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Abstract: In order to support a low-carbon economy and manage market competition, location–
inventory–routing logistics management must play a crucial role to minimize carbon emissions
while maximizing customer satisfaction. This paper proposes a bi-objective mixed-integer nonlinear
programming model with time window constraints that satisfies the normal distribution of stochastic
customer demand. The proposed model aims to find Pareto optimal solutions for total cost minimiza-
tion and customer satisfaction maximization. An improved non-dominated sorting genetic algorithm
II (IMNSGA-II) with an elite strategy is developed to solve the model. The model considers cost fac-
tors, ensuring that out-of-stock inventory is not allowed. Factors such as a carbon trading mechanism
and random variables to address customer needs are also included. An entropy weight method is
used to derive the total cost, which is comprised of fixed costs, transportation costs, inventory costs,
punishment costs, and the weight of carbon emissions costs. The IMNSGA-II produces the Pareto
optimal solution set, and an entropy–TOPSIS method is used to generate an objective ranking of the
solution set for decision-makers. Additionally, a sensitivity analysis is performed to evaluate the
influence of carbon pricing on carbon emissions and customer satisfaction.

Keywords: location inventory routing; carbon trading scheme; customer satisfaction; NSGA-II;
entropy–TOPSIS

MSC: 90B06; 90C29

1. Introduction

The emergence and advancement of the cold chain logistics (CCL) network have
significantly contributed to meeting the demand for fresh food from various parts of the
world. However, customers now have increasingly high expectations, expecting fresh
food orders to arrive within specific time frames. The carbon emissions from the CCL
transportations are relatively high. Therefore, optimizing the distribution network in
the CCL must include being accountable for the overall cost of the fresh food, customer
satisfaction, and carbon emissions, as highlighted by [1].

Customer satisfaction (CS) measures how well customers feel about the products and
services they receive [2]. Numerous studies have demonstrated the positive relationship
between CS and important business outcomes such as customer loyalty, repeat purchase
intention, positive word of mouth, and market share [3]. Ensuring high levels of CS can
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generate significant value for enterprises. In order to achieve this, especially with intense
market competition, it is crucial to prioritize CS by considering the customer time window
(TW) in the integrated optimization of the location–inventory–routing problem (LIRP).

Rapid economic growth and increased consumption have significantly increased car-
bon emissions [4]. Reducing greenhouse gas emissions has become a pressing global
concern [5]. Statistical data show that more than 70% of the global transportation sector’s
carbon emissions come from land vehicles (see details at [6]). The CCL network, in par-
ticular, is recognized as a high-energy and high-carbon emission industry [7]. Therefore,
optimizing distribution paths to minimize energy consumption and carbon emissions is of
utmost importance.

This paper primarily focuses on determining the optimal transfer distribution center
(DC) from a set of alternative distribution centers, taking into account the soft time window
(STW) and other specified constraints. This involves establishing the transportation volume
from the factory to the selected DCs, representing the ordered quantity for each DC.
Subsequently, an optimal path is identified from each DC to every distributor to minimize
the total supply chain cost (TSCC) and maximize CS.

In short, the CCL network process necessitates consideration of both CS and environ-
mental benefits, prompting several crucial research questions: (i) How can CS be evaluated
within the context of LIRP? (ii) How can the STW factor be incorporated, potentially
through the implementation of a time penalty strategy? (iii) How can the cost associated
with carbon emissions be accurately calculated? (iv) How can the optimization model that
considers TSCC, CS, carbon emissions and environmental impacts (CEEI), and STW factors
be solved?

The remainder of this paper is organized as follows: the related works of LIRP are
presented in Sections 2–4, which define the fundamental assumptions and model parame-
ters of the proposed model. Section 5 formulates the bi-objective mixed-integer nonlinear
programming (MINLP) model with CS and stochastic demand following a normal distribu-
tion. In Section 6, an improved nondominated sorting genetic algorithm II (IMNSGA-II)
with an elite strategy is proposed to solve the LIRP model, along with the introduction
of the entropy–TOPSIS method. Section 7 investigates the effectiveness of the proposed
IMNSGA-II and utilizes it to validate the MINLP model using benchmark data. Addition-
ally, a case study of a CCL enterprise in Jinan City, Shandong Province, China is used to
verify the model. The sensitivity analysis of CEEI and CS in the stochastic demand of the
LIRP model decision outcomes is discussed in Section 8. Finally, conclusions and future
research are provided in Section 9.

2. Literature Review

CCL is a specialized supply chain that maintains strict temperature requirements
during product handling, storage, and transportation. In 2016, ref. [8] proposed a P-
center selection method to determine the transshipment point between customers in a
CCL LIRP. This method was evaluated using both benchmark and real data, including a
case study of frozen chicken delivery by a local company in Selangor, Malaysia. Ref. [9]
proposed a new LIRP model for CCL management, using the NSGA-II algorithm to solve
the nonlinear integer programming model and optimize multiple objectives such as location
selection, inventory, and transportation cost simultaneously. Ref. [10] introduced the LIRP
optimization model with a path STW constraint in CCL and developed an improved
multi-objective ant colony optimization (MACO) algorithm to solve it.

Moreover, ref. [11] studied a low-carbon vehicle routing problem considering CS in
a practical CCL network and proposed an adaptive genetic algorithm (AGA) method to
solve it. However, there was no comprehensive integration of LIRP. Ref. [12] investigated a
bi-objective programming model that included LIRP. It considered total cost minimization
and carbon emission cost minimization using a multi-objective hybrid harmony search–
simulated annealing (MOHS-SA) algorithm to produce well-distributed Pareto-optimal
solutions. Ref. [13] considered the time window and carbon trading mechanism to establish
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a low-carbon environmental protection cold chain multi-objective LIRP model, solved using
an improved GA. These studies did not incorporate CS based on time.

Other research, such as [14], proposed a CCL LIRP model considering carbon emissions
and product freshness with hard time window constraints. They used the YALMIP toolbox
to solve the model and obtain optimal solutions for this complex multi-objective problem.
Product freshness in this study was also viewed as a type of CS research. Ref. [15]
constructed a CCL LIRP model based on a broken-line STW and CS, solving it using an
improved ant colony algorithm. These studies considered CS and carbon emissions but
assumed deterministic demand for the fresh product.

In 2023, ref. [16] established a bi-objective LIRP model with the total cost and lost sales,
respectively, in which stochastic demand is considered and carbon tax policy is applied to
reduce emissions. The augmented epsilon constraint method is used to solve this model.
The model still does not consider CS and does not use a metaheuristic algorithm to solve
the model. The contribution of this paper is that it will simultaneously consider CS under
the constraint of soft time windows and the cost of minimizing carbon emissions, with
customer demand modeled as a stochastic variable in the cold chain LIRP.

As global warming worsens, China has implemented various measures to reduce
carbon emissions. On 5 January 2021, China’s Ministry of Ecology and Environment issued
the “Carbon Emission Trading Management Measures (Trial)”, and on 16 July 2021, China’s
carbon emission trading market officially began online trading. The carbon emission
trading market allows for the public trading of carbon emission rights as an asset. The
carbon trading system (Figure 1) regulates this market, promoting the reduction of global
greenhouse gas and carbon dioxide emissions. The carbon trading mechanism is one of the
most effective measures to control carbon emissions [17].

Figure 1. China’s carbon trading system.

The research by ref. [18] focused on the optimized single-objective planning of carbon
emissions, including operating costs, risks, and paths. The carbon emission cost calculation
formula in this study is directly based on carbon emissions per kilometer and is obtained
using CPLEX Opl version 12.5.1. Ref. [19] proposed a stochastic LIRP model for the biofuel
supply chain aimed at minimizing total costs and carbon emissions, which is solved using
a metaheuristic algorithm. The carbon emission formula in Asadi’s model depends on the
vehicle’s weight, as well as the length and time of transportation. Additionally, ref. [20]
proposed a LIRP model for a green supply chain network design, incorporating vehicle
fuel consumption as a substitute for carbon emissions in the objective function, which was
solved using the GAMS 24.1 software.

Ref. [13] comprehensively considered factors such as time windows and the carbon
trading mechanism to establish a low-carbon ring. Given the high energy consumption, car-
bon emissions significantly impact CCL. Ref. [21] established a bi-objective programming
model under uncertainty, including transportation costs due to fuel consumption, and the
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performance evaluation was satisfaction. This problem was solved using a weighted fuzzy
multi-objective solution method combined with CPLEX.

Recently, ref. [22] proposed the LRIP for CCL that incorporates a carbon trading
mechanism. The model developed a multi-objective programming framework to optimize
location, transportation, inventory, and carbon trading costs. Subsequently, the improved
non-dominated sorting genetic algorithm II (NSGA-II) was employed to solve the multi-
objective programming model. However, it should be noted that the model does not
account for STW constraints and CS.

Based on the above literature, this paper will focus on establishing a correlation
between carbon emissions, fuel consumption, and driving distance. Consequently, a
carbon emission cost function based on the carbon trading mechanism is proposed. Table 1
presents a summary of key research on the LIRP synthesis problem based on relevant
literature characteristics.

Table 1. Summary of related research on LIRP.

