset. We chose T2-weighted imaging for training
our model primarily for its high efficacy in depicting edema and inflammation around
intervertebral discs, which enhances the identification and classification of pathological
features. During the detailed classification phase, composite images that merged both
axial and sagittal views were exclusively created using T2-weighted imaging. This en-
sured uniformity in imaging technique across the merged views, optimizing our model’s
learning process.

Figure 3. The example types of images in the dataset provided by Tianchi competition. (Left) T2-
weighted sagittal image. (Middle) T2-weighted axial image. (Right) T1-weighted sagittal image.
T1-weighted images are produced by using short TE and TR times, while T2-weighted images are
produced by using longer TE and TR times.

The data contain 150 pieces of labeled training set data, 50 pieces of validation set data,
and 50 pieces of unlabeled test set. The key points are marked in the sagittal position of the
T2 intermediate frame in the data. Each marked lumbar vertebra contains six intervertebral
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discs and five vertebrae (without missing values), of which six intervertebral discs are:
T12-L1, L1-L2, L2-L3, L3-L4, L4-L5, L5-S1. The six vertebrae are L1, L2, L3, L4, L5. The
annotations provided by the competition are in JSON format, which contains key point
information, lesion types, and Dicom image information. The purpose of this experiment is
to classify the discs and vertebrae of the lumbar spine. The vertebral bodies are divided
into two types, and the intervertebral discs are divided into five types. Table 1 shows the
disease categories of intervertebral disc and vertebra.

Table 1. Disease category of intervertebral disc and vertebra.

vertebra

coding type

V1 Normal
V2 Degeneration

disc

coding category

V1 Normal
V2 Bulge
V3 Protruded
V4 Extruded
V5 Schmor

Dicom medical imaging is one of the most popular medical influences, bringing great
convenience to the exchange of information in the medical field. M. Mustra (2008) [38]
evaluated that Dicom’s influence can meet the needs of CT, MRI, SPECT, PET, and other dif-
ferent imaging equipment imaging data transfer and exchange. The exchange is conducive
to image storage and has high resolution, which can save a lot of medical information and
avoid the confusion and redundancy of binders. We can use Matlab, Python, C++, and
other software to read tags in Dicom images. Tags include four categories: Patient Tag,
Study Tag, Series Tag, and Image Tag. These four tags can help researchers obtain most of
the information about the image. Table 2 shows several tags and their functions involved
in this experiment.

Table 2. Tags and the functions commonly used in this article.

Tag Function

(0020, 000d) Study Instance UID
(0020, 000e) Series Instance UID
(0008, 0018) SOP Instance UID
(020, 0032) Image Position (Patient)

(0020, 0037) Image Orientation (Patient)
(0028, 0030) Pixel Spacing

Study Instance UID, Series Instance UID, and SOP Instance UID are the only indicators
that can determine the examination and sequence.

Image Position is the world coordinate of the upper left corner of the spine image,
with a total of three parameters. The upper-left corner of the image is the origin of the
image coordinate system.

Image Orientation, which contains three parameters, indicates the direction cosine of
the initial row and column relative to the patient. The orientation of the patient determines
the direction of the axes, with the x-axis increasing toward the left side of the patient,
the y-axis increasing toward the back of the patient, and the z-axis increasing toward the
head of the patient. Therefore, it is able to define the link between the image coordinate
system and the anatomical coordinate system and identify the position of the image in
the anatomical coordinate system. Combining Image Position and Image Orientation can
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calculate the position of the picture relative to the human body and the position of the axial
bitmap, sagittal image, and coronal image in the world coordinate system.

Pixel Spacing represents the interval between each pixel in the world coordinate
system, which corresponds to a distance of 0 in the image coordinate system.

According to the three tag indicators of Image Orientation, Image Position, and Pixel
Spacing, any conversion between the world coordinate system, anatomical coordinate
system, and image coordinate system can be completed.

4.2. Dataset Division

We divide the data into a training set, a validation set, and a test set. Since the public
test set of the competition does not include labeling and classification, it cannot be used to
judge the model, so we randomly divide the verification set provided by the competition
into two parts: the verification set and test set of this experiment. The distribution of the
three sets is shown in Table 3.

Table 3. Distribution of training set, validation set, and test set.

Type Quantity

Train 150
Val 26
Test 25

A piece of data includes 35 to 70 medical images in Dicom format, each of which
contains different sagittal, coronal, and axial three-dimensional images of different frames,
only one middle frame of sagittal image is annotated. In the labeled information, there
are a small number of vertebral bodies or intervertebral discs containing two categories.
In this experiment, only the previous category is selected for classification, and multiple
classifications of the same target are not involved.

