
Citation: Hu, T.; Zhang, X.; Luo, X.;

Chen, T. Dynamic Target Assignment

by Unmanned Surface Vehicles Based

on Reinforcement Learning.

Mathematics 2024, 12, 2557. https://

doi.org/10.3390/math12162557

Academic Editor: Jonathan

Blackledge

Received: 1 July 2024

Revised: 29 July 2024

Accepted: 13 August 2024

Published: 19 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dynamic Target Assignment by Unmanned Surface Vehicles
Based on Reinforcement Learning
Tao Hu † , Xiaoxue Zhang *,†, Xueshan Luo and Tao Chen

National Key Laboratory of Information Systems Engineering, National University of Defense Technology,
Changsha 410073, China; ht_nudt@nudt.edu.cn (T.H.); xsluo@nudt.edu.cn (X.L.); chentao@nudt.edu.cn (T.C.)
* Correspondence: zxiaoxue@nudt.edu.cn; Tel.: +86-1387-593-6743
† These authors contributed equally to this work.

Abstract: Due to the dynamic complexities of the multi-unmanned vessel target assignment problem
at sea, especially when addressing moving targets, traditional optimization algorithms often fail to
quickly find an adequate solution. To overcome this, we have developed a multi-agent reinforcement
learning algorithm. This approach involves defining a state space, employing preferential experience
replay, and integrating self-attention mechanisms, which are applied to a novel offshore unmanned
vessel model designed for dynamic target allocation. We have conducted a thorough analysis of strike
positions and times, establishing robust mathematical models. Additionally, we designed several
experiments to test the effectiveness of the algorithm. The proposed algorithm improves the quality
of the solution by at least 30% in larger scale scenarios compared to the genetic algorithm (GA), and
the average solution speed is less than 10% of the GA, demonstrating the feasibility of the algorithm
in solving the problem.

Keywords: moving targets; weapon-target assignment; unmanned surface vessels; reinforcement
learning; multi agent

MSC: 68T42

1. Introduction

In recent years, unmanned platforms have gradually been applied to the military
field. It is widely adopted that unmanned platforms will play a vital role in future warfare.
In surface or subsurface operations, such as nearshore defense operations, Unmanned
Surface Vehicles (USVs) may be used for escort cruising, collaborative strikes, and regional
detection [1]. How to foster collaboration among swarm systems becomes an important
issue and attracts a lot of research interest. The Defense Advanced Research Projects Agency
(DARPA) also sponsored several research programs, such as OFFensive Swarm-Enabled
Tactics (OFFSET) [2], Collaborative Operations in Denied Environment (CODE) [3], etc.,
to advance capabilities for swarms in complex environments.

Modern war is an all-round war, and coastal defense is undoubtedly indispensable.
For countries with territorial seas, coastal defense is the first line of defense for their
sovereignty and security [4]. From the maritime confrontation during World War II to the
current territorial conflicts such as in the Black Sea and the Indian Ocean [5,6], the impor-
tance of maritime defense lines has been reflected [7]. Surface operation with USVs is a
typical scenario in future maritime conflicts. A swarm of USVs equipped with weapons can
be used to strike multiple targets. To achieve aforementioned mission, each USV should
be assigned to at least one target, with a planned path to attack position. In other words,
target assignment and path finding are key problems.

Many researchers focus on it and propose a problem named weapon-target assignment.
Traditional weapon-target assignment models mainly establish models and utility functions.
For the model, many scholars focus on the static target assignment problem, that is, they do

Mathematics 2024, 12, 2557. https://doi.org/10.3390/math12162557 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162557
https://doi.org/10.3390/math12162557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0006-1636-429X
https://orcid.org/0000-0002-8031-7117
https://doi.org/10.3390/math12162557
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162557?type=check_update&version=2

Mathematics 2024, 12, 2557 2 of 20

not consider the change in the position of the strike target, simplifying it to a target fixed at a
specified location within a certain time window [8]; or they fix a weapon firepower unit [9].
However, in actual nearshore combat scenarios, both unmanned surface vessel formations
and the strike target are dynamically changing. So that the application of static models will
cause deviations in the strike results. Furthermore, traditional models mostly concentrate
on the allocation while not considering the path programming, which is not suitable for
USV planning. Finally, for utility functions, most only consider combat efficiency, such as
the product of target threat and probability of damaging the target, without considering
the impact of time costs.

The target assignment problem is NP (non-deterministic polynomial)-hard [10] and
can be solved with heuristic algorithms, including construction algorithms and local search
algorithms [11]. Construction algorithms mainly sacrifice the quality of the solution under
the premise of high efficiency. They are usually used to generate initial solutions [12,13],
while local search algorithms mainly search for better solutions through different search
operators. Existing algorithms include simulated annealing [14], taboo search [15], GA,
and large neighborhood search [16] algorithms. For heuristic algorithms, the final result
depends on the initial solution. Therefore, for large-scale problems [17], inappropriate
initial solutions will cause the entire algorithm to fall into local optima and a large amount
of calculation time. In recent years, reinforcement learning (RL) has made breakthroughs in
the field of combinatorial optimization [18–20] due to its ability to estimate useful patterns
that are difficult to find manually, especially in large-scale problems [21] and the fast route
generation process [22]. It is now widely used to solve NP-hard optimization problems in
VRP based on RL models [23]. For example, the literature [24] uses a Deep Deterministic
Policy Gradient algorithm for longitudinal speed control to implement a trajectory tracking
control method for self-driving vehicles.

Therefore, to solve the large-scale dynamic weapon firepower allocation problem,
this paper proposes a dynamic weapon firepower allocation solution model based on
deep reinforcement learning (DRL) because the heuristic algorithm cannot accomplish
the real-time assignment of dynamic targets. As this moving target problem pays more
attention to the cooperation between different agents, we used multi-agent reinforcement
learning instead of single-agent. The main contributions are as follows: 1⃝ We propose a
new mathematical model to describe the surface unmanned craft fire assignment problem
in dynamic environments, and mathematically solve the model initially including the strike
bearing as well as the strike time. 2⃝ We combine task completion time with target threat
level to establish a task evaluation model for the current problem. 3⃝ In contrast to the
previous use of heuristic algorithms, we propose a MADDPG-based algorithm for solving
dynamic problems at different scales and experimentally validate it.

The remainder of this study is organized as follows: Section 1 introduces the back-
ground and importance of the moving target assignment. Section 2 provides a brief survey
of related studies on model and solving algorithms. Section 3 proposes a mathemati-
cal formulation. Section 4 introduces the MTWTA algorithm to solve the formulation.
Section 5 test and discuss the algorithm with several experiences. Finally, the conclusions
and discussion are presented in Section 6.

2. Related Work

In this section, we mainly focus on the related research in the model of WTA and the
solving algorithm.