Author Year CCL MOP STW CS LC (Meta) Heuristic Stochastic Case Study

Shariff et al. [8] 2016 ✓ ✓
Lerhlaly et al. [18] 2016 ✓
Zheng et al. [9] 2017 ✓ ✓ ✓ ✓
Asadi et al. [19] 2018 ✓ ✓ ✓ ✓ ✓
Li et al. [10] 2020 ✓ ✓ ✓ ✓ ✓
Gholipour et al. [20] 2020 ✓ ✓ ✓
Liu, Zhu et al. [14] 2021 ✓ ✓ ✓ ✓ ✓
Misni et al. [12] 2021 ✓ ✓ ✓ ✓ ✓
Zhu, Wen et al. [13] 2021 ✓ ✓ ✓ ✓ ✓ ✓
Shu et al. [15] 2021 ✓ ✓ ✓ ✓ ✓ ✓
Tavana et al. [21] 2021 ✓ ✓ ✓ ✓
Li et al. [22] 2022 ✓ ✓ ✓ ✓ ✓ ✓
Govidan et al. [16] 2023 ✓ ✓ ✓ ✓
This paper 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CCL: cold chain logistic; MOP: multi-objective programming; STW: Soft Time Window ; CS: customer
satisfaction; LC: low carbon.

Back in 1995, ref. [23] introduced a genetic algorithm known as the non-dominated
sorting genetic algorithm (NSGA). However, this algorithm had some shortcomings, such
as high computational complexity when handling large amounts of data and the need to
specify the shared radius. In the early 2000s, ref. [24] refined and enhanced the NSGA,
leading to the development of the NSGA-II algorithm. The NSGA-II algorithm is widely
recognized and utilized for solving multi-objective optimization problems, particularly
those involving conflicting objectives like the ones discussed in this paper. It effectively
addresses the main issues of the traditional NSGA algorithm by reducing the computational
complexity from O(nM3) to O(nM2), where n represents the number of objective functions
and M denotes the population size without needing a shared parameter and incorporating
an optimal retention mechanism.

In 2018, ref. [25] established a bi-objective MINLP model for the LIRP, employing the
NSGA-II and multi-objective particle swarm optimization (MOPSO) to solve large-scale
problems. The comparison in this paper demonstrated that the NSGA-II outperformed
MOPSO, indicating its superiority in uncovering high-quality solutions. Additionally,
ref. [26] introduced three metaheuristic algorithms, NSGA-II, MOPSO, and the Pareto
envelope selection algorithm (PESA-II), to solve a bi-objective LIRP model considering risk
pool and STW. The NSGA-II exhibited a better performance than the other algorithms in
terms of solution quality and convergence.

Similarly, ref. [27] utilized the NSGA-II algorithm to solve a bi-objective program-
ming LIRP model. They explored different variants of the algorithm, including parallel
cooperative and pure parallel methods. Compared to the strength Pareto evolutionary
algorithm version II (SPEA-II), under the same conditions, the NSGA-II demonstrated
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superior performance in terms of computation time (CT) and the number of non-dominated
solutions (NDS).

This paper builds on these studies by leveraging the NSGA-II algorithm to optimize
the cold chain LIRP model, considering customer satisfaction under STW constraints and
minimizing carbon emissions while addressing stochastic customer demand.

3. Basic Assumptions

Some assumptions are given to better define the model’s constraints:

1. Only a single variety of cold chain food is considered. Due to the wide variety of cold
chain food, the temperature control, shelf life, and susceptibility of these foods are not
the same. Thus, the items cannot be placed in the same type of vehicle.

2. Each customer is served by one DC.
3. Each developed DC provides a distribution service for the customer point it serves

every working day, and the annual working days of all the developed DCs are
the same.

4. The demand of each customer point is independent and normally distributed.
5. The delivery vehicles in the same store are of uniform specifications; that is, each

vehicle has the same capacity, fuel consumption, and speed in transit.
6. Carbon emissions from transportation are considered.
7. The total carbon emission of the supply chain is limited.
8. Any unexpected situation that might occur during the distribution process is not

considered, such as the change in production demand of the vehicle production center,
traffic control, weather, etc.

9. Each distribution route can be served by multiple vehicles.
10. The STW factor is considered in the distribution, and the related penalty cost and time

have some linear function relationship.
11. The sum of customer demand on any distribution line should not exceed the vehicle’s

load capacity, and the vehicle initiates its journey from the DC and completes its
assigned tasks before returning to the same DC.

4. Model Parameters and Definitions

The following are the descriptions of the model parameters and decision variables.

Parameters

N : A factory node is denoted as N = 0.
H : A collection of potential locations of DCs.
J : A collection of distributors.
K : All delivery vehicles assemble.
gh : Potential distribution center h fixed construction cost, h ∈ H.
dij : Distance between node i and node j, i, j ∈ N ∪ H ∪ J.
ih : Distribution center h unit product inventory holding cost.
α : Probability of running out of stock, and 1 − α is the corresponding service level.
zα : Safety stock factor.
p : Unit price of goods ordered from the factory.
L : Lead time.
µj : Average demand of distributor j in the period.
σj : Standard deviation of demand of distributor j in the period.
ch : Distribution center h maximum storage capacity service capacity.
CCAP : Carbon allowances allocated along the supply chain.
C1 : Fixed cost of delivery vehicles has nothing to do with the vehicle’s carrying weight
and the vehicle’s driving distance.
FCij : Energy consumption cost of distribution vehicle.
Tc : Transportation cost of the delivery vehicle.
[ET′

j , LT′
j ] : Expected delivery TW for distributor j in CS function.
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α1 : Penalty cost per unit time for the vehicle to arrive at distributor j before time ET′
j .

α2 : Penalty cost per unit time for the vehicle to arrive at distributor j after time LT′
j .

[eTj, lTj] : Acceptable delivery TW for distributor j in CS function.
Pc : Penalty cost.
ρ : Vehicle fuel consumption per unit distance.
QX : Dead weight of vehicle.
ρ(Qij) : In the process of the delivery vehicle from node i to node j, the load Qij is the
fuel consumption per unit distance of the goods.
Q0: Distribution vehicle weight.
Qk: Maximum carrying capacity of the distribution vehicle.
ρ0: Fuel consumption per unit distance at no load.
ρ∗: Fuel consumption per unit distance at full load.
Qc: Total carbon emissions in distribution.
p2: Unit price of fuel.
ω: Carbon emission coefficient.
Cc: Carbon emission cost.
Ce: Carbon tax, the environmental cost of consuming each unit of carbon emitted.
D: Maximum driving distance of delivery vehicles.

Decision Variables

xh: Quantity ordered from the factory to the DC h.
xhj: Transportation volume that DC h allocates to distributor j.

yh =

{
1, If establish the DC h;

0, Otherwise.

zhj =

{
1, If distributor j is served by DC h;

0, Otherwise.

xk
ij =

{
1, If the delivery vehicle k travels from node i to node j;

0, Otherwise.

yk
i =

{
1, If delivery vehicle k serves node i;

0, Otherwise.

S =

{
1, If there is the shortage of stock and insufficient capacity;

0, Otherwise.

5. Formulation of Bi-Objective LIRP with Stochastic Demand
5.1. Objective Function Design

1. Fixed Construction Cost
The LIRP model proposed by [28] stated that the establishment cost of a distribution
center (DC) depends on whether the DC, h, is open. Therefore, the fixed construction
cost of the DC location is given as follows:

G = ∑
h∈H

ghyh. (1)

2. Transportation Cost
The transportation cost in this model is mainly composed of two parts. The first part
is the fixed cost of delivery vehicles, which is the cost of dispatching vehicles, as
mentioned by [28]. The fixed cost, denoted as C1, includes the fixed cost of vehicles,
wages of delivery personnel, and other vehicle-related costs. This cost is constant and
does not depend on the vehicle weight or driving distance.

The second part of the transportation cost, as discussed in previous literature
such as [9,10,28,29], is traditionally measured by the unit distance cost multiplied by
the distance traveled. Generally, the farther a vehicle travels, the greater its carrying
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capacity and the higher the transportation cost [29]. However, unit distance cost is not
as straightforward to determine as the fuel consumption on the road. Additionally,
both refrigeration and the operation of cold chain vehicles are primarily powered by
fuel oil. Thus, following the approach in the cold chain vehicle routing problem (VRP)
literature [1], the transportation cost incorporates the energy consumption cost of the
delivery vehicle, denoted as FCij.

The fuel consumption per unit distance, ρ, at customer node (i, j) shows a linear
correlation with the vehicle load QX [30]. This relationship can be mathematically
expressed as follows:

ρ(QX) = a(Q0 + QX) + b. (2)

Considering the dead weight (Q0) and maximum load capacity (Qk) of the dis-
tribution vehicle, it is imperative to determine both the fuel consumption per unit
distance in unloaded conditions (ρ0) and under full-load circumstances:

ρ0 = aQ0 + b, (3)

ρ∗ = a(Q0 + Qk) + b, (4)

which obtain,

a =
ρ∗ − ρ0

Qk
. (5)

In short, the determination of fuel efficiency per unit distance for a vehicle, denoted
as ρ(QX), can be formulated.