4.3. Key Point Location and Rough Classification Based on Mask RCNN Model
4.3.1. Mask Design

Mask draws on the production of semiconductors in the industry, using photolithog-
raphy in the production process. The location only corrodes or diffuses the area outside
the designated area, thus introducing the concept of the “mask” to cover the selected area
with an opaque template. In this experiment, the role of the mask is to extract the region of
interest. First, set the mask to a matrix of all 0s with the same size as the picture, set the
range of the region of interest, set the matrix value in the range to 1, and set the rest to
all 0. Each target corresponds to a mask matrix, for example, for a sagittal image containing
11 vertebral bodies and disc marks, a total of 11 mask images are generated.

There are many ways to make a mask. One of the common ways is to use image
annotation tools such as VGG Image Annotator (VIA) and Labelme for manual annotation.
It can use rectangular, circular, polygonal, or dotted borders for annotation, and it can
simultaneously generate classification labels that can be directly used for training. Using
graphical annotation tools can better mark the area of interest, but this method is time-
consuming and labor-intensive. This article directly uses the marked point information
provided by the data to generate a rectangular box as a mask, which is more convenient.

This experiment consists of nine classification tasks. The nine categories are (1) BG
(background); (2) disc_v1; (3) disc_v2; (4) disc_v3; (5) disc_v4; (6) disc_v5; (7) vertebra_v1;
(8) vertebra_v2; (9) T12_S1. Among them, T12_S1 is specifically used to define the bound-
aries of the entire lumbar spine, preventing the Mask RCNN algorithm from incorrectly
identifying vertebrae and discs outside the designated lumbar area.

This experiment is centered on the marked points of the intervertebral disc and verte-
bra and constructs a horizontal rectangular frame with width and height of 36/512 × width
and 26/512 × height (width and height are the width and height of the sagittal figure) as
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the mask of discs and vertebra. A sagittal position is randomly selected from the training
set, and the mask is displayed on the sagittal position map, as shown in Figure 4.

Figure 4. Masks in sagittal images. Each sagittal image has 12 masks: one mask for the full lumbar
spine (T12_S1) localization and 11 masks for the localization of all discs and vertebrae.

4.3.2. Spine Detection

For the positioning of the vertebra and intervertebral disc, the adjacent vertebral
bodies and intervertebral discs can be positioned by using the position of the upper and
lower-vertebrae or intervertebral discs, but this method is not feasible in actual engineering
practice. In fact, there are missing annotation points on the spine image, which will cause
if a vertebra or disc fails to be located, all subsequent predictions will be wrong. In this
paper, the method of image location is used to transfer the middle frame of the sagittal
image of the MRI image into the fine-tuned Mask RCNN model to locate and classify
all the intervertebral discs and vertebrae as a whole. Target detection of the spine is
divided into positioning tasks and classification tasks. The input is a spine picture, and
the output is a prediction of the position of the disc and the vertebra in the spine picture
and its corresponding category. The positioning task is to input the MRI image of the
spine and output the coordinate position information of the vertebra or the disc. The
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classification task is to input an MRI image of the spine and output a feature vector. This
feature vector represents the probability that the image belongs to each category. The size
of the probability can determine which category the image belongs to. Therefore, the target
detection task is to output not only a coordinate position information but also a feature
vector of classification information.

Take the recognition of a sagittal image as an example. When a spine image is input a
into a multi-layer convolutional neural network, the network will output a feature map,
them classify the feature map through the fully connected layer, and finally obtain the
feature vector. This feature vector will be composed of two parts, one is the coordinates and
the other is the one-hot code representing the category and a credibility value p, which is
0-1. The coordinates are composed of center coordinates (x, y) and width and height (w, h).
One-hot codes are used to indicate categories. The discs in the lumbar spine are divided
into five categories, and the vertebral bodies are divided into two categories. In this paper,
five types of intervertebral discs and two types of vertebral bodies are classified together,
plus background and T12_S1 categories, a total of nine9 categories. The codes are 0 0000
0001, 0 0000 0010, 0 0000 0100, 0 0000 1000, 0 0001 0000, 0 0010 0000, 0 0100 0000, 0 1000 0000,
1 0000 0000, respectively. The combined label is Z = (x, y, w, h, 0, 0, 0, 0, 0, 0, 0, 0, 1, p), . . . ,
(x, y, w, h, 0, 0, 0, 0, 0, 0, 0, 1, 0, p), (x, y, w, h, 1, 0, 0, 0, 0, 0, 0, 0, 0, p). With this label template,
the real label and the output of the model can be used to calculate the loss during training
and backpropagate after the loss is output, and the coordinates, category, and credibility
predicted by the model can be obtained during testing. With the predicted coordinates, the
target can be marked on the image.