2.1. Wta

The WTA problem was first proposed by Manne [25] when studying the optimization
of ballistic missile defense operations, and was initially called the missile allocation problem
(MAP) to allocate one’s own interceptor missiles to intercept incoming ballistic missiles,
to achieve the purpose of optimal protection of their own facilities. With the increase
of researchers, the research point is gradually expanded by air defense fire distribution,

Mathematics 2024, 12, 2557 3 of 20

in which the modeling can be divided into static weapon assignment (SWTA) and dynamic
weapon assignment (DWTA). For the static assignment, Li [26] studied the weapon-target
assignment problem of static multi-target ground air defense, aiming to maximize the
protection of own assets while minimizing weapon consumption. Xu [8] studied the WTA
problem of ballistic missile defense from a static perspective, considering the multi-target
WTA problem under uncertain conditions, to achieve the maximum interception efficiency
and minimum interception loss. Choi [27] mainly studied the problem of artillery firing
order under uncertain conditions and proposed an optimization method for the order of
artillery firing. Li [28] mainly studied the problem of static dual-target fighter jets attacking
ground targets.

Bertsekas [29] studied the WTA problem of battlefield missile defense, considering
the diversity of incoming targets, the size of own asset value, and the fineness of defense
weapons, with the maximization of the preservation value of own assets in the final stage
as the optimization goal. Davis [30] studied the problem of multi-round salvo of ballistic
missile defense under uncertainty from a dynamic perspective. Shalumov [9] analyzed
the cooperative interception scenario between multiple moving targets (aircraft), target
defenders, and attacking target missiles. Wang [31] proposed a model to maximize the
attack on enemy targets, with the application background of fighter jets carrying air-to-
ground missiles attacking ground moving targets.

2.2. Solving Algorithm

In terms of the weapon-target assignment algorithm, the current algorithm is mainly
divided into an exact algorithm and an approximate algorithm, and the approximate
algorithm includes the rule-based heuristic algorithm, Lagrange relaxation method, meta-
heuristic algorithm and machine learning algorithm. Ha [32] designed a branch-and-bound
algorithm for field artillery fire scheduling, which could find the optimal solution to the
medium-scale problem within a reasonable time. Feghhi [33] designed a branch-and-bound
algorithm based on a mixed depth-first selection strategy to solve the small-scale nonlinear
integer programming WTA problem. Lu [34] provided an accurate method to quickly solve
large-scale WTA problems by modeling WTA problems as a 0-1 integer linear programming
models and applying column generation and branch and bound methods to solve them.
Xin [35] designed a rule-based heuristic construction algorithm to solve the DWTA problem.
In the process of generating feasible solutions, the saturation states of different constraints
are dynamically verified to achieve the constraint satisfaction in the process of weapon
allocation. Xin [36] proposed a marginal return-based constructive heuristic (MRBCH)
algorithm to solve the formulaic sensor-weapon-target assignment problem.

Lee [37] further described the local search method in GA as a eugenic process, and de-
scribed the greedy recombination scheme search strategy proposed in the literature [38] as
greedy eugenics, and proposed an improved greedy eugenics genetic algorithm for solving
general WTA problems. Li [39] proposed an improved genetic algorithm to solve the sensor-
weapon-target assignment problem. It adopted decimal coding, the coding length was the
sum of the number of weapons and the number of sensors, and population initialization
was carried out based on rules. Li [40] improved the PSO algorithm for the multi-layer
ballistic missile defense WTA problem. Bisht [41] combined the traditional GA and SA
algorithms to propose a new hybrid GA to solve the WTA problem. Bogdanowicz [42] de-
signed an innovative algorithm based on enumerating all possible arms-asset combinations
to quickly assess the possible collateral damage of a pre-set WTA to neutral/friendly assets.
In the field of machine learning, Wang [43] proposed a new adaptive self-organizing map-
ping algorithm with a recurrent neural network (RNN) controller, which can automatically
assign defense missiles to incoming targets and set monitors to reduce the error of matching
with the ideal. Gibbons [44] proposed a deep learning approach that automatically learns
heuristic rules to solve combinatorial assignment problems, and validated the approach
with WTA problems.

Mathematics 2024, 12, 2557 4 of 20

Overall, unlike the existing research on weapon-target assignment, this paper will fo-
cus on the allocation of movable targets. Meanwhile, compared with the previous heuristic
algorithms, a generalized reinforcement learning algorithm will be used to improve the
solution efficiency.

3. Moving Targets WTA Model

This study primarily focuses on constructing a target assignment model that targets
dynamic objectives using a single firepower node. The model considers a relative positional
motion model to determine the real-time positions of the firepower strike node and the
dynamic objectives. Additionally, a task evaluation model is established to assess the threat
level posed by the dynamic objectives. Finally, mathematical formulas are proposed to
minimize the enemy threat level within the entire target assignment model.

In summary, this research aims to develop an effective firepower allocation strategy
by considering the real-time positions of the targets and evaluating their threat levels.
By minimizing the enemy threat level, the proposed model seeks to optimize the allocation
of firepower resources.

3.1. Problem Description

The primary objective of this research is to establish a model for firepower allocation
targeting dynamic objectives. In this scenario, the enemy firepower units are dispersed
around bases and engage in reconnaissance and destruction missions. The strategy involves
deploying a swarm of unmanned surface vessels (USVs) from the base to strike all enemy
firepower units. This can be represented by an array <A, N, E, C>, where A represents
the USV swarm, N represents the enemy firepower units with their survival and threat
assessment information, including the number of units, E represents the real-time position
and situational information of both firepower units and enemy targets, and C represents
the constraints for the model during the mission.

In the context of dynamic target firepower allocation, determining the optimal path
for firepower nodes faces two main challenges. Firstly, enemy targets typically move in
different directions within a specific range during their reconnaissance and destruction
operations. This necessitates continuous observation of their positions by these firepower
nodes, emphasizing the need for minimal travel time. Secondly, each target possesses
different characteristics in terms of size, velocity, direction, and distance. For example,
priority may be given to swiftly advancing enemy units or larger targets. Therefore, it is
crucial to prioritize targets with higher threat levels. Considering these factors, the model
considers the time required for firepower nodes to reach each strike position and the threat
levels of targets when determining the optimal firepower allocation path. The model is
based on the following assumptions:

• Real-time position, direction, and velocity information of targets can be obtained
through intelligence reconnaissance systems. The model in this paper only considers
the enemy speed and direction at the calculation time.

• The time required for firepower strikes is not explicitly considered. It is assumed
that once firepower nodes reach the designated strike positions, the attacks on enemy
targets are successfully executed.