ρ(QX) = ρ0 +
ρ∗ − ρ0

Qk
QX . (6)

The combustion of fuel leads to the production of carbon emissions, and the
consumption of fuel by the distribution vehicle is influenced not only by its distance
but also by its cargo capacity. The total carbon emission, Qc, in the distribution of the
node (i, j) section can be obtained as follows:

Qc = ρ(Qij)ωdij = (ρ0 +
ρ∗ − ρ0

Qk
Qij)ωdij. (7)

By substituting Equation (6), the energy cost FCij is as follows:

FCij = ρ(Qij)p2dij = (ρ0 +
ρ∗ − ρ0

Qk
Qij)p2dij. (8)

Therefore, the transportation cost Tc of delivery vehicles can be expressed as follows:

Tc = C1 ∑
i∈N∪H∪J

xk
0i + ∑

i∈N∪H∪J
∑

j∈H∪J
∑
k∈K

FCijxk
ij. (9)

3. Inventory Cost
Ref. [31] used the normal distribution of demand in the LIRP model and considered
the cost of the safety stock. In addition, the inventory cost considered in the LIRP
model of [32] also included the expected cost of both the working stock and the
safety stock.
The ordering cost is as follows:

p ∑
h∈H

∑
j∈J

µjzhj

xh
.

The expected inventory cost is as follows:
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∑
h∈H

ih
xh
2

.

Assume that the demand at each distributor is independent of each other and
follows a standard normal distribution. Thus, the safe stock point where the demand
at the DC matches the order lead time is given by the following:

∑
j∈J

Lσ2
j zhj.

The order point of the DC is as follows:

zα

√
∑
j∈J

Lσ2
j zhj.

Therefore, the inventory cost considered in this paper considers the order cost, ex-
pected inventory cost, and safety inventory cost:

Wc = p ∑
h∈H

∑
j∈J

µjzhj

xh
+ ∑

h∈H
ih(

xh
2

+ zα

√
∑
j∈J

Lσ2
j ). (10)

4. TW Penalty Cost Function
According to [29], the time-considering penalty cost is calculated similarly to the
method described by [10]. The time window (TW) penalty cost function was derived
based on the principle that during the delivery process, customers typically have
specific time constraints for receiving frozen or refrigerated food. Failure to meet
these agreed-upon delivery times can result in reduced CS, increased vehicle energy
consumption, potential loss of goods, and subsequent penalty costs.

In this paper, the penalty cost associated with TWs is taken into consideration.
It is assumed that each customer has an expected delivery time window, denoted
as [ET′

j , LT′
j ]. To avoid incurring penalty costs, an acceptable delivery time window,

denoted as [eTj, lTj], is determined. This acceptable window ensures that the delivery
is made within the customer’s specified time frame while minimizing the risk of
penalties. If the delivery vehicle arrives at ET′

j ahead of time and waits, the idle cost
of delivery personnel and the delivery vehicle will be generated. Arriving later than
LT′

j will incur a penalty.
In general, when the delivery vehicle arrives earlier than ET′

j , the impact on
the customer is minimal. However, if the delivery vehicle arrives later than the
expected time LT′

j , the customer may refuse to accept the delivery, resulting in a
significant penalty cost. The relationship between the penalty cost and the delivery
time is illustrated in Figure 2. This graph highlights the increasing penalty cost, as the
delivery time exceeds the agreed-upon TW.

Suppose the abscissa coordinate represents the delivery time tj, and the ordinate
coordinate Pj(tj) represents the penalty cost. Let α1 and α2 (α1, α2 ≥ 0) be the penalty
coefficients for the intervals [eTj, ET′

j ] and [LT′
j , lTj], respectively, where α2 ≥ α1. M

represents an infinite penalty cost, indicating that when the delivery time exceeds the
acceptable time window for the customer, the customer will reject the goods, incurring
an infinite penalty cost.
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Figure 2. Diagram of TW penalty cost function.

From Figure 2, it can be observed that when the goods are delivered within the
[ET′

j , LT′
j ], the penalty cost is zero. If the delivery falls outside the acceptable range

of [eTj, lTj], an infinite penalty cost is incurred. Furthermore, when the delivery
occurs within the time frame of [eTj, ET′

j ], the penalty cost gradually decreases as the
deviation from the customer’s expected earliest delivery time diminishes. If the goods
are delivered within [LT′

j , lTj], the penalty cost will increase with a greater deviation
from the latest expected delivery time by the customer. Therefore, the TW penalty
function can be expressed as follows:

Pj
(
tj
)
=


ET′

j − tj, eTj ≤ tj < ET′
j

0, ET′
j ≤ tj < LT′

j
tj − LT′

j , LT′
j ≤ tj ≤ lTj

. (11)

Pc = α1 ∑
j∈J

max
{

ET′
j − tj, 0

}
+ α2 ∑

j∈J
max

{
tj − LT′

j , 0
}

. (12)

This penalty function effectively models the cost implications of deviating from the
customer’s preferred delivery time window, thus helping in optimizing the delivery
schedules to enhance customer satisfaction and minimize penalties.

5. Carbon Cost Function
Carbon emissions are generated by burning fuel. The fuel consumption of delivery
vehicles is influenced by two factors: the driving distance and the cargo weight. Both
of these factors play a role in determining the overall fuel efficiency of the delivery
vehicles. Therefore, the total carbon emission Qc in the distribution node (i, j) section
can be obtained as follows:

Qc = ρ(Qij)ωdij = (ρ0 +
ρ∗ − ρ0

Qk
Qij)ωdij. (13)

The carbon trading mechanism, initially introduced by [33] in the context of VRP,
has been further explored by [34] to understand its implications on logistics distribu-
tion. These studies underscore that if actual carbon emissions fall below the allocated
quota, companies can profit by selling surplus emission rights. Conversely, surpassing
the carbon cap mandates purchasing additional allowances to offset excess emissions.
Consequently, the carbon emission cost primarily signifies the environmental expense
attributable to vehicle emissions during delivery operations. Therefore, the carbon
emission cost Cc for the delivery at customer node (i, j) is expressed as follows:
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Cc = Ce

(
∑

i∈N∪H∪J
∑
j∈J

ρ
(
Qij
)
ωdij − CCAP

)
. (14)

6. Customer Satisfaction Function
Based on the approach proposed by [15], customers expect their delivery within the
time window [ET′

j , LT′
j ], with an acceptable delivery window [eTj, lTj] to avoid penalty

costs. However, due to epidemic prevention measures, DCs often face shortages
and insufficient capacity. Consequently, most customers tolerate delivery times that
are slightly earlier or later than their preferred time window. Assume that S = 1
denotes goods shortages and capacity insufficiency. In this special case, the delivery
time window acceptable to customers is [eTj, lTj], where the abscissa represents the
delivery time tj, and the ordinate V(tj) represents the CS function. Figure 3 depicts
the relationship between the delivery time and CS.

Figure 3. Diagram of customer satisfaction function.

As depicted in Figure 3, in special circumstances, when goods are delivered within
the [ET′

j , LT′
j ] timeframe and the customer is served accordingly, his/her satisfaction

is rated as 1. If deliveries occur outside the [eTj, lTj] window, CS drops to 0. Within the
[eTj, ET′

j ] interval, CS increases as the delivery time approaches the earliest expected
delivery time. Conversely, within [LT′

j , lTj], CS decreases as the delivery time extends
beyond the latest expected delivery time. Therefore, the CS function can be formulated
as follows:

V
(
tj
)
=



0, tj < eTj
tj−ET′

j
eTj−ET′

j
, eTj ≤ tj < ET′

j

1, ET′
j ≤ tj ≤ LT′

j
LT′

j−tj

LT′
j−lTj

, LT′
j < tj < lTj

0, lTj < tj

. (15)

5.2. The Bi-Objective LIRP Model

The proposed bi-objective optimization model aims to simultaneously minimize the
TSCC and maximize CS. The MINLP formulation for this model is structured as follows,
incorporating the stated objectives:
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min f1 = λ1G + λ2Tc + λ3Wc + λ4Pc + λ5Cc (16)

max f2 = ∑
h∈H

∑
j∈J

V
(
tj
)
xhj/ ∑

h∈H
∑
j∈J

xhj (17)

subject to,

xh + zα

√
∑
j∈J

Lσ2
j zhj ≤ Chyh, ∀h ∈ H (18)

∑
i∈N∪H∪J

qiyk
i ≤ Qk, ∀k ∈ K (19)

∑
i∈H

∑
j∈J

dijxk
ij ≤ D (20)

∑
i∈H

∑
j∈J

∑
k∈K

xk
ij ≤ K, (21)

∑
j∈J

xk
ij = yk

j , ∀i ∈ H, k ∈ K (22)

∑
k∈K

yk
i = 1, ∀i ∈ N ∪ H (23)

ETj ≤ tj ≤ LTj, ∀j ∈ J (24)

eTj ≤ tj ≤ lTj, ∀j ∈ J, S = 1 (25)

xh ≥ ∑
j∈J

xhjzhj, ∀h ∈ H (26)

xhjzhj ≥ uj, ∀h ∈ H (27)

∑
h∈H

zhj = 1, ∀j ∈ J (28)

zhj ≤ yh, ∀h ∈ H, j ∈ J (29)

yh =

{
1, If establish the DC h;

0, Otherwise.
(30)

zhj =

{
1, If distributor j is served by DC h;

0, Otherwise.
(31)

xk
ij =

{
1, If the delivery vehicle k travels from node i to node j;

0, Otherwise.
(32)

yk
i =

{
1, If delivery vehicle k serves node i;

0, Otherwise.
(33)

In the above model, the objective function (16) represents the minimization of TSCC,
encompassing fixed construction costs, transportation costs, inventory costs, TW penalty
costs, and carbon emission costs. Objective function (17), on the other hand, seeks to
maximize CS. These dual objectives are subject to the following constraints: Constraint (18)
ensures the capacity limitations of DCs, while Constraint (19) guarantees the vehicle’s
service capacity. Constraint (20) imposes mileage restrictions on each vehicle, and Con-
straint (21) limits the number of distributed vehicles. Constraint (22) ensures that each
vehicle’s distribution route begins and ends at the same DC, and Constraint (23) mandates
that each customer is serviced by exactly one vehicle. Constraint (24) manages the STW
constraint, while Constraint (25) addresses the STW constraints in scenarios involving stock
shortages and insufficient transportation. Constraint (26) ensures that the volume ordered
by the DC exceeds the volume shipped from the DC to the customer, and Constraint (27)
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ensures that the transportation volume from the DC to the customer meets the customer’s
demand. Constraint (28) guarantees that each customer is served by only one DC, and
Constraint (29) ensures that the selected DC has an assigned delivery route. Constraints (30)
to (33) define binary decision variables, ensuring their values are either 0 or 1.

