Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Next Article in Journal
An Enhanced Credit Risk Evaluation by Incorporating Related Party Transaction in Blockchain Firms of China
Previous Article in Journal
Multi-Objective Optimized GPSR Intelligent Routing Protocol for UAV Clusters
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term

1
Department of Industrial Safety and Environment, Institute of Maintenance and Industrial Safety, University of Oran 2 Mohamed Ben Ahmed, Oran 31000, Algeria
2
Laboratory of Geometrie Complexe, Analyse Harmonique et EDP, University of Science and Technology of Oran Mohamed Boudiaf, Oran 31000, Algeria
3
Department of Mathematics, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(17), 2671; https://doi.org/10.3390/math12172671
Submission received: 24 July 2024 / Revised: 22 August 2024 / Accepted: 25 August 2024 / Published: 28 August 2024

Abstract

:
The subject of this study is a nonlinear viscoelastic plate equation with variable exponents and a general source term. Through the application of the Faedo–Galerkin approximation method and a fixed point theorem under appropriate assumptions, we proved the existence of weak solutions.

1. Introduction

In this study, we consider the following nonlinear viscoelastic plate problem
Y τ τ + Δ 2 Y 0 τ k τ a Δ 2 Y a d a + Y τ p x 2 Y τ = g ( x , Y ) , in D × 0 , S , Y x , τ = x Y x , τ = 0 , on D × 0 , S , Y x , 0 = Y 0 x , Y τ x , 0 = Y 1 x in x D ,
where D is a bounded domain in R d with d 2 , and D is a smooth boundary.
S > 0 is small enough and will be determined later.
Firstly, we make some assumptions about the functions g : D × R R and p:
g ( x , Y ) Y q 2 Y , ( x , Y ) D × R ,
and
2 p 1 = e s s inf x D p x q e s s sup x D p x = p 2 2 d d 4 , d 5 .
Also, we insert the Log-Hölder continuity condition
p α p β A ln α β ,
for all α , β Ω , where A > 0 and 0 < η < 1 with α β < η .
Variable exponent PDEs are present in different fields of science such as elasticity theory, nonlinear electrorheological fluids, image processing, and filtration processes in porous media [1,2,3,4,5,6,7].
Hamadouche [8] studied the local existence and blow-up of solutions to the Petrovsky problem
Y τ τ + Δ 2 Y + Y τ p x 2 Y τ = Y q 2 Y ,
with no viscoelastic term, i.e., ( k 0 ).
A variable exponent nonlinear viscoelastic problem was invesitigated by Al-Mahdi et al. In [9]
Y τ τ + Δ 2 Y 0 τ k τ a Δ Y a d a + Y τ p x 2 Y τ Δ Y τ = 0 ,
they also provided some stability results.
Park and Kang in [10] and Piskin in [11] considered a similar problem involving a variable exponent in the second term, using the following equation
Y τ τ Δ Y + 0 τ k τ a Δ Y a d a + a Y τ m x 2 Y τ = b Y p x 2 Y ,
and proved results on the existence and blow up of solutions.
The aim of this paper is to prove the local existence of weak solutions for problem (1), which can be seen as a generalization of many previously cited nonlinear viscoelastic problems. To achieve this, we used the Faedo–Galerkin approximation method and a fixed point theorem.
Before stating our main result, let us recall some necessary preliminaries.