3.2. Time

In order to determine the transfer route of the fire nodes, we analyze the relative
movement of fire nodes and targets. We establish a Cartesian coordinate system. Due to
the dynamic nature of the enemy targets, it is necessary to determine the position points
and time at which the enemy targets are within the striking range of the firepower strike
equipment. The meaning of parameters is shown in Table 1.

Mathematics 2024, 12, 2557 5 of 20

Table 1. The parameters.

Parameters Meaning

N targets
A unmanned surface vessel
VA the speed of USV
Vn the speed of target n
βn the angle between direction and the vertical
Ln Strike position for the target n
(Xi, Yi) the real-time location of USV
(Xn,0, Yn,0) the initial location of the target n
(Xn,ti , Yn,ti) the real-time location of target in t
Ln strike position for target n
l the distance

3.2.1. The Position Points

If the distance between the firepower attacking nodes and the enemy target is greater
than the attacking range, we can determine the position point based on the following
two hypotheses.

Hypothesis 1. When the target and the initial position of these firepower attacking nodes are on
the same straight line as the attacking point, it is the optimal attacking point.

As shown in Figure 1, we construct a circle with the enemy target B as the center, L as
the optimal attacking point, and any point L′ on the attacking circle as the attacking point.
According to the perpendicular theorem and Pythagorean theorem, we have:

(l2 + |OL|)2 +
∣∣∣OL’

∣∣∣2 = l2
1 ≥ l2

2 (1)

Therefore, it can be concluded that the L point is the optimal striking point as it results
in the shortest possible path.

Figure 1. Striking circle.

Hypothesis 2. When the time for the strike equipment to reach the striking position is equal to the
time for the enemy to reach the target position, it is considered the shortest time.

Mathematics 2024, 12, 2557 6 of 20

As shown in Figure 2, L2 the optimal strike point, L1 means that the time it takes for
the firepower strike node to reach the impact point is less than the time it takes for the
enemy to arrive at the target location. Analysis indicates that when the fire strike node A
arrives at L2 ahead of time, it needs to wait for a duration equal to the time it takes for the
enemy target to reach B′, which is longer than the duration to reach strike point L1; if the
target arrives Bbest early, the enemy target has not yet entered firing range. Therefore, it is
proved that the arrival time of the enemy target and firepower node should be consistent.

Figure 2. Enemy target movement chart.

3.2.2. The Time of Fight

In order to determine the transfer route for the fire strike node, we have established a
Cartesian coordinate system based on the relative motion of fire strike node and the enemy
target. Due to the dynamic nature of the enemy target, we need to determine the position
and time at which the enemy target falls within the striking range of fire strike equipment.

Scenario 1: Initial Position Transfer.
As shown in Figure 3, at the initial moment, we depart from the base to engage the

first designated target. Let us assume that we arrive at the firing position after a certain
time, denoted as t0,i. Point A represents the location of the base, point B represents the
initial location of the enemy’s first target, L represents the designated strike position, and B′

represents the mapped point of the enemy target. In ∆ABB′, we can apply the cosine rule
to calculate:

(lAL + r)2 = lAB
2 +

∣∣∣BB’
∣∣∣2 − 2|lAL + r| · |lAB| · cos∠ABB’ (2)

the length is:
lAL = vA · t0,i (3)

|AB| =
√
(X0 − Xi,0)

2 + (Y0 − Yi,0)
2 (4)

lB′B = vi · t0,i (5)

where βi represents the direction of the enemy target’s movement, which can be obtained
from Equation (6):

αi = arctan
Yi,0 − Y0

Xi,0 − X0
(6)

cos∠ABB’ = − sin(αi + βi) (7)

Mathematics 2024, 12, 2557 7 of 20

Figure 3. Path diagram from the base to the first strike point.

Scenario 2: intermediate node transfer.
After determining the time when the fire strike node completes the strike on target i,

we can calculate the position changes of each target. As shown in Figure 4, when the fire
strike node completes the strike on target i at time ti, the positions of the fire strike node
and target j are at points Li(Xi, Yi) and J(Xj,ti , Yj,ti). Now, we consider that the fire strike
node departs from Li to complete the strike on target J. Assuming that after the interval ti,j,
the fire strike node moves from point Li to point Lj, and the enemy target moves from point
J to point J′. At this moment, the enemy target enters the firing range. In ∆Li J J′, according
to the cosine rule, we have:(

vA · ti,j + r
)2

= lLi J
2 +

∣∣vj · ti,j
∣∣2 − 2

∣∣vj · ti,j
∣∣ · ∣∣lLi J

∣∣ · COS∠Li J J’ (8)

|Li J| =
√
(Xi,ti − Xi)

2 + (Yi,ti − Yi)
2 (9)

The location of enemy target at ti:

Xi,ti = Xi,0 + viti sin βi
Yi,ti = Yi,0 + viti cos βi

(10)

the ∠Li J J’ can be calculated by equal (11):

cos∠Li J J’ =

−→
Li J •

−→
J J’∣∣∣∣−→J J’

∣∣∣∣ • |Li J|
(11)

−→
J J

′∣∣∣∣−→J J
′
∣∣∣∣ = (sin β j, cos β j) (12)

Mathematics 2024, 12, 2557 8 of 20

According to Equations (8)–(12), we can calculate the time:

M =

√
v2

A + v2
J �

r2

l2 + 2vA · vJ ·
r
l

cos∠Li J J ′ − v2
J sin2∠Li J J ′ (13)

t =
M − (vA · r

l + vJ cos∠Li J J
′
)

(v2
A − v2

J)
· (14)

Figure 4. The route of intermediate node transfer.

3.2.3. Model for Threat Assessment

The traditional VRP problem typically measures the quality of a selected solution
by the total length of the path. However, in the context of military operations, the main
objective is to maximize the overall combat effectiveness by minimizing the threat level
posed by the enemy. Therefore, this article primarily focuses on evaluating this criterion
from two perspectives:

(a) Enemy Threat Level: Enemy threat: The primary goal of VRP in combat is to
minimize the threat of the enemy. In offshore defense, the threat degree of the target is
initialized according to the speed and type of the enemy attacking ships. The calculation of
the threat degree of the enemy can be obtained from the literature [45].

(b) Strike Time (time from target detection to engagement): The enemy targets may
gather information about resources and infrastructure through reconnaissance and sabotage
missions. As time goes on, the enemy can collect more intelligence, posing a greater threat
to us. Modern warfare emphasizes quick response and mobility. Conducting operations
within a short time frame can shorten the enemy’s reaction time, reducing their interference
and obstruction of actions. Swiftly striking targets can increase mobility and flexibility.

c =
n

∑
i=1

vti (15)

Since the target strike order is different and the rewards obtained are different, we
define the threat reduction of the enemy target as follows:

ω
′
i = ωi ∗ φ (16)

Mathematics 2024, 12, 2557 9 of 20

φ = 0.9λ−1 (17)

λ is the strike sequence of the target in the unmanned surface vessels; if it is the second
strike, then λ = 2.