6. Development of IMNSGA-II

The carbon trading and CS logistics of the LIRP represent a bi-objective optimization
challenge that falls into the category of NP-hard problems. The NSGA-II is a widely used
algorithm that is particularly effective in solving multi-objective optimization problems.
Utilizing NSGA-II enables better decision-making based on the priorities set by decision-
makers, as it provides a set of Pareto optimal solutions, offering a range of choices [19].

Building on the findings of the proposed bi-objective LIRP model and the demon-
strated performance of NSGA-II in previous studies, this paper introduces an improved
NSGA-II (IMNSGA-II) to solve the above-mentioned model while preserving the algo-
rithm’s superior capabilities. The IMNSGA-II incorporates three main enhancements over
the standard NSGA-II: (i) an improved non-dominated sorting algorithm, (ii) the intro-
duction of crowding degree and a crowding comparison operator, and (iii) the adoption
of an elite strategy. These improvements make the algorithm particularly well-suited
for addressing the multi-objective optimization model, yielding a set of Pareto optimal
solutions. This provides decision-makers with superior choices, thereby enhancing the
rationality and effectiveness of their decision-making process.

This section primarily discusses the coding scheme, population initialization method,
selection process, crossover and mutation strategies, and population merging and opti-
mization techniques used in the development of the algorithm.

6.1. Coding Scheme

In a genetic algorithm (GA), each individual represents a potential solution to the
problem and must include the following information:

1. The vehicle distribution routing scheme and volume scheme for the first cycle.
2. The vehicle distribution for the second cycle.
3. The vehicle distribution routing scheme and volume scheme for the nth cycle, iterated

through successive generations until the nth generation.

Based on the above principles, the following basic coding rules can be obtained:
(i) each individual is divided into several segments according to the number of cycles;
and (ii) each segment is further divided into a routing segment and a distribution volume
segment. The routing segment code directly represents the vehicle distribution sequence
by the number of customers, while the distribution volume segment code directly indicates
the distribution volume of the corresponding DC.

Figure 4 illustrates the distribution routing scheme and distribution volume scheme
from the first cycle to the third cycle. In the figure, the blue markers represent the customers,
the yellow markers denote the distribution volume corresponding to the customers, and the
green markers signify the DC, with its corresponding distribution volume represented by inf.

Figure 4. Schematic of the underlying coding rules.
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Each DC is responsible for delivering to the various customer nodes on its left, while
the final DC also delivers to the customer nodes on its right. Since the model assumes that
vehicles will ultimately return to their departure DC, one gene position representing a DC
is omitted at the beginning and end of each route segment code. This omitted gene position
needs to be added when interpreting the code.

The specific meaning represented by the code can be elucidated as follows: (i) in the
first cycle, vehicle A departs from DC 1, traverses through customers 3 and 9, and delivers
quantities of 36 and 41 units, respectively, before returning to DC1; (ii) vehicle B departs
from DC2, passes through customers 5 and 10, and delivers quantities of 72 and 55 units,
respectively, before returning to DC2; (iii) vehicle C departs from DC2, passes through
customer 6, and delivers a quantity of 17 units before returning to DC2. The delivery
process in the first period is depicted in Figure 5.

Figure 5. Schematic diagram of the first cycle delivery process.

In the preceding text, the three periods of an individual are displayed in three separate
rows for clarity, but they actually belong to the same row in the coding scheme. Additionally,
after encoding an individual, the gene positions for the calculated objective function values
are appended at the end. This facilitates subsequent non-dominated sorting and crowding
distance calculation.

In Figure 6, the complete individual code is shown with two terminal red markers.
These loci record the values of objective functions 1 and 2, as calculated by the DC based
on the solution provided by the individual.

Figure 6. Schematic of the complete individual code.

6.2. Population Initialization

To streamline algorithm design and enhance computational efficiency, this model
employs a customer division approach based on the proximity to the nearest DC before
addressing the optimization problem. This transformation converts the original problem
involving multiple DCs and customers into several instances of a single DC serving multiple
customer sets. Post-division, each DC assumes responsibility for a distinct customer subset,
with minimal interdependence. This segregation enables separate computation of TSCC
and CS, significantly reducing model complexity and computational burden.

The division process begins by calculating the distances between each customer and
all available DCs. Subsequently, each customer is assigned to the nearest DC based on these
computed distances. This assignment forms customer sets that are specific to each DC,
facilitating isolated calculations of TSCC and CS for each subset. To illustrate this process,
consider DC1 as an example. The process unfolds in the following four steps:
Step 1: After assigning customers to DC1, obtain the set of customers for which DC1 is
responsible for.
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Step 2: DC1 randomly selects a number n of vehicles within the specified range (1,
number_vehiclemax), representing all vehicles dispatched by DC1 in the current cycle’s
distribution process. According to the coding scheme described earlier, the DC number’s
position in the individual denotes the boundary point for coding segments of different
vehicles’ distribution paths. Therefore, this process involves inserting (n − 1) DC numbers
into the sequence of customer routes obtained in Step 1.

The value (n− 1) accounts for the default exclusion of the DC number at the beginning
and end of the path segment coding, signifying that at least one vehicle has completed
the distribution task and has been included in the selected n, necessitating a subtraction
of 1. When inserting the DC numbers, selecting both the number of insertions and their
positions randomly represents different distribution vehicle and route selection schemes.
To maintain uniformity in the length of the coding array generated by each individual
in this step, additional gene bits are appended to the end of this section after adding
the number of distribution centers. Specifically, the number of additional bits will be
(number_vehiclemax − n − 1), and the redundant gene bits will be filled with inf.
Step 3: The length of the distribution volume segment code obtained in Step 2 is used to
generate a random array of the same length within the range of (1, carriagemax), where
carriagemax represents the maximum capacity limit of customer inventories. The distribu-
tion quantity code obtained in Step 2, where DC is coded as 1 and the filled redundant gene
bits as inf, is then used to replace the corresponding gene bits of the random array with inf.
Consequently, the distribution volume segment code for each customer’s delivery vehicle
is then determined.
Step 4: Combine the codes from Step 2 and Step 3 to generate a set of distribution paths
and quantity plans for DC1 in the first cycle. The objective function values of this plan are
computed based on the TSCC and CS provided by the model, with the last two gene bits
sequentially filled.

Figure 7 notates the specific process used to obtain individual coding in the first
cycle. Then, the process is iterated according to the specified number of cycles (e.g., each
individual contains T cycles) and the nested population size (e.g., population size of 200).
This will result in a population matrix with x columns. Each row represents an individual
with T period segment codes and two function values.

Figure 7. Initialization of a single individual.

The value of x is given by the following:

x = (lengthrouting + lengthshippingquantity)× T. (34)
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6.3. Selection, Crossover, and Mutation Strategies
6.3.1. Selection Strategy

This study employs the tournament selection method, which involves selecting the
best individuals from the current population and adding them to the mating pool [35].
This step mimics natural selection, where individuals compete within a population for the
opportunity to reproduce. Only individuals with genetic advantages are chosen to partici-
pate in the crossover and mutation processes of the next generation, ensuring continuous
evolution of the population toward better solutions. The algorithm consistently explores
improved solutions based on the current population. The competitive selection process is
illustrated in Figure 8.

Figure 8. Schematic diagram of the tournament selection method.

The tournament selection process is outlined in the following steps: (i) Determine
the number of individuals competing and the size of the mating pool. (ii) Compare non-
dominated ranks to select direct winners; in cases of ties in rank, compare their crowding
degree to determine superiority. By adhering to these competitive principles, the top
individuals are chosen to join the parent population. (iii) Repeat this selection process
iteratively until the parent population reaches the specified size of the mating pool.

6.3.2. Crossover Strategy

Crossover is a fundamental genetic operation where offspring chromosomes are
derived from parent chromosomes during mating, thereby producing the next generation.
In the context of the models developed in this study, crossover aims to optimize distribution
routes, quantities, and vehicle assignments. To effectively exploit the solution space across
these dimensions, this paper proposes several crossover methods that are tailored to the
coding schemes employed.

The utilization of diverse crossover strategies serves to expand the exploitation of
solution spaces, mitigate the risk of converging to local optima, and enhance the likelihood
of identifying optimal solutions across broader ranges. In the proposed algorithm, different
crossover methods are assigned varying probabilities while maintaining a consistent overall
probability for the entire crossover process.