2. Preliminaries

In this section, we present fundamental concepts related to variable exponent Lebesgue and Sobolev spaces ([5,12,13,14]). Moreover, we will provide crucial assumptions and lemmas.
Let D be a domain in R d , let and p : D 1 , be a measurable function. The variable exponent Lebesgue space is defined by
L p x D = Y : D R ; Y measurable in D : ρ p · ν Y < , for some ν > 0 ,
where
ρ p · Y = D Y x p x d x .
This is a Banach space equipped with the Luxembourg-type norm
Y p · = inf ν > 0 : D Y x ν p x d x 1 .
We also consider the following variable exponent Sobolev space
W 2 , p x D = Y L p x D such that Δ Y exist and Δ Y L p x D .
In the following lemmas, we assume that p is a measurable function on D satisfying (3).
Lemma 1
([5]). A positive constant B exists, veifying
Y p · B Δ Y 2 , Y H 0 2 D .
i.e., the embedding H 0 2 D L p D is compact and continuous.
In paticular, the embedding H 0 2 D L q D is also compact and continuous.
Lemma 2
([5]). For almost every x D , we have
Y p · 1 ρ p · Y 1
min Y p · p 1 , Y p · p 2 ρ p · Y max Y p · p 1 , Y p · p 2 ,
for all Y L p · D .
Now, we suggest these assumptions about k:
(H1)
k : 0 , 0 , is a non-increasing function of class C 1 R + satisfying
k 0 > 0 , 1 0 k a d a = l > 0 ,
(H2)
0 k a d a < p 1 2 1 p 1 2 1 + 1 2 p 1 .
Some calculations lead to
0 τ k τ a Δ Y a , Δ Y τ τ d a = 1 2 k τ Δ Y τ 2 + 1 2 k Δ Y τ 1 2 d d τ k Δ Y τ 0 τ k a d a Δ Y τ 2 ,
where
k Δ Y τ = 0 τ k τ a Δ Y τ Δ Y a 2 d a .
Lemma 3
([15]). Assuming that Ψ C 2 0 , S with
Ψ Ψ τ τ ω Ψ τ 2 + δ Ψ Ψ τ + γ Ψ 0 , ω > 1 , γ 0 , δ 0 , Ψ τ 0 , Ψ 0 > 0 ,
and
Ψ τ 0 > δ ω 1 Ψ 0 , Ψ τ 0 δ ω 1 Ψ 0 2 > 2 γ 2 ω 1 Ψ 0 .
Then,
lim τ S sup Ψ τ = + ,
where
S Ψ 1 ω 0 A 1 , A 1 2 = ω 1 2 Ψ 2 ω 0 Ψ τ 0 δ ω 1 Ψ 0 2 2 γ 2 ω 1 Ψ 0 .
Furthermore, Ψ τ satisfies
Ψ τ e 1 δ τ ω 1 Ψ 1 ω 0 A 1 τ 1 ω 1 .