Therefore, the reward for one of the unmanned surface vessels is defined as:

ω =
n

∑
i=1

ωi − c (18)

3.2.4. Mathematical Formulation

min ω (19)

s.t.
ui,j = {0, 1}, i, j ∈ N, i ̸= j (20)

∑
i∈N

u0,i = 1 (21)

∑
i∈N

ui,0 = 1 (22)

∑
i∈N

∑
j∈N

ui,j = n (23)

|Li Ji| ≤ r (24)

∑
i,j∈N

ti,j ≤ Tmax (25)

Constraint (20): At most, one visit from i to j. This constraint states that in path
planning, each target point can only be visited once in the path from the starting point i to
the destination point j.

Constraints (21) and (22): Must depart from and return to the base.
These constraints ensure that the path planning must start from the base, pass through

a series of target points, and finally return to the base.
Constraint (23): Must visit all target points. This constraint requires that the path

planning must pass through all target points, without skipping or ignoring any of them.
Constraint (24): Distance between target and strike point must be within strike radius.

This constraint ensures that the selected target points in the path planning are within the
strike radius of force, enabling effective strikes.

Constraint (25): Maximum endurance time. This constraint limits the maximum
endurance time of the aircraft in the path planning, ensuring that the aircraft can complete
the mission within the specified time frame.

4. Reinforcement Learning Model

In this section, we will introduce the algorithm. As shown in Figure 5, it is the
framework overview of MTWTA, which is based on the MADDPG. And this article has
combined it with the RNN and attention mechanism. The whole framework is made up
of three parts: the encoder, the network of actors and the network of critics. The encoder
draws on RNN and self-attention mechanisms for state representation, the actor network
for action selection, and the critic network for training. The following will describe each
component in detail.

Mathematics 2024, 12, 2557 10 of 20

…

Actor

critic

state …

predictvalue

TD-
error

Gradient

Solution

RNN

Actor-Critic Network

Figure 5. The framework of MTWTA.

4.1. Multi-Agent Reinforcement Learning Setting

State: Since the entire environment for the side is open information, that is, all un-
manned surface vessels share target location information and attack information, we define
the state of a single agent to include its own information and environmental information.
The state of each unmanned surface vessel includes its location information, the sequence
of targets it has already visited, and the remaining energy of the unmanned surface vessels;
the public information in the environment includes the location, speed, threat level, attack
status of the target, and the locations of other unmanned surface vessels.

si = ((xi, yi), (tar1, . . . , tarm), (agent1, . . . agentn)) (26)

Action: The unmanned surface vessels can choose an un-attacked target or stop
moving. This can be encoded as a discrete action space. We use one-hot encoding to
represent each action value. For example, if the third target is selected, it is defined as
(0, 0, 1, . . . , 0) and the stop action is represented as (0, 0, 0, . . . , 1). When the unmanned
surface vessels reach their maximum capacity or there are no targets to attack in the entire
environment, the returned action is ‘−1’, that is, return to the origin. The step indicates
that one target is assigned, and the other unassigned targets will be reassigned to achieve
online dynamic allocation.

Reward: When the unmanned surface vessels completes the target attack, a positive
reward is given. The size of the reward is related to the threat level of the target. At the
same time, each time an action is executed, the unmanned surface vessels will consume a
certain amount of energy, so each action will receive a negative reward proportional to the
energy consumption.

Mask: Due to the limitations of the target visit times and the maximum capability of
the unmanned surface vessels, there may be moments when the target can no longer be
selected or the unmanned surface vessels cannot carry out the strike mission. Therefore,

Mathematics 2024, 12, 2557 11 of 20

we use a mask to indicate whether the unmanned surface vessels can perform the action at
a certain moment. The mask rule is defined as follows:

mi =

{
1, un − assigned
0, otherwise

(27)

When the unmanned surface vessels reach their maximum capability, we define
the mask as (0, 0, 0, . . . , 1), indicating that the unmanned surface vessels cannot perform
more actions.

4.2. Multi-Agent Deep Deterministic Policy Gradient

In an environment with multiple unmanned surface vessels, traditional heuristic
algorithms face significant challenges. In this environment, each unmanned surface vessel
is an individual agent that needs to continuously learn to obtain the optimal strategy.
From the perspective of each agent, the environment is no longer static but dynamic.
The appearance of the MADDPG algorithm [46] can effectively solve such problems.

The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is an
extension of the Deep Deterministic Policy Gradient (DDPG) algorithm [47]. It is an
intelligent algorithm that can handle multi-agent cooperation problems that traditional
reinforcement methods cannot address. The MADDPG algorithm adopts a “centralized
training, decentralized execution” framework for learning, as shown in Figure 6. In a
multi-agent environment, the behavior of each agent affects the observation results and
rewards of other agents, making the dynamics of the environment non-stationary and
posing challenges to learning. MADDPG addresses this problem by allowing each agent
to have its own actor–critic network, where the actor is the action network and the critic
is the evaluation network. During the training process, each agent’s policy network only
uses the agent’s own observations and actions, while the value function network uses the
observations and actions of all agents.

Figure 6. MADDPG.

The training process of MADDPG includes two main steps: policy update and value
function update.

In the policy update step, each agent i generates actions ai = µθi (oi) according to its
policy function, and then uses the value function to calculate the expected rewards of these

Mathematics 2024, 12, 2557 12 of 20

actions Qϕi (o1, . . . , oN , a1, . . . , aN). Then, the parameters of the policy function are updated
through gradient ascent to maximize the expected reward:

∇θi J(µθi) = Eo1,...,oN∼D∇θi µθi (oi)∇ai Qϕi |ai=µθi
(oi)

(28)

In the value function update step, each agent i uses its policy function and the policy
functions of other agents to generate actions ai = µθi (oi), and then uses these actions
and observations to calculate the target value y = ri + γQϕ′

i
(o′1, . . . , o′N , a′1, . . . , a′N). Then,

the parameters of the value function are updated through gradient descent to minimize the
difference between the target value and the actual value:

∇ϕi L(ϕi) = Eo1,...,oN ,a1,...,aN ,ri ,o′1,...,o′N∼D[(Qϕi − y)2] (29)

where D is the experience replay buffer, γ is the discount factor, and ′ indicates the next
time step.

Furthermore, gradient vanishing may occur during training. Gradient vanishing is a
common problem during the training of neural network models, especially when using
back-propagation algorithms. As the number of network layers increases, the gradient
may gradually decrease to close to zero during back-propagation, resulting in slow or
stagnant network weight update, which affects the training effect. Gradient vanishing
mainly focuses on unreasonable limitations of the number of network layers, inappropriate
activation functions or poor weight initialization. It is suggested in the literature [48] that
the effect of gradient vanishing can be reduced by dynamically adjusting the learning
rate and optimizing the loss function. On this basis, we reduce the possibility of gradient
vanishing by constantly adjusting the number of network layers and using unsaturated
activation functions such as ReLU.

4.3. Encoding

In the research, we propose a novel approach to handle variable-length navigation
trajectory sequences. This method combines recurrent neural networks (RNN) and self-
attention mechanisms to capture long-distance dependencies in the sequence and handle
inputs of different lengths.

Firstly, we employ an RNN to process the input navigation trajectory sequence. RNNs
are a type of neural network capable of handling sequence data, capturing temporal
dependencies in the sequence. In the model, we use gated recurrent units (GRU) as the
basic unit of the RNN, as GRUs can effectively handle long sequences and have relatively
low computational complexity. The update equations for GRU are as follows:

rt = σ(Wr · [ht−1, xt]) (30)

zt = σ(Wz · [ht−1, xt]) (31)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (32)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (33)

where rt and zt are the reset and update gates, ht is the hidden state, xt is the input,
∗ denotes element-wise multiplication, σ is the sigmoid function, and W represents the
weight matrices.

Next, we employ a self-attention mechanism to further process the output of the RNN.
The self-attention mechanism is a method capable of capturing long-distance dependencies
in the sequence. It computes an interaction between each element and all other elements
in the sequence to generate a context vector as a weighted average. The computation for
self-attention is as follows:

Q = Wq · h (34)

K = Wk · h (35)

Mathematics 2024, 12, 2557 13 of 20

V = Wv · h (36)

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (37)

where Q, K, V are the query, key, and value, h is the output of the RNN, Wq, Wk, Wv are the
weight matrices, dk is the dimension of the key, and softmax is the softmax function.

By combining RNN and self-attention mechanisms, the model can effectively handle
variable-length navigation trajectory sequences and capture long-distance dependencies in
the sequence.

4.4. Algorithm

In this section, we will show the algorithm of action selection and the MTWTA. As
shown in Algorithm 1, is the action selection for each agent used the self-attention with
RNN, and Algorithm 2 shows the whole progress of the algorithm we have proposed.

Algorithm 1 Self-Attention with RNN and Mask for Action Selection
Initialize random weights of RNN
Initialize self-attention mechanism
Initialize action space A
For each episode:
4.1 Get initial state s0
4.2 Pass s0 through RNN to get hidden state h0
4.3 For each time step t:

4.3.1 Pass ht−1 through self-attention to get
attention output ot

4.3.2 Concatenate st and ot to form the input
xt for the RNN

4.3.3 Pass xt through RNN to get ht
4.3.4 Compute action probabilities pt using

gumbel-softmax function on ht
4.3.5 Apply mask to pt to get masked

probabilitiesp′t
4.3.6 Select action at from A according to p′t
4.3.7 Execute action at and observe reward

rt and new state st+1

Algorithm 2 Processing procedure of WTA
Initialize Q, µ, Q′, µ′, R
For each episode, initialize N, receive s1
For each time step t:

3.1 For each agent i, select ai = µ(si) + Nt,
apply mask

3.2 Execute a = (a1, . . . , aN), observe r, s′,
store (s, a, r, s′) in R, set s = s′

3.3 Sample minibatch of N transitions from R,
set yi = ri + γQ′(s′i, µ′(s′i))

3.4 Update critic by minimizing
L = (yi − Q(si, ai))

2

3.5 Update actor policy using sampled policy
gradient

3.6 Update target networks:
θQ′ = τθQ + (1 − τ)θQ′ , θµ′ = τθµ + (1 − τ)θµ′

Mathematics 2024, 12, 2557 14 of 20

5. Experiment

Numerate experiments are divided into two parts. The first one is a case study; we
set an instance of (5, 25) to calculate WTA. The second part is a comparative performance
evaluation. The experiment is carried out on AMD Ryzen7 5800H@3.2 Hz, RTX3060 with
16 GB RAM, code in Python 3.10.

Dataset: Due to the restrictions of military datasets, all data in this experiment are
randomly generated. A specified number of targets are randomly generated according
to the problem scale, and their coordinates are quantified and limited within (−10, 10),
with their speed within (1, 2). Their initial threat levels are calculated through a table and
all threat levels are normalized. The initial coordinates of agents are all (0, 0), with a set
speed of 10, and the maximum attack capability of unmanned surface vessels is 5.

Baseline: The conventional solution to planning problems in the military field mainly
uses the GA algorithm. Therefore, this experiment mainly compares the genetic algorithm
under different scales. When the target is greater than or equal to the maximum allocation
ability, we allocate by bit [49], that is, we group the chromosome encoding according to
the maximum ability of the unmanned surface vessels and allocate it to unmanned surface
vessels in turn. When the enemy target has less than the maximum allocation ability,
we refer to the literature, insert the virtual encoding of the unmanned surface vessels
into the target chromosome encoding, and define the chromosome segment between
two unmanned surface vessels as the attack segment of the previous unmanned surface
vessels. The chromosome sequence is the attack sequence of the unmanned surface vessels.
If the number between the unmanned surface vessels is greater than the maximum ability
of a single boat, the first max ones are taken as the attack sequence of this unmanned
surface vessels.

Gray Wolf Algorithm: The optimal solution to the problem is achieved by simulating
the social and predatory behavior of grey wolves. A hierarchical model of social hierarchy
is formed by ranking each grey wolf according to its fitness value. The grey wolf algorithm
adjusts its movement strategy according to the current position and the target position to
better approximate the optimal solution and finds the optimal solution in the search space
and approaches the target gradually by adjusting their position. We use the basic grey wolf
algorithm with 300 iterations as a comparison algorithm

Parameter setting: the parameter of MTWTA is shown in Table 2.

Table 2. The training parameter.

Actor learning rate 1 × 10−4

Critic learning rate 1 × 10−4

Batch size 32
max iteration 1 × 106

hidden dimension 128
elite rating 0.3
mutation probility 0.4

We set the reward as ω = (
n
∑

i=1
ωi − c) ∗ 100, and the fitness function of GA is set as

same as the reward for that the result is my optimization goal. But different with the
RL, we only calculate after the entire pre-assignment is completed, without considering
dynamic reward.

5.1. Case Study

We use the MTWTA method to solve the fire distribution problem, where the number
of unmanned surface vessels is 5 and the number of enemy unmanned surface vessels
is 25. We set the number of training times to 10,000, the dimension of the hidden layer
to 128, and the model updates every 50 times. We apply the trained model to solve
the problem, and the results obtained are as shown in Figure 7; the assignment is that

Mathematics 2024, 12, 2557 15 of 20

s1: 2 → 20 → 19 → 24 → 10, s2: 3 → 9 → 21 → 16 → 15, s3: 4 → 17 → 22 → 13 → 6,
s4: 7 → 0 → 23 → 11 → 1, s5: 12 → 5 → 8 → 14 → 18. The coordinates in Table 3
represent the positions of each unmanned surface vessel when attacking the final target. It
shows the final position of each unmanned surface vessel before it comes back to the base.