(a) Coding crossover of single-cycle failure segment
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This method involves randomly selecting two parent individuals in each iteration and
identifying a random crossover point in their routing or distribution quantity codes. To
ensure compatibility, both code lengths must be equal during initialization, facilitating a
straightforward crossover between the two sets of codes. The crossover point determines
the boundary segment, where all non-DC location codes before this point are exchanged
between the routing or distribution segments. Figure 9 illustrates this process.

Figure 9. Coding crossover of single-cycle failure segment.

Based on the description above, this method primarily involves exchanging a portion
of the routing segment code or distribution volume segment code between two individuals
while keeping the location and number of DC genes unchanged, thereby preserving the ve-
hicle selection. Importantly, the specific segments exchanged and the routing or distribution
volume are randomly determined, with an equal probability of 0.5 for either occurrence.

(b) Dual-individual multi-period segment-wide crossover

In this method, n cycles are randomly selected among all individual cycles, then the
path segment codes or distribution segment codes of non-DC of the two parent individuals
on these n cycles are exchanged directly by taking the boundary between path segment
codes and distribution segment codes as the crossing point.

Assuming a total of n cycles, the 1st and nth cycles are selected for crossover, as shown
in Figure 10:

Figure 10. Dual-individual multi-period segment-wide crossover.

(c) Single-individual cycle crossover

In this method, a single-parent individual conducts self-reorganization through a
specific process. Initially, the individual randomly reorders its cycle numbers to create a
new sequence of cycles. Subsequently, it fills in the path segment and distribution segment
codes for each cycle according to this new order.



Mathematics 2024, 12, 2367 17 of 35

As observed from the description, this method essentially involves reordering the
cycles of the individual to generate offspring without altering the arrangement of the path
segment and distribution segment codes. In the context of the model, this adjustment affects
only the inventory cost and penalty cost, while the transportation cost remains unchanged.

It is assumed that there are 3 cycles in total, and the order after random rearrangement
is (3, 1, 2); that is, cycles 1 and 3 are exchanged. A schematic diagram of the crossing is
shown in Figure 11.

Figure 11. Single-individual cycle crossover.

6.3.3. Mutation Strategy

Mutation is an essential component of GAs that is crucial for escaping local optima and
exploring new areas of the solution space. As previously discussed, the model in this study
requires exploration in three key areas to generate offspring: adjusting delivery routes,
modifying shipment quantities, and altering vehicle selections. While crossover methods
address changes in delivery routes and quantities effectively, they do not inherently handle
changes in vehicle selection, which are more suited to mutation operations.

Aligned with the encoding approach used, this subsection introduces various mutation
techniques. These methods serve a role similar to crossover by promoting diversity and
exploration in the solution space. To ensure effective exploration, this model employs a
relatively high mutation probability (0.5–0.9) for individual genes, specifically targeting
vehicle selection changes. This probability dictates the likelihood that each gene within an
individual will undergo mutation sequentially during the algorithm’s execution.

(a) Single-cycle gene exchange mutation

This mutation process involves interchanging the positions of two genes within the
coding of a routing segment or shipping quantity segment within a single cycle for an indi-
vidual. This interchanging is restricted to occur within the same cycle, because exchanging
gene positions between different cycles could lead to repeated customers within the routing
segments, violating the constraint that each customer can only be visited once per cycle in
the model. However, interchanging gene positions within the same cycle does not pose
this issue.

Interchange can only occur within a single coding segment; genes in routing segments
and shipping quantity segments are not subject to exchange. These constraints limit the
diversity of mutations, which justifies implementing a higher mutation probability. The
specific process is illustrated in Figure 12.
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Figure 12. Single-cycle gene exchange mutation.

As described above, this mutation method modifies the coding of the routing segment
and distribution volume segment. Therefore, it is not suitable for the DC location. When
evaluating whether this mutation method should be applied to each gene, it is essential to
skip the DC location.

(b) Vehicle selection mutation

This mutation method focuses on modifying the vehicle selection in each cycle deliv-
ery plan provided at initialization, specifically targeting the genes of the DC within the
chromosome. This process can be broadly categorized into two directions: adding and
reducing a vehicle. Adding a vehicle involves redistributing part of the workload from an
existing vehicle to accommodate the newly added one, while reducing a vehicle entails
transferring delivery responsibilities to another vehicle. It is important to note that for
these mutations to occur, there must be available gene positions, which can manifest in
three specific cases.

• Case 1: If only one vehicle is assigned to a specific cycle code, meaning there is no DC
gene position in the routing segment and shipping quantity segment code, then this
segment code is not eligible for a mutation to reduce the number of vehicles. However,
it can still undergo a mutation to increase the number of vehicles. When this mutation
occurs at cycle a, its schematic diagram is shown in Figure 13.

Figure 13. Increase vehicle mutation.

• Case 2: If a specific cycle code has reached its maximum vehicle capacity, this code
cannot experience an increase in the number of vehicle mutations; only a decrease in
the number of vehicle mutations can occur. When this mutation occurs at cycle b, its
schematic diagram is depicted in Figure 14.
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Figure 14. Decrease vehicle mutation.

• Case 3: If the number of vehicles called in a specific cycle exceeds 1 but falls below the
upper limit, then this segment code is eligible for a random vehicle selection mutation.

The above restrictions are in place because the chromosomes of existing individuals
have already determined the coding length during initialization. If a mutation were to
exceed this length limit, it would disrupt the entire population’s chromosomes. Only in
cases where there are non-limit redundant bits at the end of the routing segment encoding
(i.e., Case 3 mentioned above) can an arbitrary vehicle selection mutations occur. By adding
a vehicle, it shifts the subsequent code backward and removes a redundant bit. On the
other hand, by removing a vehicle, it shifts subsequent code forward and adds a redundant
bit. Adjustments to the coding of the shipping quantity segment should be aligned with
the subsequent routing segment coding.

6.4. Population Merging and Optimization

After the selection, crossover, and mutation processes, a parent population and an
offspring population generated by the mating of the parent population are selected. How-
ever, in practice, the problems are usually highly complex. This complexity means that the
excellence of an individual is derived from the collective quality of the genes on its chromo-
some, contributing to an overall better solution. It cannot be assumed that all chromosomes
of high-performing individuals are uniformly excellent or that their superiority is due to
a specific segment of their chromosomes. Consequently, while crossover and mutation
between two high-quality individuals might have a higher probability of producing better
offspring, it does not guarantee it.

To address this issue, the IMNSGA-II algorithm incorporates an elite selection strategy.
This involves merging the offspring population with the parent population to form an
intermediate population that is twice as large as the original. This combined population
then undergoes non-dominated sorting and crowding distance calculations. Finally, the
top-ranked non-dominated individuals are selected to fill the set population size from
the top down, ensuring that the best individuals are retained for the next generation after
reproduction [36]. The detailed process is illustrated in Figure 15.
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Figure 15. Population merging and optimization.

6.5. Dynamic Crowding Distance

In the algorithm, the advantages and disadvantages of individuals are judged by
the crowding operator. However, the resulting crowding operator may deviate from the
actual density of individuals, and if so, high-density individuals may be retained in the
next generation, leading to local optima [22]. To improve the uniformity of individual
distribution, diversify population distribution, and enhance the global search ability, this
study uses the dynamic crowding distance ndi. Its algorithm is as follows:
Step 1: Let the parameter nd = 0, n ∈ 1 . . . N.
Step 2: For each objective function fm:
1⃝ Individuals of this level are ranked according to the objective function. f max

m is the
maximum value of the individual objective function fm, and f min

m is the minimum value of
the individual objective function fm;
2⃝ Crowding degree of the two boundaries after sorting, 1d and Nd are set to ∞;
3⃝ The dynamic crowding distance of individual i is calculated as follows:

ndi = nd/lg(1/Vi), (35)

where

Vi =
1
M

M

∑
m=1

(| fm(i + 1)− fm(i − 1) | −nd)
2,

nd =
( fm(i + 1)− fm(i − 1))

f max
m − f min

m
.

fm(i + 1) is the last bit of the objective function value after the individual is sorted, and M
is the number of objective functions.

6.6. Steps of IMNSGA-II Algorithm

The algorithm starts by generating a random initial population of size N. The first-
generation offspring population is obtained through non-dominated sorting, followed by
selection, crossover, and mutation operations, as previously described.

From the second generation onwards, the parent and offspring populations are merged
to perform fast non-dominated ranking. At the same time, the crowding degree of indi-
viduals in each non-dominated layer is calculated using Equation (35). Based on the
non-dominance relationship and crowding degree, suitable individuals are selected to form
the new parent population. This is followed by generating a new offspring population
through the fundamental operations of the GA. This cycle repeats until the algorithm’s
termination conditions are met. The algorithm’s flowchart is depicted in Figure 16.
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Figure 16. Flow chart of the IMNSGA-II algorithm.

