Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term
Abstract
:1. Introduction
2. Preliminaries
- (H1)
- is a non-increasing function of class satisfying
- (H2)
3. Existence of Local Solution
4. Numerical Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aberqi, A.; Bennouna, J.; Benslimane, O.; Ragusa, M.A. Existence Results for Double Phase Problem in Sobolev. Orlicz Spaces with Variable Exponents in Complete Manifold. Mediterr. J. Math. 2022, 19, 158. [Google Scholar] [CrossRef]
- Bakery, A.A.; Mohamed, E.A.A. Fixed point property of variable exponent Cesaro complex function space of formal power series under premodular. J. Funct. 2022, 2022, 3811326. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal. 2009, 70, 3203–3208. [Google Scholar] [CrossRef]
- Choucha, A.; Boulaaras, S.; Jan, R.; Alharbi, R. Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Meth. Appl. Sci. 2024, 47, 6928–6945. [Google Scholar] [CrossRef]
- Diening, L.; Hasto, P.; Harjulehto, P.; Ruzicka, M.M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Yilmaz, N.; Piskin, E.; Boulaaras, S. Viscoelastic plate equation with variable exponents: Existence and blow-up. J. Anal. 2024, 1–26. [Google Scholar] [CrossRef]
- Hamadouche, T. Existence and blow up of solutions for a Petrovsky equation with variable-exponents. SeMA J. 2022, 80, 393–413. [Google Scholar] [CrossRef]
- Al-Mahdi, A.M.; Al-Gharabli, M.M.; Noor, M.; Audu, J.D. Stability Results for a Weakly Dissipative Viscoelastic Equation with Variable-Exponent Nonlinearity: Theory and Numerics. Math. Comput. Appl. 2023, 28, 5. [Google Scholar] [CrossRef]
- Park, S.H.; Kang, J.R. Blow-up of solutions for a viscoelastic wave equation with variable exponents. Math. Meth. Appl. Sci. 2019, 42, 2083–2097. [Google Scholar] [CrossRef]
- Pişkin, E. Blow up of solutions for a nonlinear viscoelastic wave equations with variable exponents. Middle East J. Sci. 2019, 5, 134–145. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x)(w) and Wm,p(x)(w). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Ouchenane, D.; Boulaaras, S.; Choucha, A.; Alngga, M. Blow-up and general decay of solutions for a Kirchhoff-type equation with distributed delay and variable-exponents. Quaest. Math. 2023, 47, 43–60. [Google Scholar] [CrossRef]
- Pişkin, E.; Okutmuxsxtur, B. An Introduction to Sobolev Spaces; Bentham Science: Oak Park, IL, USA, 2021. [Google Scholar]
- Korpusov, M.O. Non-existence of global solutions to generalized dissipative Klein–Gordon equations with positive energy. Electron. J. Differ. Equ. 2012, 2012, 1–10. [Google Scholar]
- Lions, J.L. Quelques Methodes de Resolution des Problems aux Limites Non Lineaires; Dunod: Paris, France, 1969. [Google Scholar]
- Messaoudi, S.A.; Talahmeh, A.A.; Al-Smail, J.H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74, 3024–3041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouizem, Y.; Alharbi, A.; Boulaaras, S. Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term. Mathematics 2024, 12, 2671. https://doi.org/10.3390/math12172671
Bouizem Y, Alharbi A, Boulaaras S. Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term. Mathematics. 2024; 12(17):2671. https://doi.org/10.3390/math12172671
Chicago/Turabian StyleBouizem, Youcef, Asma Alharbi, and Salah Boulaaras. 2024. "Existence of Solutions for a Viscoelastic Plate Equation with Variable Exponents and a General Source Term" Mathematics 12, no. 17: 2671. https://doi.org/10.3390/math12172671