3. Existence of Local Solution

In this section, we examine the local existence result for problem (1), which can be acquired throught the Faedo–Galerkin approximation technique. Presently, we investigate the fourth-order initial-boundary value problem as follows:
Y τ τ + Δ 2 Y 0 τ k τ a Δ 2 Y a d a + Y τ p x 2 Y τ = h ˙ x , τ , in D × 0 , S , Y x , τ = V Y x , τ = 0 , on D × 0 , S , Y x , 0 = Y 0 x , Y τ x , 0 = Y 1 x , with x D .
Theorem 1.
Let h ˙ L 2 D × 0 , S . Suppose that the exponent p x and the function k from the above problem (8) satisfy assumptions (3), (4), and (5). Then, for any inatial data Y 0 , Y 1 H 0 2 D × L 2 D , problem, (8) admits a unique local solution for some S > 0 ,
Y L 0 , S ; H 0 2 D , Y τ L 0 , S ; L 2 D L p · D × 0 , S .
Proof. 
Existence: We begin this proof by introducing the finite-dimensional subspace V m ˙ = s p a n V 1 , , V m ˙ , where V i i = 1 is an orthonormal basis of H 0 2 D , i.e.,
Δ 2 V i = ν i V i in D , V i = 0 on D .
Through normalization, we obtain V i = 1 , and for any given integer m ˙ , we investigate the approximate problem
Y m ˙ x , τ = i = 1 m ˙ c i τ V i .
D Y τ τ m ˙ x , τ V i x d x + D Δ Y m ˙ x , τ Δ V i x d x D 0 τ k τ σ Δ Y m ˙ x , σ Δ V i m ˙ x d σ d x + D Y τ m ˙ x , τ p x 2 Y τ m ˙ x , τ V i x d x = D h ˙ x , τ V i x d x , Y m ˙ x , 0 = Y 0 m ˙ , Y τ m ˙ x , 0 = Y 1 m ˙ i = 1 , . . . , m ˙ ,
where Y 0 m ˙ = i = 0 m ˙ Y 0 , V i V i and Y 1 m ˙ = i = 0 m ˙ Y 1 , V i V i are both sequences in H 0 2 D and L 2 D , respectively,
Y 0 m ˙ Y 0 in H 0 2 D and Y 1 m ˙ Y 1 in L 2 D .
As we obtained a system of ordinary differential equations, we can justify the local existence of solutions to the problem (9) uisnfg the Picard–Lindelof theorem. This solution exists localy in interval 0 , τ m ˙ with 0 < τ m ˙ < S for all S > 0 . Then, we show that it can be extended to 0 , S for any given S > 0 .
Multiplying (9) by c i ( τ ) and sum over i, we obtain
1 2 d d τ D Y τ m ˙ τ 2 d x + 1 0 τ k a d a D Δ Y m ˙ τ 2 d x + k o Δ Y m ˙ τ + D Y τ m ˙ x , τ p x d x = 1 2 k o Δ Y m ˙ τ 1 2 k τ D Δ Y m ˙ τ 2 d x + D h ˙ x , τ Y τ m ˙ x , τ d x ,
an integration over 0 , τ leads to
1 2 D Y τ m ˙ τ 2 d x + 1 0 τ k a d a D Δ Y m ˙ τ 2 d x + k o Δ Y m ˙ τ + 0 τ D Y τ m ˙ x , a p x d x d a 1 2 D Y 1 m ˙ 2 d x + 1 2 D Δ Y 1 m ˙ 2 d x + 0 τ D h ˙ x , a Y τ m ˙ x , a d x d a 1 2 D Y 1 m ˙ 2 d x + 1 2 D Δ Y 1 m ˙ 2 d x + 1 4 0 τ D Y τ m ˙ x , a 2 d x d σ + 0 S D h ˙ x , a 2 d x d a C 1 + 1 4 sup 0 , τ m ˙ D Y τ m ˙ x , τ 2 d x , τ 0 , τ m ˙ .
So, we obtain
sup 0 , τ m ˙ D Y τ m ˙ τ 2 d x + sup 0 , τ m ˙ l D Δ Y m ˙ τ 2 d x + 0 τ D Y τ m ˙ x , a p x d x d a C 1 .
Therefore, the solution can be extended to 0 , S , indeed