6.7. The Entropy-TOPSIS Method: A Refined Approach for Decision Making

In a multi-objective Pareto-optimal solution set, objectively evaluating each solution’s
advantages and disadvantages can be challenging. In practice, decision-makers often rely
on their experience or operational strategies to choose a final solution. Many research
papers, such as [9,19,37], provide comparative conclusions or present various algorithms
without providing an objective decision-making reference. In this study, the entropy–
TOPSIS method by [38] is utilized to determine the optimal reference scheme by calculating
the proximity index between each solution in the Pareto solution set and the optimal level
to help decision-makers choose a Pareto solution that balances multiple objectives as the
optimal reference solution. The specific methods are as follows:

• Firstly, for the cost, which has the same dimension, the entropy method is employed
to assign weights to the fixed cost, transportation cost, inventory cost, STW penalty
cost, and carbon emission cost. These weights are denoted as λ1, λ2, λ3, λ4, and λ5,
respectively. The entropy weight method is an objective weight method proposed by
ref. [39]. Its calculation steps are as follows:

– Check for negative numbers in the input matrix. If any negative numbers are
found, re-normalize them to the non-negative interval. Assuming T solutions in
the Pareto-optimal solution set and 5 evaluation indicators (i.e., 5 cost data) for
forward maximization, the resulting forward matrix is as follows:

X =


x11 x12 . . . x15
x21 x22 . . . x25

...
...

. . .
...

xt1 xt2 . . . xt5

. (36)

Let us denote the normalized matrix as Z, and each entry in Z can be calculated
as follows:

zij = xij/

√√√√ t

∑
i=1

x2
ij. (37)
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This will determine whether there are any negative numbers in the Z matrix. If
there are, we need to use another normalization method for X. Let us denote the
normalized matrix of X as Z̃. This normalized equation is as follows:

z̃ij =
xij − min{x1j, x2j, . . . , xtj}

max{x1j, x2j, . . . , xtj} − min{x1j, x2j, . . . , xtj}
. (38)

– To calculate the proportion of the ith sample under the jth index, treat it as
the probability used in the calculation of relative entropy. Given that there are
t objects to be evaluated and 5 evaluation indices, the resulting non-negative
matrix after the previous processing step can be denoted as Z̃:

Z̃ =


z̃11 z̃12 . . . z̃15
z̃21 z̃22 . . . z̃25

...
...

. . .
...

z̃t1 z̃t2 . . . z̃t5

. (39)

Calculate the probability matrix P, where each element of P can be calculated by
the following formula:

pij = z̃ij/
t

∑
i=1

z̃ij. (40)

– To calculate the information entropy of each indicator and obtain the entropy
weight, calculate the information entropy for each index (jth index):

ej = − 1
lnt

t

∑
i=1

pijln(pij), (j = 1, 2, . . . , 5). (41)

– The value of information utility for the jth index can be calculated as dj = 1− ej, so
the greater the value of information utility is, the more information it corresponds
to. The information utility value is normalized to obtain the entropy weight of
each indicator:

wj = dj/
5

∑
j=1

dj, (j = 1, 2, . . . , 5). (42)

• Secondly, the weights are substituted into the objective function f1, and the IMNSGA-II
algorithm is reused to calculate the Pareto-optimal solution set. Taking two optimiza-
tion objectives as evaluation indexes, the entropy weight method is introduced to
calculate the objective weight of the two indexes, which can effectively reduce the
influence of the less-reliable solutions at both ends of the Pareto-optimal solution set
on the objective weight.

• Finally, the TOPSIS method is used to evaluate and rank the solutions of the Pareto-
optimal solution set. Ref. [40] first proposed the TOPSIS method in 1981. It can be
translated to the approximate ideal solution ranking method, often referred to as
the good and bad solutions distance method. The TOPSIS method is a widely used
comprehensive evaluation technique that effectively utilizes the information from
the original data. Its result provides an accurate reflection of the differences between
evaluation schemes. The specific steps (S1–S6) of the entropy–TOPSIS method used to
select the optimal scheme by [40] are given below:

S1: The evaluation matrix is constructed and normalized. The Pareto-optimal solution
set has t solutions, and the two objective functions are used to construct the
evaluation index judgment matrix.
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S2: The entropy weight wj of the jth target is calculated by using the entropy weight
Formula (42).

S3: The comprehensive weight β j, of each objective function is determined.
S4: A weighted normalized matrix is constructed.
S5: The ideal solution and negative ideal solution are determined. The ideal solution

v+j and the negative ideal solution v−j are represented by the maximum and
minimum values of each index in the weighted normalized matrix.
Distance d+t from the ideal solution:

d+t =

√√√√ 2

∑
j=1

(vtj − v+j )
2. (43)

Distance d−t from the ideal solution:

d−t =

√√√√ 2

∑
j=1

(vtj − v−j )
2. (44)

S6: The proximity index Rt of the tth solution to the optimal level in the Pareto-
optimal solution set is calculated and sorted in descending order (the larger Rt is,
the closer it is to the optimal level):

Rt =
d−t

d−t + d+t
. (45)

7. Results and Discussion
7.1. Evaluation of IMNSGA-II Based on the Performance Metrics of the Multi-Objective Algorithm

The performance metrics of multi-objective algorithms can be categorized into three
main types as follows:

(i) Convergence: This evaluates how closely the obtained solution set approximates
the real Pareto front (PF). For example, the generational distance (GD) metric mea-
sures convergence, where a smaller GD value indicates better convergence of the
approximate solution set S to the true PF [41];

(ii) Diversity: This assesses the distribution of the solution set across the entire PF, en-
compassing both spread and uniformity. Examples of diversity metrics include the
hypervolume (HV) [42], maximum spread (MS) [31], coverage over Pareto front
(CPF) [43], and pure diversity (PD) [44]. Higher values for these metrics suggest
that the approximate solution set S covers a larger portion of the true PF, indicating
better diversity.

(iii) Combined metrics: These consider both convergence and diversity. An example is
the inverted generational distance (IGD) [45]. A smaller IGD value signifies that the
solution set S has better convergence and diversity, allowing it to more effectively
approximate the entire PF.

To assess the effectiveness of the proposed IMNSGA-II, the performance is bench-
marked against other established algorithms, such as the Pareto envelope-based selection
algorithm II (PESA-II) and NSGA-II in [46]. To ensure a fair comparison, several parameters
are kept constant: (i) maximum iterations, Gen = 300, (ii) number of variables, v = 500,
(iii) population size, P = 50, and (iv) crossover and mutation probabilities are fixed at 0.9
and 0.1, respectively. The experimental platform used for this comparative analysis is the
evolutionary multi-objective optimization V3.5 (PlatEMO V3.5), as detailed in [47], which
provides a standardized environment for evaluating algorithms based on multi-objective
optimization problems (MOPs).
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The specific MOP used for evaluation is the multi-objective traveling salesman prob-
lem (MOTSP) [48], which involves k objective TSP instances characterized by k distance
matrices, each representing a distinct objective function. This setup allows for a comprehen-
sive assessment of how well each algorithm balances competing objectives and produces
Pareto-optimal solutions across different optimization criteria. These matrices are created
as follows:

(i) Generate the TSP for objective 1 by assigning a uniform random number between 0
and 1 to each distinct pair of cities.

(ii) The TSP for objective i + 1 is generated using the following formula:

distancei+1(a, b) = TSPcp · distancei(a, b) + (1 − TSPcp) · rand(), (46)

where TSPcp is a correlation parameter introducing negative, zero, or positive inter-
objective correlations when less than 0, equal to 0, or greater than 0, respectively.

In this study, a 500-city TSP is defined within PlatEMO V3.5 to generate a MOTSP using
Equation (46). The PESA-II, NSGA-II, and IMNSGA-II algorithms are employed to solve
and evaluate the MOTSP, comparing their performance across the following performance
metrics: GD, HV, CPF, PD, MS, and IGD.

Figures 17–22 illustrate the performance trajectories of the three algorithms on the six
performance metrics mentioned above as the number of function evaluations increases.
Table 2 presents the average performance metric values for each algorithm on the test
problem. Additionally, Table 2 also includes the computational time (CT) required by each
algorithm, providing insights into their efficiency alongside their optimization effectiveness.

Table 2. Comparison of average results based on the performance metrics.

Evaluation Metric NSGA-II PESA-II IMNSGA-II

GD 83.121 101.490 79.900
HV 0.51372 0.54788 0.51238
CPF 5.3658 5.5130 5.6845
PD 35615 16616 38328
IGD 466.61 493.65 464.63
MS 0.98967 0.99488 0.98726
CT 10.904 10.465 10.496

Figure 17. Performance of algorithms on GD.
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Figure 18. Performance of algorithms on HV.

Figure 19. Performance of algorithms on CPF.

Figure 20. Performance of algorithms on PD.
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Figure 21. Performance of algorithms on IGD.

Figure 22. Performance of algorithms on MS.

The values highlighted in bold in Table 2 indicate superior performances across the
evaluated metrics. The table clearly illustrates that the proposed IMNSGA-II outperforms
the other two algorithms in four key indicators: GD, CPF, PD, and IGD. Moreover, the
CT of IMNSGA-II is only 0.31 seconds slower than the fastest algorithm, PESA-II. These
results underscore the efficacy of IMNSGA-II, particularly when compared to NSGA-II,
demonstrating its superiority in optimizing multi-objective problems efficiently.

7.2. Validation of IMNSGA-II Using Benchmark Data

To address the current lack of benchmark datasets for the LIRP model incorporating
STW and CS, we utilize the Solomon VRPTW benchmark available on Solomon’s web-
site (http://web.cba.neu.edu/~msolomon/problems.htm (accessed on 1 February 2024)).
Specifically, we select datasets R101, R201, RC101, RC201, C101, and C201 for potential
DCs and customers. These datasets represent various configurations that are suitable for
illustrating the proposed model.