4.3.3. Model Training Configuration

In this experiment, suitable adjustments are made to the configuration of the Mask
RCNN training. Table 4 shows most of the model training hyperparameters in this experi-
ment. All of the images have been scaled down to 512 pixels by 512 pixels. The number of
classification classes, which is denoted by the parameter NUM_CLASSES and is set to 9,
consists of the following: one class for the background, one class for the full lumbar spine
(T12_S1), two classes for the vertebra categories, and five classes for the disc categories.
We use ResNet 18, 34, 50, and 101 as the backbone networks, and each network undergoes
training for a total of 100 epochs.

Due to the unique challenges associated with identifying vertebral bodies and inter-
vertebral discs, we did not use a pre-trained model in this study. Compared to general
image recognition tasks, these anatomical structures display distinct and limited features.
The use of non-specific datasets may lead to overfitting to non-relevant features, which may
obscure critical medical details and specific pathological characteristics that are essential
for accurate medical imaging analysis. Further, reliance on general datasets for pretraining
might impair the model’s ability to generalize, leading to suboptimal performance on real
medical images.

We simply choose the learning rate as 0.001. ALIDATION_STEPS is the number of
validation steps that should be run at the end of each training epoch, and STEPS PER
EPOCH is the number of training steps that should be executed throughout each epoch. In
spite of the fact that setting them to large numbers can result in more accuracy, we decided
to set them to 100 and 30, respectively, because the dataset and epoch were rather small.
This allowed us to strike a balance between accuracy and training efficiency. We give the
TRAIN_ROIS_PER_IMAGE hyperparameter the value of 200, which indicates that 200 ROIs
per image are fed to the classifier or mask head. The DETECTION_MIN_CONFIDENCE
parameter is set to 0.8, which represents the minimal probability value required to detect
instances, so regions of interest (ROIs) that fall below this threshold are skipped. DETEC-
TION_NMS_THRESHOLD is a non-maximum suppression threshold for detection, which
is set to 0.3 to discard results that exceed this threshold, to ensure that only structures
within the lumbar region are analyzed. Except for the above hyperparameters, the other hy-
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perparameters in the experiments are kept consistent with those in the original experiments
of Mask RCNN.

Table 4. Model training hyperparameters.

Hyperparameters Value

Image Size 512 × 512
Classification classes 9

Epoch 100
Learning rate 0.001

ALIDATION_Steps 100
Steps 30
ROIs 200

Detection Min Confidence 0.8
Detection NMS Threshold 0.3

RPN_NMS_Threshold 0.7
Mini_Mask_Shape (56, 56)

RPN_Anchor_RATIOS [0.5, 1, 2]

4.3.4. Experimental Platform

This experiment uses Keras and TensorFlow frameworks. The hardware platform of
this experiment is AMD3600 CPU, the GPU is a GTX1660super, and 32 GB RAM and a
500 G hard disk were used. The software platform is Windows 10, and the compilation
platform is PyCharm 2021.1.3.

4.4. Classification of Multi-Angle View of Disc and Vertebra Classification Based on
ResNet Network

This part aims to improve the phenomenon of poor classification effect in the position-
ing and rough classification using the Mask RCNN model. Different from making a parallel
mask, in this part we fit the spine curve to make a rectangular box parallel to the target and
cut the slice. The sagittal slices and axial slices of the intervertebral disc are spliced up and
down to form a multi-view image of the intervertebral disc, which is put into four kinds of
ResNet networks for training. In this part, the vertebrae and discs are trained separately to
prevent them from affecting each other.

4.4.1. Spine Curve Fitting

When using Mask RCNN for key point prediction and classification, a horizontal
rectangular mask with key points as the center is made using the information of the
marked points. Although this covers most of the characteristic information of vertebrae
and intervertebral discs. However, the spine has a certain physiological curve, and the
direct use of the horizontal mask will lose its features to a certain extent. The vertebrae and
discs are not parallel to the rectangular frame, and the calculator will extract the wrong
features. Using quadratic spline interpolation to fit the spine curve can solve this problem.

Common curve fitting methods include Lagrangian interpolation, Newton interpola-
tion, piecewise interpolation, polynomial curve fitting, and so on. It has been verified that
due to the few key points of the labeled data and the small curvature of the spine curve, the
use of more complex high-order polynomial interpolation functions or complex functions
is likely to cause the Runge phenomenon, whereas the use of simple interpolation functions
such as linear interpolation to fit the spine curve. It is not smooth enough, so it is more
reasonable to choose the quadratic sample question interpolation method to fit the spine
curve. However, the spine curve fitted by simple interpolation functions such as linear
interpolation is not smooth enough, so it is more reasonable to choose the quadratic spline
interpolation method to fit the spine curve.

The quadratic spline difference is a piecewise interpolation method. The interval [a, b] is
divided into n subdivisions, and each segment of the divided interval is fitted with a quadratic
polynomial. In this experiment, there are 12 marking points for the intervertebral discs and
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vertebral bodies (take the sagittal markings without missing values as an example). Since
the middle area of the lumbar spine is basically vertical, the abscissas of different vertebral
bodies or intervertebral discs are the same, so the quadratic function cannot be solved. We can
exchange the abscissas and ordinates of the marked points to solve this problem. The specific
steps of the quadratic spline difference method to fit the spine curve are as follows:

1. Mark the coordinates of the marked point as following:

(x1, y1), (x2, y2), (x3, y3) . . . (xi+1, yi+1) i = 11 (7)

2. Using the ordinate as the basis for dividing the interval, divide the interval [a, b]
into 12 sub-intervals:

[a, y2], [y2, y3], [y3, y4] . . . [yi, b] i = 11

a = y1, b = yi+1
(8)

3. Construct a quadratic interpolation function in each interval, denoted as Si(y):

xi = ai + biyi + ciy2
i i = 1, 2, . . . 11 (9)

4. All known points meet the following conditions:

S(yi) = xi

Si(yi+1) = xi+1

Si+1(yi+1) = xi+1

(10)

The quadratic interpolation function of two adjacent intervals has a continuous first-
order derivative and continuous second-order reciprocal at the intersection point:

S′
i(yi+1) = S′

i+1(yi+1)

S′′
i (yi+1) = S′′

i+1(yi+1)
(11)

According to the above conditions, simultaneous equations can calculate ai, bi, ci the
parameters of 12 interpolation functions.

Figure 5 is the curve-fitting diagram of the spine. The rectangular frame is intercepted
according to the normal and tangent of the spine fitting curve at the key points to ensure that the
mask can completely cover the disc and the vertebra and that the direction is level with the mask.

Figure 5. Spine curve fitting and section cutting. (Left) A smooth spine curve was obtained by fitting
the spine curve using the quadratic spline difference method. (Right) A rectangular slice of size
(50/521*W, 150/521*H) is cut along the tangent direction of the fitted curve.
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4.4.2. Axial Bitmap Positioning of Disc

In order to simulate the doctor’s diagnosis process and ensure the credibility of the
diagnosis, the axial image feature is added. This can increase the accuracy of the prediction.
By transforming the coordinates of the space coordinate system and the image coordinate
system, a CT/MR medical image positioning line can be drawn. Medical imaging includes
three coordinate systems: world coordinate system, anatomical coordinate system, and
image coordinate system. Through the conversion between these three coordinate systems,
the position of the pixel in the image coordinate system in the world coordinate system
and the position of the sagittal, coronal, and axial positions in the world coordinate system
relative to the human body and the instrument can be obtained.

In this experiment, the method of drawing the positioning line of the axial position of
the intervertebral disc is as follows:

1. First, filter out all the axial bitmap images. Read the six parameters in Image
Orientation, cross-product the vector composed of the first three parameters and the vector
composed of the last three parameters, and the vector obtained is the normal vector of the
image. If the normal vector points to the x-axis (x ̸= 0, y = 0, z = 0), it means that the image
is a sagittal image; if the normal vector points to the y-axis (x = 0, y ̸= 0, z = 0), it means
that the image is a coronal image. If the normal vector points to the z-axis (x = 0, y = 0,
z ̸= 0), it means that the image is an axial image.

2. Read the tag = [“0020|0032”, “0020|0037”, “0028|0030”] field to obtain the Image
Position, Image Orientation, Pixel Spacing, and Image Position of the positioning map
(sagittal image) to obtain the coordinate value of the upper-left corner of the image in the
space coordinate system, denoted as P0. Image Orientation has six parameters, denoted
as O1 = (a, b, c, d, e, f ), where r1 = (a, b, c) and c1 = (d, e, f ). Pixel Spacing represents
the width and height of each pixel in the space coordinate system in the actual image
coordinate system, denoted as d = (d1, d2). The width and height of the sagittal bitmap
in the image coordinate system are w and h. According to the above information, the
coordinates P1, P2, P3, P4 of the upper-left corner, upper-right corner, lower-right corner,
and lower-left corner of the sagittal bitmap in the spatial coordinate system can be obtained,
which are:

P1 = P0

P2 = P1 + r⃗ · (d1 · w)

P3 = P2 + c⃗(d2 · w)

P4 = P1 + c⃗(d2 · h)

(12)

3. In the same way, the coordinate values of the upper-left corner, upper-right corner,
lower-right corner, and lower-left corner of the axial image in the space coordinate system
can be calculated.

4. Calculate the vertical vector from the upper-left corner, upper-right corner, lower-
right corner, and lower-left corner of the axial position in the space coordinate system to
the sagittal position, denoted as D1, D2, D3, D4. If the four values have different signs in
pairs, it means that the axial bitmap and the sagittal bitmap intersect. Cross multiplying
the normal vector of the axial bitmap and the sagittal bitmap to obtain the vector of the
intersection line, which can be drawn with the sagittal bitmap. Figure 6 is the line map of
the axial position of the intervertebral disc.
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Figure 6. Axial positioning line map of the disc. This image is one of the T2-weighted sagittal images,
and the white lines are the projection of the axial images in the sagittal image. In this example, there
are three corresponding axial views of each disc.

After locating all the axial bitmaps in the sagittal image, it is necessary to find the
axial bitmap that best represents the features at the key point, so the axial bitmap closest
to the key point should be selected. Calculate the distance from the key point to all the
axial bitmaps and compare them to obtain the axial bitmap with the closest distance to the
key point. Since the axial bitmap corresponding to the annotation information in the data
is not complete, there is no corresponding axial bit slice at a small part of the mark point
position, so the distance between the key point and the axial bitmap should be restricted by
a distance < 4 (through observation, the axial slice that can fully represent the features at the
key point is about 4 pixels above and below the key point), avoiding selection of an axial
bitmap that is closest to the marked point but is not corresponding to the marked point.
Thus, the axial bitmap of the corresponding position of each key point can be obtained.

4.4.3. Multi-Angle View of Disc

Ref. [39] once put the intervertebral disc sagittal slice and the intervertebral disc axial
bitmap into two identical feature extraction networks and classification networks for disc
segmentation and lesion recognition. Considering that the sagittal slices at key points
have a certain correlation with their corresponding axial bitmaps, putting them into the
feature extraction network and the classification network training will lose the correlation
information of the two. In this paper, the sagittal slice of the intervertebral disc is spliced
with the axial position of the intervertebral disc, retaining its relevant characteristics.
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Ref. [40] focused on the morphological analysis and feature recognition of the herni-
ated intervertebral disc during the classification and geometric diagnosis of intervertebral
disc herniation (HIVD). It shows that the diagnosis of degenerative disc disease is insep-
arable from the discrimination of disc herniation. In order to ensure that the model is
not disturbed by unnecessary features, the features are located in the area of the inter-
vertebral disc protrusion. According to [41], disc diseases are mainly characterized by
the circumference in the axial section. For example, bulging is defined as asymmetric if
it is more evident in one section of the periphery of the disc but is not so focal as to be
characterized as a protrusion. In our dataset, it can be found that the intervertebral disc
protrusion is primarily located in the middle of the lower portion of the axial section image.
Based on this, we suppose the height of the axial image is h and the width is w, and take
(9/14 × h, 1/2 × w) as the center point and intercept a rectangular box with a height and
width ratio of 1:1.5. Suppose the height of the sagittal image is H and the width is W. Take
the key point as the center and divide it according to the ratio of height to width of 1:3.
The width is 50/512 × W and the height is 150/512 × H. The axial image and the sagittal
slice at the interception are spliced up and down, and the width and height are unified to
224 × 224 to obtain a multi-angle view of the disc. Figure 7 shows the splicing process of
the multi-angle view of the disc.

Figure 7. The splicing method of a multi-angle view of the disc. The sagittal and axial slices are
stitched together top and bottom to form a 224 × 224 multi-view image of discs.

4.4.4. Vertebra Slice

The cutting method of the vertebra is similar to that of the intervertebral disc. It is
also centered on the key point and cut along the tangent and normal directions of the spine
fitting curve. The width and height ratio is set to 1:1, and the width and height are both
55/512 × W. Figure 8 is a schematic diagram of the vertebra slice. It can be seen from the
figure that the vertebra and the rectangular frame are basically parallel.
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Figure 8. Examples of vertebra slices. The vertebra and the rectangular frame are basically parallel.