Y m ˙ is a bounded sequence in L 0 , S ; H 0 2 D , Y τ m ˙ is a bounded sequence in L 0 , S ; L 2 D L p · D × 0 , S .
So, we can extract Y k ˙ from Y m ˙ such that
Y k ˙ Y weak star in L 0 , S ; H 0 2 D , Y τ k ˙ Y weak star in L 0 , S ; N 2 D and weakly in L p · D × 0 , S .
As stated by Lions lemma (see [16]), we obtain that Y C ( [ 0 , S ] ; L 2 D ) . As Y τ k ˙ is bounded in L p · D × 0 , S , then
Y τ k ˙ p · 2 Y τ k ˙ is bounded in L p · p · 1 D × 0 , S .
Then, just like in Messaoudi et al. [17], we conclude
Y τ k ˙ p x 2 Y τ k ˙ Y τ p · 2 Y τ weakly in L p · p · 1 D × 0 , S .
Hence, V L p · 0 , S × H 0 2 D ,
D Y τ τ V + Δ Y Δ V 0 τ k τ σ Δ Y a Δ V d a + Y τ p x 2 Y τ V d x = D h ˙ x , τ V d x
which provides
Y τ τ + Δ 2 Y 0 τ k τ a Δ 2 Y a d a + Y τ p x 2 Y τ = h ˙ x , τ .
Uniqueness: Suppose that (8) admits two solutions Y and z ˙ . Then, w ˙ = Y z ˙ satisfies
w ˙ τ τ + Δ 2 w ˙ 0 τ k τ a Δ 2 w ˙ a d a + w ˙ τ p x 2 w ˙ τ = 0 in D × 0 , S , w ˙ x , τ = V w ˙ x , τ = 0 on D × 0 , S , w ˙ x , 0 = 0 , w ˙ τ x , 0 = 0 x D ,
After multiplication by w ˙ τ and integration over D , we obtain
1 2 d d τ D w ˙ τ τ 2 d x + 1 0 τ k a d a D Δ w ˙ τ 2 d x + k o Δ w ˙ τ + 1 2 k τ D Δ w ˙ τ 2 d x = D Y τ τ p x z ˙ τ τ p x Y τ τ z ˙ τ τ d x + 1 2 k Δ Y τ .
Then, from inequality
a p x 2 a b p x 2 b a b 0 ,
a , b R d and almost every x D , we get
D w ˙ τ τ 2 d x + l D Δ w ˙ τ τ 2 d x = 0 ,
Therefore w ˙ = 0 , since w ˙ = 0 on D .  □
Theorem 2.
Consider any initial data Y 0 , Y 1 H 0 2 D × L 2 D and assume that condition (5) is satisfied, with p x , q verify (3), (4), where
2 < q < 2 d 2 d 4 , d 5 .
There exists S > 0 , such that problem (1) on the interval 0 , S admits a local solution
Y C 0 , S ; H 0 2 D , Y τ C 0 , S ; L 2 D L p x D × 0 , S .
Proof. 
Let V L 0 , S ; H 0 2 D and 2 q 1 2 d d 4 , then from (2)
g x , V 2 D V 2 q 1 d x < ,
so,
g x , V L 2 D × 0 , S .
Using Theorem 5, for evey V L 0 , S ; H 0 2 D , there exists a unique
Y L 0 , S ; H 0 2 D , Y τ L 0 , S ; L 2 D L p x D × 0 , S ,
that veifies
Y τ τ + Δ 2 Y 0 τ k τ a Δ 2 Y a d a + Y τ p x 2 Y τ = g x , V , in D × 0 , S , Y x , τ = V Y x , τ = 0 , on D × 0 , S , Y x , 0 = Y 0 x , Y τ x , 0 = Y 1 x , in x D .
Let us define the following map F : A S A S by F V = Y , where
A S = C 0 , S ; H 0 2 D C 2 0 , S ; L 2 D ,
we associate to this space the following norm
w ˙ A S 2 = max 0 τ S D w ˙ τ τ 2 d x + D l Δ w ˙ τ τ 2 d x .
a multiplication by Y τ in (12), then, an integration over the domain D × 0 , τ , leads to
1 2 D Y τ τ 2 d x + 1 2 1 0 τ k a d a D Δ Y τ 2 d x + 1 2 k Δ Y τ 1 2 0 τ k Δ Y a d a + 1 2 0 τ k a D Δ Y a 2 d x d a + 0 τ D Y τ a p x d x d a = 1 2 D Y 1 2 d x + 1 2 D Δ Y 0 2 d x + 0 τ D g x , V Y τ a d x d a .