Figure 7. Solution.

Table 3. Final assignment.

Fight Location Target ID Target Initial Location Target Final Location

s1 (1.886, 1.686) 10 (4.146, 5.487) (3.726, 5.258)
s2 (2.1415, 5.618) 15 (−0.078, 8.737) (−0.414, 8.710)
s3 (−3.591, −5.604) 6 (−5.453, −8.908) (−3.625, −9.619)
s4 (2.448, 6.434) 1 (5.132, 6.023) (5.640, 6.221)
s5 (3.406, −0.79) 18 (7.221, 0.729) (7.234, 0.483)

5.2. Comparative Performance Analysis
5.2.1. The Quality of Solution

To verify the scalability of the algorithm, this experiment is designed with three
comparative tests, which are conducted, respectively, when the enemy targets exceed
unmanned surface vessels’ total allocation ability, when the enemy targets equal with
maximum allocation ability, and when the enemy targets are less than the maximum
allocation ability.

Experiment 1: When the target is less than maximum capability.
We set the number of unmanned surface vessels and the enemy, respectively, as

(30, 100), (20, 60), and (5, 16) for three sets of experiments. Here, GA100, GA200, and GA300
represent experiments with iteration times of 100, 200, and 300, respectively. For reinforce-
ment learning, we calculate the average of 100 times, and the solution of the GA algorithm
is the average of 10 solutions. The quality of the solution is shown in Table 4. The results
represent the ratio of the solution rewards compared to the proposed algorithm. The larger
the result, the worse the quality of the solution.

Mathematics 2024, 12, 2557 16 of 20

Table 4. The rewards when the target is more than the max of the ability of USVs.

N = 5, M = 16 N = 30, M = 100 N = 60, M = 200

MTWTA 1 1 1
GA100 1.29 1.53 1.82
GA200 1.17 1.50 1.75
GA300 0.98 1.44 1.71
GWO 0.85 1.32 1.59

Experiment 2: When the target is equal to the maximum capability.
We set the number of unmanned surface vessels and the enemy, respectively, as

(30, 100), (20, 60), and (5, 16) for three sets of experiments. The quality of the solution is
shown in Table 5.

Table 5. The rewards when the target is equal to the max of the ability of USVs.

N = 5, M = 25 N = 20, M = 120 N = 30, M = 150

MTWTA 1 1 1
GA100 0.86 1.36 1.97
GA200 0.75 1.28 1.81
GA300 0.80 1.26 1.69
GWO 0.82 1.10 1.58

Experiment 3: When the target is more than maximum capability.
We set the number of unmanned surface vessels and the enemy, respectively, as (3, 17),

(20, 120), and (30, 160) for three sets of experiments. The quality of the solution is shown
in Table 6.

Table 6. The rewards when the target is more than the max of the ability of USVs.

N = 3, M = 17 N = 20, M = 120 N = 30, M = 160

MTWTA 1 1 1
GA100 0.69 2.06 1.77
GA200 0.58 1.95 1.73
GA300 0.61 1.93 1.71
GWO 0.59 1.78 1.52

Through experiments under three different scenarios, we found that the algorithm
proposed in this paper is superior to the baseline algorithm in terms of solution quality
when the scale is large. However, when the scale is small, the solution quality obtained by
the MTWTA algorithm is lower than that of the GA, especially when the number of enemy
targets exceeds the maximum capacity, the rewards obtained by MTWTA are much lower
than GA.

The reason for this phenomenon is that when the problem scale is small, the solution
space of the entire experiment is also small. As a search algorithm, the GA is more likely
to find the optimal solution in a smaller solution space. However, when the problem
scale expands, the solution space also increases, and the quality of the solution cannot be
guaranteed in a short number of iterations. From the algorithmic design point of view,
reinforcement learning interacts with the environment in real time and uses a trial-and-error
learning mechanism. The intelligent body learns the optimal strategy by continuously
trying different actions and observing the results, and with the balance of exploration
and utilization, can lead the intelligent body to learn a better strategy, while GA focuses
more on searching for optimal solutions through the evolution of individuals in a popu-
lation. Although it has a certain exploration ability, its learning mechanism is relatively

Mathematics 2024, 12, 2557 17 of 20

passive, mainly relying on the evaluation of the fitness function and genetic manipulation,
and therefore has relatively little feedback and is slow to guide changes in the quality of
the solution.

5.2.2. The Running Time

In practical applications, the solution time is a key indicator to measure the perfor-
mance of an algorithm. Therefore, we have calculated and compared the solution times
of various algorithms at different scales, as shown in Figure 8. We have calculated the
average time of running the algorithm ten times. This method can help us to evaluate the
performance of the algorithm more accurately.

Figure 8. The time to solve the problem.

In terms of comparing the solution time of algorithms, the algorithm proposed in this
paper shows significantly better performance than GA. Although the genetic algorithm
may find a better solution for small-scale problems, as the scale of the problem increases, its
solution time also significantly increases. Experimental results show that the solution time
of the proposed algorithm is much less than that of GA, and as the scale of the problem
increases, this time advantage becomes more prominent. For the GA, with the increase
of the number of genetic generations, it will continuously expand its search space due
to the influence of various parameters, such as crossover mutation operation, and at the
same time, it is necessary to calculate the fitness function value of each individual in each
iteration, which increases the solution time of the whole problem.

5.2.3. The Stability

In this paper, we mainly focus on the solution stability. The quality of solutions
provided by search algorithms largely depends on the quality of the initial solution space.
If the initial solution space is of poor quality, even the best search algorithms may not be
able to find satisfactory solutions. Therefore, the stability of solutions becomes an important
criterion for measuring algorithm performance.

The stability of solutions reflects the consistency of the algorithm’s performance under
different initial solution spaces. A highly stable algorithm can find satisfactory solutions
consistently, regardless of the quality of the initial solution space. This is particularly
important for real-world problems, as we often cannot guarantee the quality of the initial
solution space.

Mathematics 2024, 12, 2557 18 of 20

Therefore, we use the stability of solutions as an important comparison criterion to
evaluate and compare the performance of different algorithms. In this way, we can under-
stand and evaluate the performance of algorithms more comprehensively and accurately,
thereby selecting the algorithm that is most suitable for the actual problem. The result is
shown in Figure 9.

Figure 9. Solution stability.

Experimental results show that the solutions of GA are volatile, while the model
trained by MTWTA shows stability in solving problems. This is because the MTWTA
algorithm continuously optimizes strategies by learning from environmental feedback.
Even in cases where the initial solution space is of poor quality, it can find satisfactory
solutions through continuous learning and iteration. On the contrary, if the initial solution
space of the genetic algorithm is of poor quality, it may be difficult to get rid of the local
solution space by operations such as crossover and mutation, while the randomness of the
crossover and mutation operations can lead to fluctuations in the solution of the problem.

6. Summary and Discussion

This study proposes a new model to describe and solve the weapon-target assign-
ment problem of unmanned surface vessels in the near sea. Unlike the existing problems,
the target of the surface unmanned craft is in a moving state, so the existing modeling
methods have certain constraints. This means that it needs to consider the strike position of
each target and the movement direction of the unmanned surface vessels at different times.
To better describe this problem, this research has established a new weapon-target assign-
ment model and a reasonable performance evaluation system. A constrained mathematical
model with the goal of maximizing the target was set up. In order to solve this problem, we
modified the embedding of MADDPG with the help of the principle of Seq2seq, and proved
the timeliness, stability and quality of the proposed framework through the comparison
experiment with the genetic algorithm. Through the experimental results, we found that
our proposed framework is able to obtain a stable solution that is 30% better in less than
10% of the time in situations of different sizes.

This study can provide some help in algorithm and modeling for subsequent dynamic
fire distribution. In the current intelligent battlefield, the timeliness and stability of the
algorithm can better assist the commander in making decisions. At the same time, this
algorithm is not the only solution to this problem. In the subsequent research process, we
will focus on the fire distribution of continuous actions, and consider the the confrontation.

Author Contributions: Methodology, X.Z.; Writing—original draft, T.H.; Funding acquisition, X.L.
and T.C. All authors have read and agreed to the published version of the manuscript.

Mathematics 2024, 12, 2557 19 of 20

Funding: This work was partically supported by the National Natural Science Foundation of China
(No. 62302510).

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zheng, Y.; Tao, J.; Sun, Q.; Sun, H.; Chen, Z.; Sun, M.; Xie, G. Soft Actor–Critic based active disturbance rejection path following

control for unmanned surface vessel under wind and wave disturbances. Ocean. Eng. 2022, 247, 110631. [CrossRef]
2. Chung, T.H.; Daniel, R. DARPA OFFSET: A Vision for Advanced Swarm Systems through Agile Technology Development and

Experimentation. Field Robot. 2023, 3, 97–124. [CrossRef]
3. Drubin, C. Collaboration Vital to DARPA’s CODE for Success. Microw. J. 2019, 62, 41.
4. Gray, C.S. Modern Strategy; Oxford University Press: Oxford, UK, 1999.
5. Haward, M. Maritime Power in the Black Sea; Routledge: London, UK, 2015.
6. Mahan, A.T. Maritime Security Challenges in South Asia and the Indian Ocean: Response Strategies. In Proceedings of the

Center for Strategic and International Studies—American-Pacific Sealanes Security Institute Conference on Maritime Security in
Asia, Honolulu, HI, USA, 18–20 January 2004.

7. Till, G. Seapower: A Guide for the Twenty-First Century; Routledge: London, UK, 2004.
8. Xu, H.; Xing, Q.; Tian, Z. MOQPSO-D/S for Air and Missile Defense WTA Problem under Uncertainty. Math. Probl. Eng. 2017,

2017, 9897153. [CrossRef]
9. Shalumov, V.; Shima, T. Weapon-target-allocation strategies in multiagent target-missile-defender engagement (Article). J. Guid.

Control. Dyn. 2017, 40, 2452–2464. [CrossRef]
10. Lee, Z.J.; Lee, C.Y.; Su, S.F. An immunity-based ant colony optimization algorithm for solving weapon–target assignment problem.

Appl. Soft Comput. 2003, 2, 39–47. [CrossRef]
11. Paraskevopoulos, D.C.; Laporte, G.; Repoussis, P.P.; Tarantilis, C.D. Resource constrained routing and scheduling: Review and

research prospects. Eur. J. Oper. Res. 2017, 263, 737–754. [CrossRef]
12. Grangier, P.; Gendreau, M.; Lehuédé, F.; Rousseau, L.M. An adaptive large neighborhood search for the two-echelon multiple-trip

vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 2016, 254, 80–91. [CrossRef]
13. Lulj, I.; Kramer, S.; Schneider, M. A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem.

Eur. J. Oper. Res. 2018, 264, 653–664.
14. Kirpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Readings Comput. Vis. 1987, 220, 671–680.
15. Glover, F. Tabu Search—Part I. Orsa J. Comput. 1989, 1, 89–98. [CrossRef]
16. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]
17. Liong, C.Y.; Wan, I.; Khairuddin, O. Vehicle Routing Problem: Models and Solutions. J. Qual. Meas. Anal. 2008, 4, 205–218.
18. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural Combinatorial Optimization with Reinforcement Learning. arXiv

2016, arXiv:1611.09940.
19. Dai, H.; Dai, B.; Song, L. Discriminative Embeddings of Latent Variable Models for Structured Data. arXiv 2016, arXiv:1603.05629.
20. Nazari, M.; Oroojlooy, A.; Snyder, L.V.; Takáč, M. Reinforcement Learning for Solving the Vehicle Routing Problem. Adv. Neural

Inf. Process. Syst. 2018, 31, 9861–9871.
21. James, J.Q.; Yu, W.; Gu, J. Online Vehicle Routing with Neural Combinatorial Optimization and Deep Reinforcement Learning.

IEEE Trans. Intell. Transp. Syst. 2019, 20, 3806–3817.
22. Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; Lodi, A. Exact Combinatorial Optimization with Graph Convolutional Neural

Networks. Adv. Neural Inf. Process. Syst. 2019, 32, 15554–15566.
23. Kool, W.; Hoof, H.V.; Welling, M. Attention, learn to solve routing problems! In Proceedings of the International Conference on

Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
24. Liu, Y.; Ding, W.; Yang, M.; Zhu, H.; Liu, L.; Jin, T. Distributed Drive Autonomous Vehicle Trajectory Tracking Control Based on

Multi-Agent Deep Reinforcement Learning. Mathematics 2024, 12, 1614. [CrossRef]
25. Manne, A.S. A Target-Assignment Problem. Oper. Res. 1958, 6, 346–351. [CrossRef]
26. Huang, T.J. Weapon-Target Assignment Problem by Multiobjective Evolutionary Algorithm Based on Decomposition. Complexity

2018, 2018, 8623051.
27. Choi, Y.B.; Jin, S.H.; Kim, K.S.; Chung, B.D. A robust optimization approach for an artillery fire-scheduling problem under

uncertain threat. Comput. Ind. Eng. 2018, 125, 23–32. [CrossRef]
28. Li, Y.; Kou, Y.; Li, Z.; Xu, A.; Chang, Y. A Modified Pareto Ant Colony Optimization Approach to Solve Biobjective Weapon-Target

Assignment Problem. Int. J. Aerosp. Eng. 2017, 2017, 1746124. [CrossRef]
29. Bertsekas, D.P.; Homer, M.L.; Logan, D.A.; Patek, S.D.; Sandell, N.R. Missile defense and interceptor allocation by neuro-dynamic

programming. IEEE Trans. Syst. Man Cybern. Part A 2000, 30, 42–51. [CrossRef]
30. Davis, M.T.; Robbins, M.J.; Lunday, B.J. Approximate dynamic programming for missile defense interceptor fire control. Eur. J.

Oper. Res. 2016, 259, 873–886. [CrossRef]

http://doi.org/10.1016/j.oceaneng.2022.110631
http://dx.doi.org/10.55417/fr.2023003
http://dx.doi.org/10.1155/2017/9897153
http://dx.doi.org/10.2514/1.G002598
http://dx.doi.org/10.1016/S1568-4946(02)00027-3
http://dx.doi.org/10.1016/j.ejor.2017.05.035
http://dx.doi.org/10.1016/j.ejor.2016.03.040
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.3390/math12111614
http://dx.doi.org/10.1287/opre.6.3.346
http://dx.doi.org/10.1016/j.cie.2018.08.015
http://dx.doi.org/10.1155/2017/1746124
http://dx.doi.org/10.1109/3468.823480
http://dx.doi.org/10.1016/j.ejor.2016.11.023

Mathematics 2024, 12, 2557 20 of 20

31. Wang, J.; Luo, P.; Zhou, J.; Lan, X. Optimizing Weapon-target assignment in Air to Ground Strike Based on Adaptive Immune
Genetic Algorithm. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering
(ICISCE), Changsha, China, 21-23 July 2017.

32. Cha, Y.H.; Kim, Y.D. Fire scheduling for planned artillery attack operations under time-dependent destruction probabilities.
Omega 2010, 38, 383–392. [CrossRef]

33. Feghhi, N.; Kosari, A.R.; Atashgah, M.A.A. A real-time exhaustive search algorithm for the weapon-target assignment problem.
Sharif Univ. Technol. 2019, 28, 1539–1551.

34. Lu, Y.; Chen, D.Z. A new exact algorithm for the Weapon-Target Assignment problem. Omega 2021, 98, 102138. [CrossRef]
35. Xin, B.; Chen, J.; Peng, Z.; Dou, L.; Zhang, J. An Efficient Rule-Based Constructive Heuristic to Solve Dynamic Weapon-Target

Assignment Problem. IEEE Trans. Syst. Man Cybern. Part A 2011, 41, 598–606. [CrossRef]
36. Xin, B.; Wang, Y.; Chen, J. An Efficient Marginal-Return-Based Constructive Heuristic to Solve the Sensor-Weapon-Target

Assignment Problem. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 49, 2536–2547. [CrossRef]
37. Lee, Z.J.; Su, S.F.; Lee, C.Y. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy

eugenics. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2003, 33, 113–121.
38. Lee, Z.J.; Su, S.F.; Lee, C.Y. A genetic algorithm with domain knowledge for weapon-target assignment problems. J. Chin. Inst.

Eng. 2002, 25, 287–295. [CrossRef]
39. Li, X.; Zhou, D.; Yang, Z.; Pan, Q.; Huang, J. A Novel Genetic Algorithm for the Synthetical Sensor-Weapon-Target Assignment

Problem. Appl. Sci. 2019, 9, 3803. [CrossRef]
40. Li, L.; Liu, F.; Long, G.; Guo, P.; Bie, X. Modified particle swarm optimization for BMDS interceptor resource planning. Appl.

Intell. 2016, 44, 471–488. [CrossRef]
41. Bisht, S. Hybrid Genetic-simulated Annealing Algorithm for Optimal Weapon Allocation in Multilayer Defence Scenario. Def.

Sci. J. 2004, 54, 395–405. [CrossRef]
42. Bogdanowicz, Z.R.; Patel, K. Quick Collateral Damage Estimation Based on Weapons Assigned to Targets. IEEE Syst. Man,

Cybern. Syst. 2014, 45, 762–769. [CrossRef]
43. Wang, C.H.; Chen, C.Y.; Hung, K.N. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS)

using intelligent adaptive SOM with recurrent neural networks (RNNs). IEEE Trans. Cybern. 2015, 45, 1134–1145. [CrossRef]
44. Gibbons, D.; Lim, C.C.; Shi, P. Deep Learning for Bipartite Assignment Problems. In Proceedings of the 2019 IEEE International

Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019.
45. Wang, Y.W. Moving-target travelling salesman problem for a helicopter patrolling suspicious boats in antipiracy escort operations.

Expert Syst. Appl. 2023, 213, 118986. [CrossRef]
46. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing
Systems, Long Beach, CA, USA, 4–9 December 2017.

47. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

48. Abuqaddom, I.; Mahafzah, B.; Faris, H. Oriented Stochastic Loss Descent Algorithm to Train Very Deep Multi-Layer Neural
Networks Without Vanishing Gradients. Knowl.-Based Syst. 2021, 230, 107391. [CrossRef]

49. Bai, X.; Yan, W.; Ge, S.S. Efficient Task Assignment for Multiple Vehicles With Partially Unreachable Target Locations. IEEE
Internet Things J. 2021, 8, 3730–3742. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.omega.2009.10.003
http://dx.doi.org/10.1016/j.omega.2019.102138
http://dx.doi.org/10.1109/TSMCA.2010.2089511
http://dx.doi.org/10.1109/TSMC.2017.2784187
http://dx.doi.org/10.1080/02533839.2002.9670703
http://dx.doi.org/10.3390/app9183803
http://dx.doi.org/10.1007/s10489-015-0711-9
http://dx.doi.org/10.14429/dsj.54.2054
http://dx.doi.org/10.1109/TSMC.2014.2360823
http://dx.doi.org/10.1109/TCYB.2014.2345791
http://dx.doi.org/10.1016/j.eswa.2022.118986
http://dx.doi.org/10.1016/j.knosys.2021.107391
http://dx.doi.org/10.1109/JIOT.2020.3025797

	Introduction
	Related Work
	Wta
	Solving Algorithm

	Moving Targets WTA Model
	Problem Description
	 Time
	The Position Points
	The Time of Fight
	Model for Threat Assessment
	Mathematical Formulation

	Reinforcement Learning Model
	Multi-Agent Reinforcement Learning Setting
	Multi-Agent Deep Deterministic Policy Gradient
	Encoding
	Algorithm

	Experiment
	Case Study
	Comparative Performance Analysis
	The Quality of Solution
	The Running Time
	The Stability

	Summary and Discussion
	References

