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Abstract: In this article, the synchronization of bidirectionally coupled fractional-order chaotic
systems with unknown time-varying parameter disturbance in different dimensions is investigated.
The scale matrices are designed to address the problem of the synchronization for fractional-order
chaotic systems across two different dimensions. Congelation of variables is used to deal with
the unknown time-varying parameter disturbance. Based on Lyapunov’s stability theorem, the
synchronization controllers in different dimensions are obtained. At the same time, adaptive laws
of the unknown disturbance can be designed. Benefiting from the proposed methods, we verify all
the synchronization errors can converge to zero as time approaches infinity, regardless of whether in
n-D or m-D synchronization, simultaneously ensuring that both control and estimation signals are
bounded. Finally, simulation studies based on fractional-order financial systems are carried out to
validate the effectiveness of the proposed synchronization method.

Keywords: fractional-order; chaotic synchronization; bidirectionally coupled; scale matrices;
synchronization in different dimensions
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1. Introduction

Fractional calculus is a branch of mathematical analysis dating back to the late 17th
century. The foundations of fractional calculus were first proposed in 1695, making it
nearly as old as classical integral and differential calculus. Over the last few centuries,
fractional differential equations have emerged as a powerful tool for modeling a diverse
range of real-world dynamic systems. These equations have found successful applications
in the analysis and description of electrical circuits [1], nonholonomic systems [2], chaotic
systems [3], diffusion processes [4], and so on. The ability of fractional-order models to
capture the intricate, non-integer-order dynamics inherent in many real-world problems
has contributed to the rapid development and growing prominence of fractional calcu-
lus. Fractional-order systems, an important branch of the mathematical framework of
fractional calculus, play a crucial role in numerous applications, including communica-
tion, electrical systems, and nonlinear dynamic systems, among others. The remarkable
capacity of fractional-order models to represent the complex characteristics of real-world
systems has made them invaluable tools for researchers and engineers working in these
diverse domains.

Chaos is a distinctive type of nonlinear dynamical phenomenon characterized by high
sensitivity to variations in system parameters and starting conditions. Since the emergence
of chaos synchronization problem in 1990 [5], synchronizing chaotic dynamic systems
has been a subject of considerable research interest, primarily in light of its potential
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applications in massive fields such as communication, image encryption [6], financial
systems, information science, and neural networks [7,8]. Recently, based on the studies
of integer-order chaotic systems, researchers have focused more on developing fractional-
order chaotic system models based on the structure of well-known integer-order chaotic
systems, e.g., Lorenz [9], Chen [10], and Rössler, [11], etc. Over time, the concept of
chaos synchronization has evolved in many fields: see [12–14] and the references therein.
However, numerous challenges and unresolved issues remain to be addressed in this
domain. The intrinsic complexity and heightened sensitivity of fractional-order chaotic
systems pose significant challenges in terms of accurate modeling and effective control.
Bridging the gap between theoretical developments and practical real-world applications
remains a significant challenge for the research community in this area.

Chaotic systems are known to be highly sensitive to various disturbances. Therefore,
chaotic synchronization with time-varying disturbance [15–19] is always hard to realize.
At the same time, we find that scholars always focus on realizing chaotic synchroniza-
tion in the same dimensions, but neglect the synchronization in different dimensions.
Meanwhile, real systems are often complex and variable, and the state variables from
one system may act in another system. The synchronization of chaotic systems across
different dimensions holds immense potential for a broader range of secure communication
applications, underscoring the importance of addressing the challenge of synchronizing
bidirectionally coupled fractional-order chaotic systems subject to unknown, time-varying
parameter disturbances.

Leveraging the established applications of fractional-order systems, this article in-
vestigates the challenge of synchronizing bidirectionally coupled fractional-order chaotic
systems that span across different dimensions and face unknown time-varying parameter
disturbances. We design a new controller to fulfill synchronization in different dimensions
by utilizing the congelation of variables and scale matrices [20].

The highlights of this paper are as follows. (1) We firstly employ “congelation of vari-
ables” methods [21] to handle the challenges posed by unknown time-varying parameter
disturbance of bidirectionally coupled fractional-order chaotic systems. (2) This article
successfully synchronizes two bidirectionally coupled fractional-order chaotic systems
experiencing unknown time-varying parameter disturbances across different dimensions.
Compared to the work presented in [22], the controller designed in this paper not only
adapts the scaling matrices to address the synchronization challenge of fractional-order
chaotic systems operating across two different dimensions but also leverages the “congela-
tion method” to mitigate the influence of the bidirectional coupling term and the unknown
time-varying parameter disturbances. By incorporating these additional techniques beyond
the prior work, the current study aims to provide a more comprehensive solution to the
complex synchronization problem involving fractional-order chaotic systems of varying
dimensionality and subjected to uncertain parametric fluctuations.