From the Sobolev embedding H 0 2 D L 2 d d 4 D and a Young’s inequality, we obtain
D g x , V Y τ a d x ξ 4 D Y τ a 2 d x + 1 ξ D V 2 q 1 d x ξ 4 D Y τ a 2 d x + c ξ ξ Δ V 2 q 1 ,
where c ξ is the embedding constant. From (5), we obtain
1 2 k Δ Y a 1 2 0 τ k Δ Y a d a + 1 2 0 τ k a D Δ Y a 2 d x d a 0 .
Combining (13)–(15), we obtain
1 2 D Y τ τ 2 d x + l 2 D Δ Y τ τ 2 d x + 0 τ D Y τ a p x d x d a 1 2 D Y 1 2 d x + 1 2 D Δ Y 0 2 d x + ξ S 4 sup 0 , S D Y τ τ 2 d x + c ξ ξ 0 S Δ V 2 q 1 d a ,
which yields
1 2 sup 0 , S D Y τ τ 2 d x + l 2 D Δ Y τ τ 2 d x + 0 τ D Y τ a p x d x d a 1 2 D Y 1 2 d x + 1 2 D Δ Y 0 2 d x + ξ S 4 sup 0 , S D Y τ τ 2 d x + c ξ S ξ l Δ V A S 2 q 1 .
Taking ξ , such that ξ S = 1 , we obtain
Y A S 2 2 D Y 1 2 d x + 2 D Δ Y 0 2 d x + 1 4 sup 0 , S D Y τ τ 2 d x + c 0 S Δ V A S 2 q 1 ,
where c 0 = 4 c ξ ξ . We assume that Δ V A S T for T > 0 and S > 0 . By ensuring T is large enough to verify
2 D Y 1 2 d x + 2 D Δ Y 0 2 d x T 2 4 ,
and S is small enough so that
S 1 2 c 0 T 2 q 4 ,
we have
Y A S 2 T 2 .
Now, consider F : G Q , S G Q , S , where G Q , S = w ˙ C 0 , S ; H 0 2 D , w ˙ τ C 0 , S ; L 2 D such that w ˙ A S T .
Let us prove that it is a contraction.
So, for F V 1 = Y 1 and F V 2 = Y 2 with Y = Y 1 Y 2 , then Y satisfies
Y τ τ + Δ 2 Y 0 τ k τ a Δ 2 Y a d a + Y 1 τ p x 2 Y 1 τ Y 2 τ p x 2 Y 2 τ = g ( x , V 1 ) g ( x , V 2 ) in D × 0 , S , Y x , τ = V Y x , τ = 0 , on D × 0 , S , Y x , 0 = Y 0 x , Y τ x , 0 = Y 1 x , in x D .
Multiplying (16) by Y τ and integrating it over D × 0 , S , we obtain
1 2 D Y τ τ 2 d x + 1 2 D Δ Y 2 d x + 1 2 1 0 τ k a d a D Δ Y τ 2 d x + 1 2 k Δ Y τ + 1 2 0 τ k a d σ D Δ Y τ 2 d x d a 1 2 0 τ k Δ Y a d a + 0 τ D Y 1 τ p x 2 Y 1 τ Y 2 τ p x 2 Y 2 τ d x d a = 0 τ D g ( x , V 1 ) g ( x , V 2 ) Y τ a d x d a . ,
From (5) and (10), we have
1 2 D Y τ τ 2 d x + 1 2 D Δ Y 2 d x + l 2 D Δ Y τ 2 d x 0 τ D g ( x , V 1 ) g ( x , V 2 ) Y τ a d x d a .
Again, using Sobolev embedding and Young’s inequality with (11), we obtain
0 τ D g ( x , V 1 ) g ( x , V 2 ) Y τ a d x d a = D r χ V Y τ a d x η 2 D Y τ a 2 d x + 1 2 η D r χ 2 V 2 d x η 2 D Y τ a 2 d x + q 1 2 η D χ 2 q 2 V 2 d x η 2 D Y τ a 2 d x + q 1 2 η D V 2 d d 4 d x d 4 d × D χ d q 2 d x 2 d η 2 D Y τ a 2 d x + q 1 c ξ 2 η V 2 Δ χ 2 q 2 η 2 D Y τ a 2 d x + q 1 c ξ η q 1 T 2 q 2 Δ V 2 ,
where V = V 1 V 2 and χ = Ψ V 1 + 1 Ψ V 2 , 0 Ψ 1 . Combining (18) with (17) and taking a small value for η , we obtain
Y X S 2 4 q 1 c ξ S η ( q 1 ) T 2 q 2 V 2 .
Selecting S small enough so that 4 c ξ S η T 2 q 2 < 1 , (19) proves that F is a contraction. Using the Banach fixed-point theorem, we conclude the existence of a unique solution Y G Q , S verifying F Y = Y . Thus, Y is a solution of (1). □