5. Results and Discussion
5.1. Performance Metrics

We use precision, recall, and F1 scores as performance metrics for the fine classification
of vertebrae and discs. The classification of vertebrae is a dichotomous task, so the value of
its F1 score is the harmonic mean of precision and recall, while the classification of discs is
a multi-class task, so we use the micro-average method to calculate its F1 score. The related
formulas are shown in Table 5.

Table 5. Performance metrics.

Performance Metrics Formulas/Meanings

TP True Positive
FP False Positive
FN False Negative
TN True Negative

Recall TP
TP+FN

Precision TP
TP+FP

F1 score 2 · Precision·Recall
Precision+Recall

Micro_Precision ∑n
i=0 TPi

∑n
i=0 TPi+∑n

i=0 FPi
, n = 4

Micro_Recall ∑n
i=0 TPi

∑n
i=0 TPi+∑n

i=0 FNi
, n = 4

Micro_Average F1 score 2 · Micro_Precision·Micro_Recall
Micro_Precision+Micro_Recall

5.2. Results of Key Point Location and Rough Classification Based on Mask RCNN Model

This experiment tested the network performance of the dataset in Mask RCNN. Table 6
is the F1 score and mAP index obtained when the backbone is set to ResNet18, ResNet34,
ResNet50, and ResNet101 networks.
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The experimental results show that the mAP and F1 score values of ResNet 18 are
basically higher than those of other networks with deeper network layers. The overall
accuracy rate is between 0.62 and 0.71, the recall rate is around 0.45, the mAP is around
0.53 to 0.58, and the F1 score value is between 0.4–0.45.

Table 6. Mask RCNN model performance.

Model Precision Recall mAP F1 Score

ResNet 18 0.6839 0.4585 0.5706 0.4455
ResNet 34 0.7146 0.4041 0.5353 0.4027
ResNet 50 0.6981 0.4583 0.5747 0.4421
ResNet 101 0.6237 0.4833 0.5463 0.4371

As shown in the Figure 9, the training loss curve and validation loss curve decline
continuously with a similar trend until stabilizing at a value that is virtually identical. There is
neither overfitting nor underfitting, as the generalization gap between them is quite small.

Figure 9. Learning curves for Mask RCNN model with ResNet50 backbone.

Figure 10 presents a prediction output map randomly selected in the test set. The
prediction outputs the position coordinates x and y of the prediction point and also outputs
the class of each prediction point and the probability p of the class. Through observation, it
can be found that the positioning points in the figure are relatively accurate, the prediction
points are basically in the middle area of the vertebra and the disc. The positioning task is
highly completed. However, because there are still intervertebral discs and vertebral bodies
that are not part of the lumbar spine, and their characteristics are similar. Therefore, it can
be found that a small number of discs and vertebrae other than T12_S1 are also located
and predicted, so the added T12_S1 category can be used to exclude non-lumbar discs and
vertebral bodies, making the positioning more accurate.

Figure 11 shows a grid of ground truth objects and their predictions randomly selected
from a test set. In the figure, the abscissa is the true category label, and the ordinate is the
predicted category label. As you can see in the figure, T12_S1, and the five vertebrae are
correctly predicted, but the classification of the intervertebral disc is not accurate enough, and
the classification task is generally poorly completed. The reason for the poor classification
of intervertebral discs is that the range of the discs is small and flat. When the degree of
curvature of the spine is large, if the mask size is set to completely cover the intervertebral discs,
many other features and noises besides the discs will be generated, which will interfere with
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classification. Secondly, the lesion features of the disc are small and difficult to detect. This is
also the reason why the discs and the vertebrae were subdivided in the follow-up experiment.

Figure 10. Prediction results of the Mask RCNN model. It outputs the name and category of each
disc, vertebra, and entire lumbar spine, together with their horizontal and vertical coordinates in the
sagittal images.

Figure 11. Grid of ground truth objects and their predictions. The model achieved a high accuracy in
predicting the localization of T12_S1 and a confidence value of 0.82 for the determination of its type.
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5.3. Classification Results of Multi-Angle View of Disc

In this section, through a thorough comparison, we expect to verify that using the
synthesized multi-angle view of the intervertebral disc, the classification accuracy of
different deep-learning methods will be greatly improved compared with the cases of
using sagittal and axial slice images independently. We used ResNet, MobileNet, VGG,
and their derivative networks for classification. To avoid model overfitting due to the
small dataset, two regularization techniques, batch normalization and dropout, were added
in the last two layers of each network. We used precision, recall, and F1 scores as the
performance metrics of the model. In addition, we compared the classification results of
the intervertebral disc multi-view images with those of the sagittal image only and the
axial image only. The results of the comparison are displayed in Table 7, where it can be
seen that using multi-view images for classification produced roughly superior results on
every same network. Specifically, the multi-view image classification of intervertebral discs
showed the best results in the VGG16 network with an F1 score of 96.36%, much higher
than the highest F1 score of 86.48% obtained in MobileNetV2 for the sagittal image only
and 83.15% for the axial image only in the VGG16 network. Moreover, limited by the size
of the dataset and the resolution of the images, better results are shown when using the
network with fewer layers, regardless of which kind of disc images are used.

Table 7. Comparison of disc classification results using different types of images: multi-view images,
sagittal image only, and axial image only.

Multi-View Image Axial Image Only Sagittal Image Only

Model Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

ResNet18 0.9000 0.9333 0.9018 0.7979 0.7991 0.7972 0.7995 0.7248 0.7623
ResNet34 0.8583 0.8667 0.8138 0.8390 0.7769 0.8011 0.7591 0.7803 0.7618
ResNet50 0.8800 0.9000 0.8646 0.7964 0.8060 0.7999 0.7988 0.8170 0.8064
ResNet101 0.9229 0.9000 0.8895 0.8110 0.7994 0.8018 0.7511 0.7578 0.7520
MobileNetV2 0.9467 0.9333 0.9313 0.8640 0.8049 0.8288 0.8925 0.8481 0.8648
MobileNetV3_Small 0.9467 0.9000 0.8952 0.8327 0.7980 0.8131 0.8119 0.8117 0.8076
MobileNetV3_Large 0.9429 0.9333 0.9267 0.8200 0.7994 0.8073 0.8764 8.8392 0.8507
VGG16 0.9667 0.9667 0.9636 0.8651 0.8123 0.8315 0.8702 0.8207 0.8419
VGG19 0.9714 0.9600 0.9624 0.8285 0.7837 0.8032 0.8017 0.8064 0.8002

Figure 12 shows that the learning curve generated during the fine classification of disc
multi-view images is not as stable as the learning curve generated for the classification of
sagittal disc images using the Mask RCNN model. The training loss curve and validation
loss curve continue to decrease with the same trend and are stable within a certain range,
but the validation loss curve oscillates up and down within a small range, which is due
to the lesser amount of data. When finding the axial images through the center point
of discs from the sagittal section, there are missing values exist and some axial images
are excluded because they are too far from the center point. In addition, because the
samples of medical image data are typically unbalanced, the amount of data belonging to
the disc_v1 and disc_v2 disease categories is significantly greater than the amount of data
belonging to the other three categories in the generated cone multi-view dataset. To mitigate
these issues, we employed some data transformation techniques specifically tailored to
medical imaging datasets. These included traditional geometric data augmentation such
as small rotations (1–5 degrees) and horizontal flips, along with intensity adjustments to
enhance contrast and brightness. Additionally, we used filters, such as Gaussian blur or
edge enhancement filters, to simulate different imaging conditions and improve model
robustness against variations in image quality. We also introduced random noise into the
images to further augment the data. These data augmentation methods were primarily
applied to the classes with fewer samples, specifically targeting underrepresented classes
to significantly increase their representation, thereby addressing the imbalance in our
dataset. These focused augmentation strategies helped stabilize the validation loss curve to
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some extent by enhancing the diversity and volume of our training data. However, some
oscillations persisted due to the inherent challenges in medical image analysis.

Figure 12. Learning curve of disc multi-view images under VGG16 network.

Therefore, To evaluate the resilience of the model effect, we chose the model VGG16
with the highest F1 score in the experiment for 10-fold cross-validation and output the F1
score performance metric, which has a mean value of 94.43% and a standard deviation of
0.03%. The results are rather consistent.

5.4. Classification Results of Vertebra

We still use nine types of networks to classify vertebrae, such as ResNet, MobileNet,
and VGG, and their derivative networks, for feature extraction and data learning. Table 8
shows the three performance metrics of the nine classification networks in the vertebral
subclassification experiments. The findings of the experiment indicate that the ResNet50
model has a higher F1 score of 85.27%. The comparison between the F1 scores of each
network and their derivative networks reveals that the increase in the number of layers
of networks raises the F1 score to a certain extent, but there is a tendency for the F1 score
to decrease in the presence of excessively large networks. This is mostly due to the fact
that as the number of weight parameters in a model increases, it can better understand
the characteristics of the vertebra, but if there are too many parameters, the model will be
overfitted. The key to improving the effect lies in balancing the number of parameters.

Table 8. Nine types of network classification effects for vertebra sub-classification.