The experiments utilize datasets containing 25, 40, and 92 customers, each representing
different distribution scenarios. The demand variance for each distributor is generated
randomly following a normal distribution. A time window of 30 minutes is allowed

http://web.cba.neu.edu/~msolomon/problems.htm
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for both early and late deliveries, with start times set to 0 if they fall within this window.
Additionally, the parameter settings used in the model are summarized in Table 3 as follows:

Table 3. Parameter setting of the model.

Parameter Value Parameter Value

Inventory holding cost (ih) 4 Fuel consumption per unit distance at full load (ρ∗) 0.388
Probability of being out of stock (α) 0.05 Carbon emission coefficient (ω) 0.0028
Safety stock factor (zα) 0.95 Carbon tax Ce 0.0075
Order lead time (L) 7 Maximum driving distance of delivery vehicles (D) 1600
Unit order price (p) 9 Weight of fixed construction cost (λ1) 0.0035
Carbon cap (CCAP) 1000 Weight of transportation cost (λ2) 0.2823
Fixed cost of delivery vehicle (C1) 100 Weight of inventory cost (λ3) 0.0681
Penalty cost per unit time (α1) 60 Weight of STW penalty cost (λ4) 0.3715
Penalty cost per unit time (α2) 90 Weight of carbon cost (λ5) 0.2746
Fuel consumption per unit distance with no load (ρ0) 0.122 Average speed of vehicle (v) 50
Number of vehicles (K) 11 Load of vehicle (Qk) 200

In this section, the entropy method is used to determine the intermediate weight of the
first objective function in our model. The proposed IMNSGA-II algorithm is implemented
in MATLAB 2021a and executed using a laptop equipped with an 11th Gen Intel® Core™ i7-
1165G7 processor running at 2.80 GHz and 16 GB of RAM.

For the experiment, a total of 500 iterations with a population size set to 200 are
conducted. The computational results of this experiment are summarized in Table 4.

Table 4. Experimental results based on benchmark data.

Benchmark G Tc Wc Pc Cc f1 f2 Rt

R101 (j = 25) 4280 168,147 55,692 75,259 44,035 91,326 41.69% 41.26
R101 (j = 40) 4280 255,329 55,119 246,630 98,413 194,495 30.43% 45.44
R101 (j = 92) 4280 644,537 52,939 2,028,270 404,469 1,050,142 13.00% 49.88

R201 (j = 25) 4280 223,304 55,692 22,663 56,528 90,788 62.76% 46.89
R201 (j = 40) 4280 378,866 55,119 51,429 108,254 159,555 60.28% 41.86
R201 (j = 92) 4280 779,667 52,939 983,383 570,541 745,718 45.66% 47.85

RC101 (j = 25) 4280 167,530 55,252 58,913 87,324 96,937 43.78% 45.22
RC101 (j = 40) 4280 269,042 54,423 282,168 195,517 238,186 37.12% 45.58
RC101 (j = 92) 4280 743,871 52,187 2,417,121 589,771 1,273,475 8.93% 55.21

RC201 (j = 25) 4280 265,399 55,252 20,467 105,033 115,145 73.54% 46.00
RC201 (j = 40) 4280 409,679 54,423 25,897 225,191 190,832 80.75% 46.48
RC201 (j = 92) 4280 985,728 52,187 1,690,181 829,135 1,137,423 39.41% 47.99

C101 (j = 25) 4280 238,980 55,292 30,810 82,118 105,240 73.49% 42.73
C101 (j = 40) 4280 314,168 54,623 72,533 104,334 148,021 55.71% 44.74
C101 (j = 92) 4280 883,651 51,683 1,371,359 613,671 930,963 20.11% 47.75

C201 (j = 25) 3380 191,846 40,892 203,321 59,701 148,882 52.00% 39.24
C201 (j = 40) 3060 376,691 39,423 242,066 185,574 249,921 54.04% 39.55
C201 (j = 92) 4280 1,262,553 51,683 839,053 819,160 896,603 38.10% 60.81

G: fixed construction cost; Tc: transportation cost; Wc: inventory cost; Pc: TW penalty cost; Cc: carbon
emission cost; f1: TSCC with weights; f2: CS; Rt: CPU time.

Based on Table 4, the reduction in CS can be attributed to the constrained availability
of vehicles as the customer base expands, resulting in longer wait times and potential
delays in deliveries. The fixed construction cost is directly influenced by the number
of chosen DCs operationalized. Typically, benchmark datasets provide a choice of eight
potential DCs, resulting in consistent fixed construction costs across various scenarios. It is
crucial for companies to meticulously evaluate their DC selection and vehicle allocation
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strategies to maintain optimal levels of customer satisfaction while efficiently managing
operational costs.

7.3. Performance of MINLP Model and IMNSGA-II Based on a Case Study

To validate the efficacy of the proposed LIRP model and IMNSGA-II algorithm, a case
study is conducted using an enterprise located in Jinan City, Shandong Province, China.
The logistics distribution network of this enterprise will be optimized based on its specific
developmental context and operational requirements. The W Enterprise primarily deals
in fruits, vegetables, poultry, egg, and milk products, serving multiple urban areas within
Jinan City.

Detailed information about the factories, alternative DCs, and distributors can be
found in Appendix A (Tables A1 and A2). The experiments focus on optimization with
eight potential DCs and fourty distributors. The vehicles have a capacity of 300 tons, and
a carbon allowance cap (CCAP) of 200 kgs is allocated along the supply chain. The other
parameters match those listed in Table 3 in Section 7.2. All objective function weights are
set to 1.

Optimizing the logistics distribution network involves considering factors like inven-
tory capacity, distribution capability, and actual demand from distributors. This decision-
making process should align with the company’s strategic goals and market positioning,
aiming to strike a balance between TSCC and CS. Since TSCC seeks to minimize its value
and CS aims to maximize it, the CS objective function is transformed into its negative
form when using the IMNSGA-II algorithm to find the minimum value. The W Enterprise
can then select the most suitable decision plan by carefully evaluating these factors. This
subsection aims to provide a comprehensive analysis of the decision results using the
entropy–TOPSIS method, considering the specific needs and requirements of W Enterprise.

Based on the numerical experiments described above, the Pareto-optimal solution
sets are obtained for fixed construction costs, transportation costs, inventory costs, time
window penalty costs, and carbon emission costs. These solution sets are combined to form
the decision matrix X. To determine the weights of fixed construction costs, transportation
costs, inventory costs, time window penalty costs, and carbon emission costs, we utilize
the entropy–TOPSIS method. The resulting weights are as follows:

λ1 = 0.0035, λ2 = 0.0013, λ3 = 0.0681, λ4 = 0.8746, λ5 = 0.0524. (47)

The weights obtained from Equation (47) are then incorporated into the model to
generate the Pareto-optimal solution set. The Pareto-optimal solution set results obtained
by IMNSGA-II are shown in Figure 23 below.
An analysis of the Pareto solution set reveals several key insights:

1. There exists a discernible trade-off between TSCC and CS.
2. Generally, an increase in TSCC correlates with a higher CS. In logistics distribution

network optimization, prioritizing cost reduction often leads to decreased CS and
potential delays in delivery times (as reflected in penalty costs), which can compromise
service levels and operational efficiency.

3. Pursuing a higher CS involves meeting customer’s expected TW more closely, typi-
cally resulting in increased total costs and potentially longer delivery times due to
scheduling complexities.



Mathematics 2024, 12, 2367 29 of 35

Figure 23. Pareto curve of TSCC with weight versus CS.

The entropy–TOPSIS method is employed to select the top 10 solutions from the
Pareto-optimal solution set, as illustrated in Table 5.

Table 5. Top 10 solutions in the Pareto-optimal solution set.

Sort G Tc Wc Pc Cc f1 f2 Rt

1 4280 1505.379 1706.068 0.00 72.353 136.9115 0.8049 0.0371
2 4280 1556.070 1706.068 0.00 195.694 143.4405 0.7750 0.0371
3 4280 1667.489 1706.068 0.00 144.250 140.8897 0.7994 0.0370
4 4280 1715.731 1746.068 7.92 151.041 150.9576 0.7854 0.0368
5 4280 1594.770 1706.068 0.00 175.419 142.4284 0.7796 0.0367
6 4280 1557.522 1706.068 0.00 203.691 143.8614 0.7901 0.0367
7 4280 1586.902 1706.068 0.00 162.026 141.7163 0.7887 0.0366
8 4280 1774.005 1706.068 9.07 117.475 147.5548 0.7763 0.0366
9 4280 1617.298 1706.068 0.00 183.706 142.8919 0.7715 0.0365
10 4280 1773.187 1706.068 0.00 124.446 139.9893 0.7882 0.0363

The solution that is ranked first in Table 5 is taken as the best solution of the proposed
LIRP model, and it is shown in the following Table 6. The layout in Figure 24 shows
the routing of the nine vehicles for the 40 customers, where the points in red are the
selected DCs.

Table 6. Optimal reference scheme of the proposed LIRP model.

Location of DCs: Ordered Quantity of DCs:
C1, C2, C3, C4. 265, 311, 326, 297.