This article is structed as follows. Section 2 provides the preliminaries and system de-
scription, then clearly defines the control objectives. In Section 3, we employ scale matrices
and congelation methods to address the problem of synchronization in two fractional-order
chaotic systems with unknown time-varying parameter disturbance in two different di-
mensions. Then we propose two different synchronization controllers in n-D space and
m-D space, respectively. In order to assess the viability of the proposed synchronization
approach, Section 4 includes two numerical case studies. Section 5 concludes the article by
highlighting the core findings and outlining the study’s key contributions.

2. Preliminaries and System Description

This section begins by covering the basic definitions and characteristics of fractional
calculus, and then proceeds to introduce fractional-order chaotic systems, which form the
foundation for the forthcoming controller design.
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2.1. Prerequisite

Definition 1 ([23]). The αth-order Riemann–Liouville derivation of function f (t) is specified as:

RL
t0

Dα
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

t0

f (τ)

(t − τ)1+α−n dτ

where n is the first integer number, which is bigger than α, n − 1 < α ≤ n.

Definition 2 ([24]). The αth-order Caputo derivation of function f (t) is specified as:

C
t0

Dα
t f (t) =

1
Γ(m − α)

∫ t

t0

f (m)(τ)

(t − τ)1+α−m dτ

where m is the first integer number, which is bigger than α.

Remark 1. In the definition of Riemann–Liouville fractional calculus, the integration is performed
first, followed by the derivation. In the Caputo definition, it is the opposite. This means that if the
function f (t) is a constant, the fractional derivation specified by RL definition is not zero. On the
contrary, it is zero in the Caputo definition.

Remark 2. Since the Caputo definition is good at describing a fractional derivation of f (t) where the
initial point is not zero, the calculations presented in this article are based on the Caputo definition
of fractional calculus.

Property 1 ([25]). The Caputo fractional-order calculus is a linear operator, satisfying:

CDα(λ f (t) + µy(t)) = CDαλ f (t) + CDαµy(t)

where λ, µ is a real constant.

Property 2 ([26]). If f (t) is continuously differentiable and 0 < α < 1, then:

1
2

CDα f 2(t) ≤ f (t)CDα f (t), t ≥ 0

The Mittag-Leffler stability theory has become the predominant approach for an-
alyzing the stability of fractional-order nonlinear systems. This is due to the theory’s
ability to effectively capture the unique stability characteristics of these complex dynami-
cal systems, offering greater accuracy and nuance compared to other available analytical
frameworks. Ongoing research continues to expand and refine the Mittag-Leffler stability
theory, reflecting its prominence and the sustained scholarly interest in this active area of
study.

Lemma 1 ([27]). Assume x = 0 is the equilibrium point and D ⊂ Rn is the region containing the
origin. Let V(x) : [0, ∞)× D → R be a continuously differentiable function that satisfies the local
Lipschitz condition with respect to:

β1(·) ≤ V(x) ≤ β2(·)
Dα

t V(x) ≤ −β3(·)

where t ≥ 0, x ∈ D, 0 < α < 1, β1(·), β2(·), β3(·) are the K-class functions.

Analysis reveals that the fractional-order nonlinear system is asymptotically stable
with the equilibrium point situated at x = 0.
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2.2. Systems Description

The subject of this article is a pair of bidirectionally coupled fractional-order chaotic
systems, existing across different dimensions, that are further influenced by unknown time-
varying parameter disturbances. The master fractional-order chaotic system is determined as:

CD qx = Ax + f (x) + D1(M2y − M1x) + d1(t) (1)

where A is a square matrix of order n, x = (x1, x2, . . . , xn)
T ∈ Rn is the state vector of the

master system (1), f (x) defines a vector with n dimensions and valued continuous functions
in n-dimensional space, D1 = diag(d11, d12, . . . , d1n) is a coupled coefficient matrix with n
dimensions, M2 ∈ Rn×m, M1 ∈ Rn×n are scaling matrices guaranteeing that the coupling
part has the same dimension with state vector x, and d1(t) = (d11, d12, . . . , d1n)

T is an
unknown time-varying disturbance vectors of order n.

Correspondingly, the slave system has the form:

CD qy = By + g(y) + D2(N1x − N2y) + d2(t) + U (2)

where B is a square matrix of order m, y = (y1, y2, . . . , ym)
T ∈ Rm is the state vector of the

slave system (2), g(y) defines an m-dimensional vector with valued continuous functions in
m-dimensional space, D2 = diag(d21, d22, . . . , d2m) is an m-dimension coupled coefficient
matrix, N2 ∈ Rm×m and N1 ∈ Rm×n are scale matrices guaranteeing that the coupling
part has the same dimension with state vector y, d2(t) = (d21, d22, . . . , d2m)

T are unknown
time-varying disturbance vectors of order m, and U ∈ Rm is the control input vector.