4. Numerical Study

Here, we present a numerical exemple by providing initial data and numerically illustrating the behavior of the solution for problem (1). For this, we utilize a numerical scheme relying on the finite element method for dimension d = 2 .
For the sake of simplicity, let g ( x , Y ) = Y and p x = 2 .
Multiplying the equation in problem (1) by ϕ H 0 2 D , integrating it over D and using the Green formula, we obtain
D Y τ τ x , τ ϕ x d x + D Δ Y x , τ Δ ϕ x d x D 0 τ k τ σ Δ Y x , σ Δ ϕ x d σ d x + D Y τ x , τ ϕ x d x = D Y x , τ ϕ x d x , ϕ H 0 2 D , τ 0 , S
with Y ( 0 ) = Y 0 and Y τ ( 0 ) = Y 1 .
To approximate the solution, we utilize a Galerkin finite element method for discretization. Let
D = i = 1 M j D i
Each D i = A D i ( E ) is a component of the triangulation, where E is the reference simplex and A D i is an invertible affine transformation.
We introduce the related finite element space by
Ω j = { K j C 0 ( D ) : K j D i A D i P 1 ( E ) }
P 1 ( E ) represents the set of polynomials with a maximum degree of one on E.
Substituting H 0 2 D with the finite-dimensional subspace Ω j , we obtain the subsequent semi-discrete form of (20),
D Y j τ τ x , τ ϕ x d x + D Δ Y j x , τ Δ ϕ x d x D 0 τ k τ σ Δ Y j x , σ Δ ϕ x d σ d x + D Y j τ x , τ ϕ x d x = D Y j x , τ ϕ x d x , ϕ Ω j , τ 0 , S .
with Y j ( 0 ) = Π j Y 0 and Y τ j ( 0 ) = Π j Y 1 , where Π j is the L 2 projection from L 2 ( 0 , 1 ) onto Ω j .
Now, consider the nodal basis of Ω j denoted by { ϕ i } i = 1 , , M j , then we can provide the approximate solution Y j ( τ ) by
Y j ( τ ) = i = 1 M j ζ i ( τ ) ϕ i ( x )
with ζ i ( τ ) R being coefficients that vary over time.
For τ n = n Δ τ , which is a patition of ( 0 , S ) , where n = 0 , , M τ , and Δ τ = S / M τ . Using (24) and taking ϕ = ϕ i , i = 1 , , M j in ( 23 ) , we realize that the approximate solution
Y n = ζ 1 ( τ n ) , , ζ M j ( τ n ) T
veifies the following matricial problem
A Y τ τ n + R Y n R 0 τ n k τ n σ Y n ( σ ) d σ + A Y τ n = A Y n 1 A Y ( 0 ) = Π j Y 0 , A Y τ ( 0 ) = Π j Y 1
here, M and R represent the mass and stiffness matrices, respectively, associated with the shape operators.
Now, we employ a Newmark method to solve the problem (26). So, in this two-dimensional scenario ( d = 2 ), we consider the following choices:
D = { ( x , y ) / x 2 + y 2 1 } , k ( τ ) = e 2 τ
and initial conditions:
Y 0 ( x , y ) = 4096 ( 1 x 2 y 2 ) , Y 1 = 40 Y 0 .
There are 281 triangles in the triangulation D j . Using MATLAB, we created a mech geneator, as shown in Figure 1. The time step is small enough Δ τ = 0.01 .
Depending on various time iterations n = 1 ( τ = 0 ), n = 2 ( τ = 0.01 ), n = 6 ( τ = 0.05 ), and n = 9 ( τ = 0.08 ), we provide the aproximate solutions Y n In Figure 2. The solutions are displayed in 3D and their 2D projections are shown in the right column for better visualization. Notice that the colors indicate the values.
Also, the numerical values of Y n 2 are displayed over time in Figure 3, indicating an interesting blow-up for this solution at τ = 0.08 , which has been observed for many other numerical examples tested using these problems. A theoretical study of blow-up in time for the solutions to our problem is needed to confirm these obsevations.

5. Conclusions

In this work, the existence of a weak solution to problem (1) has been obtained via the Faedo–Galerkin approximation method and a fixed point theorem. The result can be seen as a generalization of many similar existence results in the literature, with only a few conditions on the general source term g ( x , Y ) . Regarding future research, using energy methods, it may be possible to apply Lemma 3 and impose additional conditions on the second term to study the asymptotic behavior of these solutions.

Author Contributions

Y.B.: writing—original draft, methodology, resources, methodology, formal analysis, conceptualization; S.B. and A.A.: conceptualized, investigation, analyzed and validated the research; S.B. and A.A.: formulated, investigated, reviewed, and supervised; S.B.: corresponding author, supervision. All authors have read and agreed to the published version of the manuscript.

Funding

The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Institutional Review Board Statement

There is no ethical issue in this work. All of the the authors actively participated in this research and approved it for publication.

Data Availability Statement

There are no data associated with the current study.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Conflicts of Interest

There are no competing interests regarding this research work.