Distribution route:
Vehicle 1: C1 → 28 → 3 → 15 → 8 → 27 → 24 → C1
Vehicle 2: C1 → 39 → 17 → 32 → 40 → C1
Vehicle 3: C2 → 1 → 20 → 34 → 18 → 31 → 23 → C2
Vehicle 4: C2 → 30 → 2 → 4 → 35 → C2 Deliveries per vehicle:
Vehicle 5: C3 → 19 → C3 195, 150, 265, 175, 50, 180, 175, 300, 185.
Vehicle 6: C3 → 33 → 21 → 37 → 13 → C3 Total distance: 302.6897.
Vehicle 7: C3 → 7 → 14 → 11 → 9 → 29 → C3
Vehicle 8: C4 → 5 → 36 → 12 → 10 → 26 → 38 → C4
Vehicle 9: C4 → 22 → 25 → 16 → 6 → C4
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Figure 24. Optimal distribution roadmap of the proposed LIRP model.

8. Sensitivity Analysis

To evaluate the impact of different carbon quota thresholds on the solution quality
and assist decision-makers in making informed choices, a sensitivity analysis is conducted.
This paper begins with a smaller threshold value of 20 kg for an insufficient carbon quota
and incrementally increases the step size by 20 kg until reaching a larger value of 280 kg,
representing a sufficient carbon quota.

Figure 25 illustrates the trends in carbon emission cost and customer satisfaction (CS)
as the carbon quota increases. Figure 26 shows the variations in carbon emission costs
and total costs with changing carbon quota levels. The trend plots reveal that the carbon
quota significantly influences the differences in carbon emissions and economic cost targets,
while its effect on customer satisfaction is relatively minor. Figure 27 demonstrates that as
the carbon quota increases from 20 kg to 280 kg, the economic cost decreases.

Figure 25. Trends in carbon emission costs and CS with increased carbon quotas.
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Figure 26. Trends in carbon emission costs and total costs with increased carbon quotas.

Figure 27. Trends in economic costs with increased carbon quotas.

Therefore, by combining the carbon emission quota and the trading data in the carbon
emission mechanism, the model can recalculate the cost of carbon emissions, including
considering the impact of the carbon trading mechanism on the cost. This analysis also
indicates that a loose cap on carbon emissions could stimulate economic growth, but at
the expense of significant environmental harm. Conversely, a stringent cap would benefit
environmental sustainability but might constrain economic performance. The externalities
associated with carbon allowances are substantial. Therefore, from a business perspective,
it is essential to select the optimal decision-making scheme based on the preferences of
decision-makers under varying carbon quotas.

9. Conclusions

This paper presents a novel approach by proposing a bi-objective mixed-integer
nonlinear programming model with time window constraints that satisfies the normal
distribution of stochastic customer demand. The proposed model aims to find Pareto-
optimal solutions that minimize total costs and maximize customer satisfaction. An entropy-
weight method is employed to evaluate the relationships among fixed costs, transportation
costs, inventory costs, penalty costs, and carbon emission costs.

Additionally, an improved non-dominated sorting genetic algorithm II (IMNSGA-II)
with an elite strategy is developed to solve the model. As the IMNSGA-II generates a
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Pareto-optimal solution set, decision-makers must select the most-suitable strategy from
this set. To facilitate this process, the entropy–TOPSIS method is employed to objectively
rank the solution set, offering decision-makers with a solid basis for their choices.

To apply the proposed LIRP model to practical logistics scenarios, a case study is
conducted on an enterprise in Jinan City of Shandong Province, China, specializing in fresh
product logistics and distribution. The results offer valuable insights into optimizing the
distribution system, demonstrating the algorithm’s efficacy in tackling decisions related to
the location of DCs, inventory management, and vehicle routing while considering factors
such as stochastic customer demand, transportation costs, and facility capacities.

Furthermore, a sensitivity analysis is performed to evaluate the impact of adjusting
the carbon quota threshold on the supply chain’s performance. This analysis helps decision-
makers to understand the trade-offs between carbon emissions and other key performance
indicators. By varying the carbon quota threshold, decision-makers can effectively balance
sustainability objectives with other performance metrics, ensuring an optimal balance
between environmental considerations and overall supply chain efficiency.

In conclusion, this paper contributes to the field of logistics and supply chain man-
agement by offering a comprehensive approach that integrates TSCC, CEEI, and CS. The
proposed model and algorithm provide decision-makers with the necessary tools to make
informed decisions that align with their sustainability goals while optimizing various per-
formance indicators. The entropy–TOPSIS method and sensitivity analysis further enhance
decision-makers’ understanding of the trade-offs, enabling them to make well-informed
choices for their supply chain’s overall performance and sustainability.

Future research into this area would involve including other sources of carbon emission
costs like those that come from the storage of the fresh food. The question of diversifying
the type of vehicles as well as different types of products is an interesting one and would
definitely improve the impact of the model. The same is true of the normal assumption of
customer demand compared to a fuzzy demand structure.
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Appendix A

Table A1. Distributor information.

Distributor No. Coordinates Demand
DCs Construction
Expected Delivery

Time Window

Acceptable Delivery
Time Window

1 (116.78, 36.60) [40, 49] [06.50–08.50] [07.00–07.50]
2 (116.80, 36.56) [30, 64] [08.50–10.50] [09.00–09.50]
3 (116.82, 36.54) [25, 25] [06.50–08.50] [07.00–07.50]
4 (116.84, 36.55) [50, 49] [08.50–10.50] [09.00–09.50]
5 (116.80, 36.59) [35, 64] [06.50–08.50] [07.00–07.50]
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Table A1. Cont.

Distributor No. Coordinates Demand
DCs Construction
Expected Delivery

Time Window

Acceptable Delivery
Time Window

6 (116.79, 36.60) [60, 25] [08.50–10.50] [09.00–09.50]
7 (116.86, 36.57) [45, 49] [08.50–10.50] [09.00–09.50]
8 (116.83, 36.53) [20, 64] [06.50–08.50] [07.00–07.50]
9 (116.89, 36.58) [40, 25] [08.50–10.50] [09.00–09.50]

10 (116.85, 36.55) [55, 49] [06.50–08.50] [07.00–07.50]
11 (116.88, 36.59) [30, 64] [08.50–10.50] [09.00–09.50]
12 (116.84, 36.56) [70, 25] [06.50–08.50] [07.00–07.50]
13 (116.90, 36.58) [65, 49] [06.50–08.50] [07.00–07.50]
14 (116.87, 36.57) [35, 64] [08.50–10.50] [09.00–09.50]
15 (116.82, 36.53) [20, 25] [06.50–08.50] [07.00–07.50]
16 (116.77, 36.58) [40, 49] [08.50–10.50] [09.00–09.50]
17 (116.86, 36.54) [30, 64] [08.50–10.50] [09.00–09.50]
18 (116.76, 36.57) [25, 25] [06.50–08.50] [07.00–07.50]
19 (116.79, 36.56) [50, 49] [06.50–08.50] [07.00–07.50]
20 (116.78, 36.59) [60, 64] [06.50–08.50] [07.00–07.50]
21 (116.85, 36.58) [30, 25] [06.50–08.50] [07.00–07.50]
22 (116.78, 36.56) [20, 49] [08.50–10.50] [09.00–09.50]
23 (116.73, 36.61) [70, 64] [06.50–08.50] [07.00–07.50]
24 (116.86, 36.50) [35, 25] [06.50–08.50] [07.00–07.50]
25 (116.77, 36.57) [65, 49] [08.50–10.50] [09.00–09.50]
26 (116.88, 36.56) [40, 64] [06.50–08.50] [07.00–07.50]
27 (116.85, 36.50) [50, 25] [06.50–08.50] [07.00–07.50]
28 (116.81, 36.54) [45, 49] [06.50–08.50] [07.00–07.50]
29 (116.92, 36.59) [25, 64] [08.50–10.50] [09.00–09.50]
30 (116.80, 36.58) [60, 25] [08.50–10.50] [09.00–09.50]
31 (116.75, 36.56) [30, 49] [06.50–08.50] [07.00–07.50]
32 (116.87, 36.54) [55, 64] [08.50–10.50] [09.00–09.50]
33 (116.81, 36.56) [20, 25] [06.50–08.50] [07.00–07.50]
34 (116.78, 36.57) [40, 64] [06.50–08.50] [07.00–07.50]
35 (116.76, 36.55) [35, 25] [08.50–10.50] [09.00–09.50]
36 (116.83, 36.58) [75, 49] [06.50–08.50] [07.00–07.50]
37 (116.91, 36.59) [65, 64] [06.50–08.50] [07.00–07.50]
38 (116.79, 36.52) [30, 25] [06.50–08.50] [07.00–07.50]
39 (116.83, 36.50) [40, 49] [08.50–10.50] [09.00–09.50]
40 (116.89, 36.55) [25, 64] [08.50–10.50] [09.00–09.50]

Table A2. Plant and alternative DC information.

Plant and Alternative
DCs No. Coordinates Maximum Service

Capacity
DC Construction

Cost

0 (116.82, 36.50) —— ——
1 (116.81, 36.60) 320 1240
2 (116.79, 36.55) 360 920
3 (116.80, 36.57) 380 1220
4 (116.83, 36.61) 360 900
5 (116.90, 36.59) 400 1100
6 (116.84, 36.58) 360 980
7 (116.86, 36.52) 340 1050
8 (116.89, 36.54) 320 960
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