Assumption 1. The unknown time-varying d1(t) and d2(t) in the master system and the slave
system, respectively, are bounded by:∣∣∆d1q(t)

∣∣ ≤ Ξd1q , q = 1, 2, . . . , n
|∆d2r(t)| ≤ Ξd2r , r = 1, 2, . . . , m

(3)

where Ξd1q(i = 1, 2, . . . , n) and Ξd2r (j = 1, 2, . . . , m) are two positive constants.

Assumption 2. Here, we consider the case of n < m, which means the goal is to achieve synchro-
nization between the n-dimensional master fractional-order chaotic system and the m-dimensional
slave fractional-order chaotic system.

Considering the n-dimensional master fractional-order chaotic system (1) and the
m-dimensional slave fractional-order chaotic system (2), the synchronization error system
is defined as follows:

e = Φy − θx (4)

where Φ ∈ Rd×m and θ ∈ Rd×n.

Definition 3. If there is a controller U ∈ Rd and scaling matrices Φ ∈ Rd×m and θ ∈ Rd×n such
that the error system e = Φy − θx satisfies lim

t→∞
e(t) = 0, meaning every eq(er) converges to zero,

then the master system (1) and slave system (2) are considered synchronized in dimension n with
respect to the scaling matrices Φ and θ.

This article aims to design a controller that synchronizes two bidirectionally coupled
fractional-order chaotic systems with unknown time-varying parameter disturbance across
different dimensions. It means that the synchronization error e = Φy − θx converges to
zero and all the parameters would be bounded under the action of the controller designed
in this article.



Mathematics 2024, 12, 2775 5 of 16

3. Design of Synchronization Controller

This section presents the synchronization analysis for bidirectionally coupled fractional-
order chaotic systems with unknown time-varying parameter disturbance in the n-D and
m-D space cases.

To simplify the calculation process, we reformulate the master system as follows:
CD qx1 = F1(x) + z11(y, x) + d11(t)
CD qx2 = F2(x) + z12(y, x) + d12(t)

· · · · · ·
CD qxn = Fn(x) + z1n(y, x) + d1n(t)

(5)

where F(x) = Ax + f (x) = (F1(x), F2(x), . . . , Fn(x))T ,Z1(y, x) = D1(M2y + M1x) =

(z11(y, x), z12(y, x), . . . , z1n(y, x))T .
And reformulate the slave system as follows:

CD qy1 = G1(y) + z21(y, x) + d21(t) + u1
CD qy2 = G2(y) + z22(y, x) + d22(t) + u2

· · · · · ·
CD qym = Gm(y) + z2m(y, x) + d2m(t) + um

(6)

where G(y) = By + g(y) = (G1(y), G2(y), . . . , Gm(y))
T , Z2(y, x) = D2(N1x + N2y) =

(z21(y, x), z22(y, x), . . . , z2m(y, x))T .

3.1. Synchronization between n-D Master System and m-D Slave System in n-D

In this section, a controller is structured to synchronize two bidirectionally coupled
fractional-order chaotic systems with unknown time-varying parameter disturbance in
n-dimensional space, with a stability analysis provided.

3.1.1. n-D Controller Design

To study the chaotic synchronization between the n-dimensional master fractional-
order system (1) and m-dimensional slave fractional-order system (2), the synchronization
error system is defined as follows:

e1(t) = Φ1y − θ1x = (e11, e12, . . . , e1n)
T (7)

where Φ1 ∈ Rn×m =


Φ11

Φ12
. . .

Φ1n · · · Φ1m

, Φ1n+1 = Φ1n+2 = · · · = Φ1m = 0,

θ1 ∈ Rn×n =


θ11

θ12
. . .

θ1n

.

The fractional-order derivation of the synchronization error system for chaotic system
(7) can be represented in the following form:

CD qe1q(t) = Φ1q
CD qyq − θ1q

CD qxq
= Φ1q[Gq(y) + z2q(y, x) + d2q(t) + uq]− θ1q[Fq(x) + z1q(y, x) + d1q(t)]
= Φ1q[Gq(y) + z2q(y, x) + d̂2q(t) + (↕d2q − d̂2q(t)) + ∆d2q + u1q]

−θ1q[Fq(x) + z1q(y, x) + d̂1q(t) + (↕d1q − d̂1q(t)) + ∆d1q] (q = 1, 2, . . . , n)

(8)
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where d̂1q(t) and d̂2q(t) are the “estimations” of the unknown time-varying disturbance
d1q(t) and d2q(t), respectively. The ↕d1q and ↕d2q are constants that are relative to the
disturbance d1q(t) and d2q(t) respectively.

In order to synchronize the two fractional-order chaotic systems that are subject to dis-
turbance, as represented by Equations (5) and (6), we choose the controller
U1 = (u11, u12, . . . , u1q)

T(q = 1, 2, . . . , n) in the following manner:

u1q = −
k1q

Φ1q
e1q − Gq(y) +

θ1q

Φ1q
Fq(x)− z2q +

θ1q

Φ1q
z1q − Ξd2q −

θ1q

Φ1q
Ξd1q − d̂2q +

θ1q

Φ1q
d̂1q, (q = 1, 2, . . . , n) (9)

and the adaptive updating laws of d̂2 = (d̂21, d̂22, . . . , d̂2q)
T

and d̂1 = (d̂11, d̂12, . . . , d̂1q)
T

are
as follows:

CD qd̂2q = Γ2qe1qΦ1q, (q = 1, 2, . . . , n) (10)

CD qd̂1q = −Γ1qe1qθ1q, (q = 1, 2, . . . , n) (11)

where Γ1q and Γ2q are the gain coefficients of the adaptive updating laws of d1q and d2q,
respectively.

3.1.2. Stability Analysis

Based on the above controller design, we can obtain the following results, then analyze
synchronization stability in n-D.

Theorem 1. For synchronization of the fractional-order chaotic systems in n-D, if there exists a
positive real number k1q(q = 1, 2, . . . , n), then the synchronization error e1(t) converges to zero
under the given scale matrices Φ1 and θ1. With any initial points x(0) and y(0), the control law (9)
and parameter updating laws (10) and (11) warrant that all signals in the fractional-order chaotic
system are bounded such that the systems (1) and (2) are synchronized in n-D space.

Proof. To realize the synchronization in n-D, we choose a Lyapunov function, as follows:

V1 =
n

∑
q=1

[
1
2

e2
1q +

1
2Γ1q

(↕d1q − d̂1q)
2
+

1
2Γ2q

(↕d2q − d̂2q)
2
] (12)

Then, through the derivation of V1 along with (12), we obtain:

CD qV1 =
n
∑

q=1
[
1
2

CD qe2
1q +

1
2Γ1q

CD q(↕d1q − d̂1q)
2
+

1
2Γ2q

CD q(↕d2q − d̂2q)
2
]

≤
n
∑

q=1
[e1q

CD qe1q +
1

Γ1q
(↕d1q − d̂1q)

CD q(↕d1q − d̂1q) +
1

Γ2q
(↕d2q − d̂2q)

CD q(↕d2q − d̂2q)]

=
n
∑

q=1
e1q{Φ1q[(Gq(y) + z2q(y, x) + d̂2q(t) + (↕d2q − d̂2q(t)) + ∆d2q + uq]}

−
n
∑

q=1
e1q{θ1q[Fq(x) + z1q(y, x) + d̂1q(t) + (↕d1q − d̂1q(t)) + ∆d1q]}

+
n
∑

q=1

1
Γ1q

(↕d1q − d̂1q)
CD q(↕d1q − d̂1q) +

n
∑

q=1

1
Γ2q

(↕d2q − d̂2q)
CD q(↕d2q − d̂2q)

(13)

By substituting (9), (10), and (11) into (13), we obtain:
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CD qV1 =
n
∑

q=1
[
1
2

CD qe2
1q +

1
2Γ1q

CD q(↕d1q − d̂1q)
2
+

1
2Γ2q

CD q(↕d2q − d̂2q)
2
]

≤
n
∑

q=1
e1q{Φ1q[(Gq(y) + z2q(y, x) + d̂2q(t) + (↕d2q − d̂2q(t)) + Ξd2q + u1q]}

−
n
∑

q=1
e1q{θ1q[Fq(x) + z1q(y, x) + d̂1q(t) + (↕d1q − d̂1q(t))− Ξd1q]}

+
n
∑

q=1

1
Γ1q

(↕d1q − d̂1q)
CD q(↕d1q − d̂1q) +

n
∑

q=1

1
Γ2q

(↕d2q − d̂2q)
CD q(↕d2q − d̂2q)

= −
n
∑

q=1
k1qe2

1q ≤ 0

(14)

According to Lemma 1, the synchronization error in n-D space between the master
fractional-order system (1) and the slave fractional-order system (2) has converged to zero.
□

3.2. Synchronization between n-D Master System and m-D Slave System in m-D

In this section, we structure a controller design to achieve the synchronization of two
bidirectionally coupled fractional-order chaotic systems operating in m-D space, even in
the presence of unknown parameter disturbance. Furthermore, we conduct a stability
analysis of the proposed controller.

3.2.1. m-D Controller Design

In the following study, we will explore the methods to achieve synchronization be-
tween n-D and m-D bidirectionally coupled fractional-order chaotic systems in an m-D
space, and we choose controller U2 = (u21, u22, . . . , u2r)

T(r = 1, 2, . . . , m) tagging on the
system (2): { CD qx = Ax + f (x) + d1(t) + D1(M2y − M1x)

CD qy = By + g(y) + d2(t) + D2(N1x − N2y) + U2
(15)

As the previous section concluded, we obtain the system synchronization error of
system (24) in m-D as e2 = Φ2y − θ2x, where Φ2 ∈ Rm×m, θ2 ∈ Rm×n. The synchronization
error is as follows:

e2(t) = Φ2y − θ2x = (e11, e12, . . . , e1m)
T (16)

where Φ2 =


Φ21

Φ22
Φ23

. . .
Φ2m

, θ2 =



θ21
θ22

. . .
θ2n
...
θ2m


.

To fulfill the synchronization between these two fractional-order chaotic systems in
m-D space, the synchronization error system in m-D space is defined as follows:

CD qe2r(t) =

{
Φ2r

CD qyr − θ2r
CD qxr, (r = 1, 2, . . . , n)

Φ2r
CD qyr − θ2r

CD qxn, (r = n + 1, n + 2, . . . , m)

=

{
Φ2r[Gr(y) + z2r(y, x) + d2r(t) + ur]− θ2r[Fr(x) + z1r(y, x) + d1r(t)], (r = 1, 2, . . . , n)
Φ2r[Gr(y) + z2r(y, x) + d2r(t) + ur]− θ2r[Fn(x) + z1n(y, x) + d1n(t)], (r = n + 1, n + 2, . . . , m)

=


Φ2r[Gr(y) + z2r(y, x) + d̂2r(t) + (↕d2r − d̂2r(t)) + ∆d2r + u2r]

−θ2r[Fr(x) + z1r(y, x) + d̂1r(t) + (↕d1r − d̂1r(t)) + ∆d1r], (r = 1, 2, . . . , n)
Φ2r[Gr(y) + z2r(y, x) + d̂2r(t) + (↕d2r − d̂2r(t)) + ∆d2r + u2r]

−θ2r[Fn(x) + z1n(y, x) + d̂1n(t) + (↕d1n − d̂1n(t)) + ∆d1n], (r = n + 1, n + 2, . . . , m)

(17)

To achieve synchronization of the bidirectionally coupled system with disturbance
(15) in m-D space, we choose the controller in the following manner:
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u2r =

{
− k2r

Φ2r
e2r − Gr(y) + θ2r

Φ2r
Fr(x)− z2r +

θ2r
Φ2r

z1r − Ξd2r − θ2r
Φ2r

Ξd1r − d̂2r +
θ2r
Φ2r

d̂1r, (r = 1, 2, . . . , n)
− k2r

Φ2r
e2r − Gr(y) + θ2r

Φ2r
Fn(x)− z2r +

θ2r
Φ2r

z1n − Ξd2r − θ2r
Φ2r

Ξd1r − d̂2r +
θ2r
Φ2r

d̂1n, (r = n + 1, n + 2, . . . , m)
(18)

and the adaptive updating laws of d̂2 = (d̂21, d̂22, . . . , d̂2q)
T

and P d̂1 = (d̂11, d̂12, . . . , d̂1q)
T

are as follows:
CD qd̂2r = Γ2re2rΦ2r, (r = 1, 2, . . . , m) (19)

CD qd̂1q =

 −Γ1qe2qθ2q, (q = 1, 2, . . . , n − 1)

−Γ1n
m
∑

r=n
e2rθ2r, (q = n) (20)

3.2.2. Stability Analysis

In this part, we conduct an analysis of synchronization stability in m-D.

Theorem 2. Same as Theorem 1: if there exists a positive real number k2r(r = 1, 2, . . . , m), then
the synchronization error e2(t)under the given scale matrices Φ1and θ1converges to zero in m-D.
With any initial points x(0)and y(0), the control law (18) and parameter updating laws (19) and
(20) warrant that all signals in the fractional-order chaotic system are bounded such that system
(15) is synchronized in m-D.

Proof. Here, we choose a Lyapunov function to realize the synchronization in m-D
as follows:

V2 =
n

∑
q=1

[
1
2

e2
2q +

1
2Γ1q

(↕d1q − d̂1q)
2
+

1
2Γ2q

(↕d2q − d̂2q)
2
] +

m

∑
r=n+1

[
1
2

e2
2r +

1
2Γ1n

(↕d1n − d̂1n)
2
+

1
2Γ2r

(↕d2r − d̂2r)
2
] (21)

As per the proof of Theorem 1, we obtain the derivation of V2 as follows:

CD qV2 =
n
∑

q=1
[
1
2

CD qe2
2q +

1
2Γ1q

CD q(↕d1q − d̂1q)
2
+

1
2Γ2q

CD q(↕d2q − d̂2q)
2
]

+
m
∑

r=n+1
[
1
2

CD qe2
2r +

1
2Γ1n

CD q(↕d1n − d̂1n)
2
+

1
2Γ2r

CD q(↕d2r − d̂2r)
2
]

≤
n
∑

q=1
[e2q

CD qe2q +
1

Γ1q
(↕d1q − d̂1q)

CD q(↕d1q − d̂1q) +
1

Γ2q
(↕d2q − d̂2q)

CD q(↕d2q − d̂2q)]

+
m
∑

r=n+1
[e2r

CD qe2r +
1

Γ1n
(↕d1n − d̂1n)

CD q(↕d1n − d̂1n) +
1

Γ2r
(↕d2r − d̂2r)

CD q(↕d2r − d̂2r)]

=
n
∑

q=1
e2q{Φ2q[(Gq(y) + z2q(y, x) + d̂2q(t) + (↕d2q − d̂2q(t)) + ∆d2q + u2q]}

−
n
∑

q=1
e2q{θ2q[Fq(x) + z1q(y, x) + d̂1q(t) + (↕d1q − d̂1q(t)) + ∆d1q]}

+
n
∑

q=1

1
Γ1q

(↕d1q − d̂1q)
CD q(↕d1q − d̂1q) +

n
∑

q=1

1
Γ2q

(↕d2q − d̂2q)
CD q(↕d2q − d̂2q)

+
m
∑

r=n+1
e2r{Φ2r[(Gr(y) + z2r(y, x) + d̂2r(t) + (↕2r − d̂2r(t)) + ∆d2r + u2r]}

−
m
∑

r=n+1
e2r{θ2r[Fn(x) + z1n(y, x) + d̂1n(t) + (↕d1n − d̂1n(t)) + ∆d1n]}

+
(m + n + 1)(m − n)

2
1

Γ1n
(↕d1n − d̂1n)

CD q(↕d1n − d̂1n) +
m
∑

r=n+1

1
Γ2r

(↕d2r − d̂2r)
CD q(↕d2r − d̂2r)

(22)

By substituting (18) and (19) into (20), we also have:
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CD qV2 ≤
n
∑

q=1
e2q{Φ2q[(Gq(y) + z2q(y, x) + d̂2q(t) + (↕d2q − d̂2q(t)) + Ξd2q + u2q]}

−
n
∑

q=1
e2q{θ2q[Fq(x) + z1q(y, x) + d̂1q(t) + (↕d1q − d̂1q(t))− Ξd1q]}

+
n
∑

q=1

1
Γ1q

(↕d1q − d̂1q)
CD q(↕d1q − d̂1q) +

n
∑

q=1

1
Γ2q

(↕d2q − d̂2q)
CD q(↕d2q − d̂2q)

+
m
∑

r=n+1
e2r{Φ2r[(Gr(y) + z2r(y, x) + d̂2r(t) + (↕2r − d̂2r(t)) + Ξd2r + u2r]}

−
m
∑

r=n+1
e2r{θ2r[Fn(x) + z1n(y, x) + d̂1n(t) + (↕d1n − d̂1n(t))− Ξd1n]}

+
(m + n + 1)(m − n)

2
1

Γ1n
(↕d1n − d̂1n)

CD q(↕d1n − d̂1n) +
m
∑

r=n+1

1
Γ2j

(↕d2j
− d̂2j)

CD q(↕d2j
− d̂2j)

= −
m
∑

r=1
k2re2

2r ≤ 0

(23)

In view of the preceding analysis, the following conclusions can be drawn. After a
sufficient amount of time, the synchronization error of system (15) in m-D under the scale
matrices Φ2 and θ2 has converged to zero. Moreover, all the unknown parameter distur-
bances d1(t) and d2(t) have satisfied the conditions for boundness. Consequently, it can
be inferred that the bidirectionally coupled fractional-order chaotic system with unknown
time-varying parameter disturbance (15) has successfully achieved synchronization in m-D
space. □

4. Simulation Examples

In this section, we employ a bidirectionally coupled fractional-order chaotic sys-
tem with unknown parameter disturbance to show the effectiveness of the previous
proposed controller.

Consider a fractional-order financial master system characterized by three-dimensional
chaotic dynamics [28], described as follows:

CD qx1 = x3 + (x2 − 2.5)x1
CD qx2 = 1 − 0.2x2 − x2

1
CD qx3 = −x1 − 1.2x3

(24)

When the initial state is x = (3, 2, 1)T and fractional order q = 0.95 is chosen, the financial
system (24) exhibits a chaotic state, and the chaotic attractor is shown in Figure 1:
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Figure 1. The chaotic attractor of fractional-order system (24). 

Figure 1. The chaotic attractor of fractional-order system (24).
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Similarly, we consider another financial fractional-order slave system with four-
dimensional chaotic dynamics [28], described as follows:

CD qy1 = y3 + (y2 − 0.9)y1 + y4
CD qy2 = 1 − 0.2y2 − y2

1
CD qy3 = −y1 − 1.5y3
CD qy4 = −0.2y1y2 − 0.17y4

(25)

When the initial state is y = (2, 2, 2, 8
3 )

T
and fractional order q = 0.95 is chosen, the financial

system (25) exhibits a chaotic state, and the chaotic attractor is shown in Figure 2:
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Now, we combine system (24) and system (25) into a group of bidirectionally cou-
pled fractional-order chaotic systems with disturbance. To achieve synchronization, we
introduce the controller U as follows:{ CD qx = Ax + f (x) + D1(M2y − M1x) + d1(t)

CD qy = By + g(y) + D2(N1x − N2y) + d2(t) + U
(26)

where A =

−2.5 0 1
0 −0.2 0
−1 0 −1.2

, f (x) =

 x1x2
1 − x2

1
0

, M1 ∈ R3×3 is an identity matrix,

B =


−0.9 0 1 1

0 −0.2 0 0
−1 0 −1.5 0
0 0 0 −0.17

, g(y) =


y1y2

1 − y2
1

0
−0.2y1y2

, N2 ∈ R4×4 is an identity matrix,

and other matrices are as follows:

M2 =

 1 0 0 1
0 1 0 0
0 0 1 0

, N1 =


1 0 0
0 1 0
0 0 1
1 0 0

,

D1 =

0.1 0 0
0 0.05 0
0 0 0.05

, D2 =


0.1 0 0 0
0 0.3 0 0
0 0 0.5 0
0 0 0 0.33


and the uncertain disturbance vectors chosen are as follows:

d1(t) =

 3 + 4 ∗ sin t
4 + 4 ∗ cos t
17
3 − 4 ∗ sin t

, d2(t) =


10 + 3 ∗ cos t
7 + 3 ∗ sin t
2 − 3 ∗ cos t
7
4 + 3 ∗ cos t


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For the convenience of calculation, the above group of these two fractional-order
chaotic systems (26) is simplified as follows:{ CD qx = F(x) + Z1(y, x) + d1(t)

CD qy = G(y) + Z2(y, x) + d2(t) + U
(27)

where F(x) = Ax + f (x) = (F1(x), F2(x), F3(x))T =

−2.5x1 + x3 + x1x2
−0.2x2 + 1 − x2

1
−x1 − 1.2x3

,

G(y) = By + g(y) = (G1(y), G2(y), G3(y), G4(y))
T =


−0.9y1 + y3 + y4 + y1y2

−0.2y2 + 1 − y2
1

−y1 − 1.5y3
−0.17y4 − 0.2y1y2

,

Z1(y, x) = D1(M2y + M1x) = (z11(y, x), z12(y, x), z13(y, x))T =

 0.1(y1 − x1)
0.05(y2 − x2)
0.05(y3 − x3)

,

Z2(y, x) = D2(N1x + N2y) = (z21(y, x), z22(y, x), z23(y, x), z24(y, x))T =


0.1(y1 − x1)
0.3(y2 − x2)
0.5(y3 − x3)
0.33(y4 − x1)


4.1. 3-D Synchronization of Fractional-Order Financial Systems

Now, we choose U1 = (u11, u12, u13)
T to take the place of U in (36) to fulfill the

synchronization of the financial systems in 3D space.
According to the analysis above, we have e1 = Φ1y− θ1x, and we choose scale matrices

Θ1 =

 1 0 0 0
0 1 0 0
0 0 1 0

, Φ1 =

1 0 0
0 1 0
0 0 1

.

Here, CD qd̂1 =

CD qd̂11
CD qd̂12
CD qd̂13

 =

−Γ11e11
−Γ12e12
−Γ13e13

 with Γ1i = 10(i = 1, 2, 3), the initial

point of d̂1(t) is given as d̂1(0) = (0, 0, 0)T , CD qd̂2 =

CD qd̂21
CD qd̂22
CD qd̂23

 =

Γ21e11
Γ22e12
Γ23e13

 with

Γ2i = 10(i = 1, 2, 3). The initial point of d̂2(t) is given as d̂2(0) = (0, 0, 0)T .
According to (9), (10), and (11), we select the controller as follows:

U1 =

u11
u12
u13


=

 −k11e11 − (−0.9y1 + y3 + y4 + y1y2) + (−2.5x1 + x3 + x1x2)− 0.1(y1 − x1) + 0.1(y1 + y4 − x1)− Ξd11 − Ξd21 − d̂21 + d̂11
−k12e12 − (−0.2y2 + 1 − y2

1) + (0.2x2 + 1 − x2
1)− 0.3(y2 − x2) + 0.05(y2 − x2)− Ξd12 − Ξd22 − d̂22 + d̂12

−k13e13 − (−y1 − 1.5y3) + (−x1 − 1.2x3)− 0.5(y3 − x3) + 0.05(y3 − x3)− Ξd13 − Ξd23 − d̂23 + d̂13

 (28)

where Ξd1i = 8(i = 1, 2, 3) and Ξd2i = 6(i = 1, 2, 3), k1i = 1(i = 1, 2, 3), and the initial
values are x = (3, 2, 1)T and y = (2, 2, 2, 8

3 )
T

.
By MATLAB simulation, we can obtain the numerical curve of synchronization errors

e1 of system (27) with respect to the variables Φ1 and θ1. The curves of controllers U1,
estimated parameters d̂1(t) and estimated parameters d̂2(t) are shown in Figures 3–6,
respectively.
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In Figures 3–6, we observe that all the synchronization errors e1i(i = 1, 2, 3) can
converge to zero, and all the controllers u1i(i = 1, 2, 3) and the estimated parameters

d̂1 = (d̂11, d̂12, d̂13)
T

and d̂2 = (d̂21, d̂22, d̂23)
T

are bounded, which means that we have
accomplished the synchronization of two fractional-order financial systems using the
controllers and adaptive updating laws designed in this article.
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4.2. 4D Synchronization of Fractional-Order Financial Systems

We consider the synchronization of bidirectionally coupled fractional-order chaotic
system with unknown time-varying parameter disturbance (27) in 4D. We choose the
controller U2 = (u21, u22, u23, u24)

T to take place of the controller U.
Calculate the synchronization error of system in 4-D as e2 = Φ2y − θ2x, then choose

scale matrices Φ2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and θ2 =


1 0 0
0 1 0
0 0 1
0 0 1

.

As per the previous, we can also obtain CD qd2 =


CD qd21
CD qd22
CD qd23
CD qd24

 =


Γ21e21
Γ22e22
Γ23e23
Γ24e24

 with

Γ2i = 50(i = 1, 2, 3, 4). The initial point of d̂2(t) is chosen as d̂2(0) = (0, 0, 0, 0)T ,

CD qd1 =

CD qd11
CD qd12
CD qd13

 =

 −Γ11e21
−Γ12e22
−Γ13(e23 + e24)

 with Γ1i = 50(i = 1, 2, 3). The initial

point of d̂1(t) is chosen as d̂1(0) = (0, 0, 0)T .
According to (18), (19), and (20), we select the controller as follows:

U2 =


u21
u22
u23
u24



=


−k21e21 − (−0.9y1 + y3 + y4 + y1y2) + (−2.5x1 + x3 + x1x2)− 0.1(y1 − x1) + 0.1(y1 + y4 − x1)− Ξd11 − Ξd21 − d̂21 + d̂11
−k22e22 − (−0.2y2 + 1 − y2

1) + (0.2x2 + 1 − x2
1)− 0.3(y2 − x2) + 0.05(y2 − x2)− Ξd12 − Ξd22 − d̂22 + d̂12

−k23e23 − (−y1 − 1.5y3) + (−x1 − 1.2x3)− 0.5(y3 − x3) + 0.05(y3 − x3)− Ξd13 − Ξd23 − d̂23 + d̂13
−k24e24 − (−y1 − 1.5y3) + (−x1 − 1.2x3)− 0.5(y3 − x3) + 0.05(y3 − x3)− Ξd13 − Ξd24 − d̂24 + d̂13


(29)

where Ξd1i = 8(i = 1, 2, 3), Ξd2i = 6(i = 1, 2, 3, 4), k2i = 1(i = 1, 2, 3, 4) and the initial
values are x = (3, 2, 1)T and y = (2, 2, 2, 8

3 )
T

.
By MATLAB simulation, we can obtain the numerical curve of synchronization errors

e2 of system (27) with respect to the variables Φ2 and θ2. The curves of controller U2,
estimated parameters d̂1(t), and estimated parameters d̂2(t) are shown in Figures 7–10,
respectively.

In Figures 7–10, we observe that all the synchronization errors e2i(i = 1, 2, 3, 4) can
converge to zero and all the controllers u2i(i = 1, 2, 3, 4) and the estimated parameters

d̂1 = (d̂11, d̂12, d̂13)
T

and d̂2 = (d̂21, d̂22, d̂23, d̂24)
T

are bounded, which means that we have
successfully synchronized these two fractional-order chaotic systems using the controllers
designed in the desired dimension. The simulation findings confirm the efficacy and
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correctness of the method outlined in Section 3 in tackling the synchronization problem
between two bidirectionally coupled fractional-order chaotic systems that have unknown
time-varying parameter disturbance across different dimensions.
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5. Conclusions

The notion of synchronization for two bidirectionally coupled fractional-order chaotic
systems with unknown time-varying parameter disturbance in different dimensions has
been accomplished in this article. To accomplish this, a new adaptive updating controller
has been structured. Two fractional-order financial systems across different dimensions
have been synchronized successfully using the proposed controller in 3D and 4D. It is
observed that under the scale matrices Φ and θ and the action of the controller proposed
above, all the errors successfully converge to zero and other states are bounded. The
problem of parameter disturbance has been solved by using the congelation of variables.
Furthermore, the synchronization of the chaotic systems is widely used in the confidential
communication field. Besides robustness and stability, we usually consider punctuality in
the process of synchronization. Based on the above conclusions and existing research, the
fixed-time synchronization of two fractional-order chaotic systems will be considered.
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