Model Precision Recall F1 Score

ResNet18 0.6746 0.7292 0.6889
ResNet34 0.6746 0.7291 0.6889
ResNet50 0.8354 0.8354 0.8527
ResNet101 0.74 0.7083 0.7217

MobileNetV2 0.62 0.6042 0.6104
MobileNetV3_Small 0.6491 0.6667 0.6563
MobileNetV3_Large 0.6731 0.625 0.64

VGG16 0.9444 0.75 0.8039
VGG19 0.74 0.7083 0.7217
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5.5. Results Summary and Discussion

When using the Mask RCNN model for positioning tasks and rough classification, the
highest F1 score obtained is 44.55%. After the classification of the multi-angle view of Disc
and vertebra classification based on ResNet Network, the F1 score of the disc is as high as
96.36%, and the F1 score obtained by the vertebral classification has also reached 85.27%.
The model classification effect has been greatly improved, which show s the following:

1. Fitting the spine curve to slice the vertebral body and intervertebral disc can ensure
that the features of the vertebral body and intervertebral disc are more contained in the
region of interest so that they are not easily interfered with by other features. Such an
approach has a positive effect on the classification effect.

2. Separating the intervertebral disc and the vertebral body in the network training
can obtain a better classification effect.

3. The multi-angle view of the intervertebral disc formed by splicing the axial slice
and the sagittal slice of the disc is more advantageous than the separate sagittal or axial
slice of the intervertebral disc.

6. Conclusions and Future Work
6.1. Conclusions

The development of an efficient, intelligent, and accurate lumbar spine diagnostic
system will be a problem that humans need to solve in the future. This paper proposes
using a deep learning framework to detect and classify intervertebral discs and vertebrae in
two steps. This method first uses the Mask RCNN model to locate and coarsely classify the
vertebral body and intervertebral disc and then puts the vertebra and disc into the ResNet
feature extraction network and classification network for training. This article also proposes
a method of combining the sagittal plane and the axial plane to enhance the characteristics
of the lumbar spine. The model can achieve the effect of the SoTA model in the identification
of intervertebral discs and vertebral bodies. This article explains the realization principles
of medical images and the data storage structure of their annotations in detail, as well as
their preprocessing methods, the realization of masks, and the processing of slices. At the
same time, it describes the realization of the model and the process of experimentation,
making exploratory attempts for future research. The results of the experiment showed that
in the multi-level detection of intervertebral discs, the F1 score reached 96.36%, and the F1
score of the vertebra classification task was 85.27%, which can achieve the effect of medical
automatic assistance. The dataset for this experiment comes from real hospital MRI images
and has more noisy images, so the model has engineering practicality and robustness.

Furthermore, the integration of this system into existing healthcare workflows could
improve the reliability of the diagnostic processes, particularly by connecting the system
directly to MRI or CT scanners. This would allow for preliminary diagnoses immediately
post-scanning, reducing dependency on manual diagnostics and potentially decreasing
the necessity for follow-up visits. Especially beneficial in remote areas lacking sufficient
medical expertise, this system could substantially lower misdiagnosis rates and offer cost-
effective solutions. Authoritative doctors could further augment the system’s accuracy by
incorporating their diagnostic assessments back into the database, enhancing the model
through continuous learning.

Looking forward, the performance of the system could be improved by employing
various advanced deep learning architectures to refine accuracy. Once the single model’s
accuracy is sufficiently high, the system could transition from semi-automatic to fully
automated operations. Ultimately, the future of medical diagnosis models will gradually
be transformed into artificial intelligence pre-checks, significantly alleviating the challenges
associated with accessing medical care. The system is anticipated to become increasingly
pivotal in future research, playing a transformative role in medical diagnostics.
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6.2. Research Limitations and Further Work

As discussed previously, the proposed two-stage classification process presents a
better performance by synthesizing a multi-angle view of the intervertebral disc, which
provides more information for deep learning approaches when classifying lumbar diseases.
Although the results look appealing, it still has some limitations. First, the results generated
in this research are only based on one dataset. There does exist the probability that the
results may shift if the datasets are collected from another hospital, region, or country or
even if images are taken by a device from another company. Investigating the performance
of the process scheme using more datasets is definitely a meaningful topic and is worthy of
further research. Second, the quality of the dataset is also a crucial issue. In this research,
the data quality of the training and testing datasets are the same. However, this assumption
may not hold for other applications. It is interesting to conduct a sensitivity analysis to
know how much the performance of the proposed scheme will shift if the quality of the
training and testing datasets are not balanced. This topic could be a good direction for
further research. Finally, the results obtained from the AI models discussed in this research
are not compared with the performance of radiologists due to limited resources status. It
could be interesting and meaningful to further investigate this issue in future studies.
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