References

  1. Aberqi, A.; Bennouna, J.; Benslimane, O.; Ragusa, M.A. Existence Results for Double Phase Problem in Sobolev. Orlicz Spaces with Variable Exponents in Complete Manifold. Mediterr. J. Math. 2022, 19, 158. [Google Scholar] [CrossRef]
  2. Bakery, A.A.; Mohamed, E.A.A. Fixed point property of variable exponent Cesaro complex function space of formal power series under premodular. J. Funct. 2022, 2022, 3811326. [Google Scholar] [CrossRef]
  3. Chen, W.; Zhou, Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal. 2009, 70, 3203–3208. [Google Scholar] [CrossRef]
  4. Choucha, A.; Boulaaras, S.; Jan, R.; Alharbi, R. Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Meth. Appl. Sci. 2024, 47, 6928–6945. [Google Scholar] [CrossRef]
  5. Diening, L.; Hasto, P.; Harjulehto, P.; Ruzicka, M.M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
  6. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2000. [Google Scholar]
  7. Yilmaz, N.; Piskin, E.; Boulaaras, S. Viscoelastic plate equation with variable exponents: Existence and blow-up. J. Anal. 2024, 1–26. [Google Scholar] [CrossRef]
  8. Hamadouche, T. Existence and blow up of solutions for a Petrovsky equation with variable-exponents. SeMA J. 2022, 80, 393–413. [Google Scholar] [CrossRef]
  9. Al-Mahdi, A.M.; Al-Gharabli, M.M.; Noor, M.; Audu, J.D. Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics. Math. Comput. Appl. 2023, 28, 5. [Google Scholar] [CrossRef]
  10. Park, S.H.; Kang, J.R. Blow-up of solutions for a viscoelastic wave equation with variable exponents. Math. Meth. Appl. Sci. 2019, 42, 2083–2097. [Google Scholar] [CrossRef]
  11. Pişkin, E. Blow up of solutions for a nonlinear viscoelastic wave equations with variable exponents. Middle East J. Sci. 2019, 5, 134–145. [Google Scholar] [CrossRef]
  12. Fan, X.; Zhao, D. On the spaces Lp(x)(w) and Wm,p(x)(w). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
  13. Ouchenane, D.; Boulaaras, S.; Choucha, A.; Alngga, M. Blow-up and general decay of solutions for a Kirchhoff-type equation with distributed delay and variable-exponents. Quaest. Math. 2023, 47, 43–60. [Google Scholar] [CrossRef]
  14. Pişkin, E.; Okutmuxsxtur, B. An Introduction to Sobolev Spaces; Bentham Science: Oak Park, IL, USA, 2021. [Google Scholar]
  15. Korpusov, M.O. Non-existence of global solutions to generalized dissipative Klein–Gordon equations with positive energy. Electron. J. Differ. Equ. 2012, 2012, 1–10. [Google Scholar]
  16. Lions, J.L. Quelques Methodes de Resolution des Problems aux Limites Non Lineaires; Dunod: Paris, France, 1969. [Google Scholar]
  17. Messaoudi, S.A.; Talahmeh, A.A.; Al-Smail, J.H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74, 3024–3041. [Google Scholar] [CrossRef]
Figure 1. Uniform mesh grid of D .
Figure 1. Uniform mesh grid of D .
Mathematics 12 02671 g001
Figure 2. Numerical values of Y n at different times.
Figure 2. Numerical values of Y n at different times.
Mathematics 12 02671 g002
Figure 3. Y n ( τ ) 2 .
Figure 3. Y n ( τ ) 2 .
Mathematics 12 02671 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bouizem, Y.; Alharbi, A.; Boulaaras, S. Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term. Mathematics 2024, 12, 2671. https://doi.org/10.3390/math12172671

AMA Style

Bouizem Y, Alharbi A, Boulaaras S. Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term. Mathematics. 2024; 12(17):2671. https://doi.org/10.3390/math12172671

Chicago/Turabian Style

Bouizem, Youcef, Asma Alharbi, and Salah Boulaaras. 2024. "Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term" Mathematics 12, no. 17: 2671. https://doi.org/10.3390/math12172671

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop