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Abstract: In this article, we look at the stochastic Wu–Zhang system (SWZS) forced by
multiplicative Brownian motion in the Itô sense. The mapping method, which is an
effective analytical method, is employed to investigate the exact wave solutions of the
aforementioned equation. The proposed scheme provides new types of exact solutions
including periodic solitons, kink solitons, singular solitons and so on, to describe the
wave propagation in quantum mechanics and analyze a wide range of essential physical
phenomena. In the absence of noise, we obtain some previously found solutions of SWZS.
Additionally, using the MATLAB program, the impacts of the noise term on the analytical
solution of the SWZS were demonstrated.

Keywords: multiplicative white noise; stochastic exact solutions; stabilize by noise;
mapping method
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1. Introduction
Nonlinear evolution equations (NLEEs) are commonly employed to describe compli-

cated phenomena in a variety of engineering and scientific areas, including fluid dynamics,
acoustics, optical fibers, solid state physics, hydrodynamics and plasma physics. Conse-
quently, it is crucial to solve these NLEEs. Recently, numerous powerful approaches for
discovering exact solutions to NLEEs have been introduced, such as exp(−ϕ(ς))-expansion
method [1], Jacobi elliptic function expansion [2], modified extended tanh-function
method [3], F-expansion method [4], Riccati equation method [5], (G′/G)-expansion [6,7],
exp-function method [8], sine–cosine method [9], etc.

One of these equations is the Wu–Zhang system [10]. The Wu–Zhang system is a
well-known model in quantum mechanics that describes the dynamics of two coupled
qubits, or quantum bits. The system exhibits a variety of interesting phenomena, including
entanglement generation and quantum phase transitions. One essential consideration
in the study of the Wu–Zhang system is the role of noise, or random fluctuations in the
system’s parameters, which can have significant effects on its behavior.

Noise in the Wu–Zhang system can come from a variety of sources, such as external
electromagnetic fields or fluctuations in the system’s energy levels. These random fluc-
tuations can lead to decoherence, or the loss of quantum coherence, which is important
for quantum computing and other quantum technologies. Understanding the effects of
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noise in the Wu–Zhang system is crucial for developing strategies to mitigate its impact
and improve the system’s performance.

In this article, we look at the stochastic Wu–Zhang system (SWZS) as follows:

Ψt + (ΦΨ)x +
1
3 Φxxx = ϖΨBt,

Φt + ΦΦx + Ψx = ϖΦBt,
(1)

where Ψ = Ψ(x, t) presents the surface velocity of water and Φ = Φ(x, t) indicates the
elevation of the water; ϖ is the amplitude of noise; B = B(t) is a Brownian motion and
Bt =

∂B
∂t . Due to their Lax pairs [11], the Wu–Zhang system (1) is integrable.

Due to the importance of the Wu–Zhang system in quantum mechanics, some au-
thors obtained its solutions by using various methods including the dynamic analysis
method [12], generalized extended tanh-function method [13], csch method, tan–cot
method, extended tanh–coth method, modified simple equation method [14], extended
tanh and Hirota methods [15], and extended trial equation method [16]. Moreover, the solu-
tions of the fractal Wu–Zhang system with different fractional operators were obtained by
using various methods including the modified auxiliary equation method [17], first integral
method [18], and semi-inverse method [19], exponential rational function method [20],
and iterative method [21]. However, the stochastic Wu–Zhang system with a noise term
has not yet been addressed.

Our aim for this study is to obtain the exact stochastic solutions for the SWZS (1).
To the best of our knowledge, the exact stochastic solutions for the SWZS (1) has never been
obtained before. Several kinds of solutions may be found by using the mapping approach
including periodic solitons, kink solitons, singular solitons and so on. In the absence of
noise, we obtain some previous solutions of SWZS (1) such as the solutions stated in [13].
Furthermore, to study the effect of white noise on the discovered solutions, we present a
number of two-dimensional and three-dimensional graphs.

The paper’s outline is as follows: Section 2 provides the wave equation of the SWZS (1),
and Section 3 explains the mapping method. In Section 4, we obtain the solutions of the (1).
In Section 5, we may investigate the impact of the stochastic term on the solutions of the
SWZS (1). Finally, the obtained results of this paper are stated.

2. Traveling Wave Equation for SWZS
The wave equation for SWZS (1) is obtained by applying

Φ(x, t) = φ(ζ)eϖB− 1
2 ϖ2t and Ψ(x, t) = ψ(ζ)eϖB− 1

2 ϖ2t, ζ = kx + λt, (2)

where the deterministic functions φ and ψ are real, and λ and k are non-zero constants. We
note that

Φt = [λφ′ + ϖφBt −
1
2

ϖ2 φ+
1
2

ϖ2 φ]eϖB− 1
2 ϖ2t

= [λφ′ + ϖφBt]eϖB− 1
2 ϖ2t, (3)

Φx = kφ′eϖB− 1
2 ϖ2t, Φxxx = k3 φ′′′eϖB− 1

2 ϖ2t

where 1
2 ϖ2 φ is the Itô correction term. Similarly,

Ψt = [λψ′ + ϖψBt]eϖB− 1
2 ϖ2t, Ψx = kψ′eϖB− 1

2 ϖ2t. (4)
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Substituting Equations (3) and (4) into Equation (1), we obtain the following system:

λψ′ + k(ψφ)′eϖB− 1
2 ϖ2t + k3

3 ψ′′′ = 0.

λφ′ + kφφ′eϖB− 1
2 ϖ2t + kψ′ = 0,

(5)

Considering the expectation on both sides of Equation (5), we arrive at

λψ′ + k3

3 φ′′′ + k(ψφ)′e−
1
2 ϖ2tE(eϖB) = 0,

λφ′ + kψ′ + kφφ′e−
1
2 ϖ2tE(eϖB) = 0.

(6)

Since B(t) is a Gaussian process, E(eϖB(t)) = e
1
2 ϖ2t for any real number ϖ. Hence,

Equation (6) becomes
λψ′ + k3

3 φ′′′ + k(ψφ)′ = 0,

λφ′ + kψ′ + kφφ′ = 0.
(7)

Integrating Equation (7) once and setting integration constant equal to zero, we obtain

λψ +
k3

3
φ′′ + k(ψφ) = 0, (8)

λφ + kψ +
1
2

kφ2 = 0. (9)

From Equation (9), we have

ψ =
−λ

k
φ − 1

2
φ2. (10)

Plugging Equation (10) into Equation (8) leads to

φ′′ − 3λ2

k4 φ − 9λ

2k3 φ2 − 3
2k2 φ3 = 0. (11)

3. The Clarification of Mapping Method
Let us explain the method that we utilize here (for more information, see [22–24]). We

assume the solution of Equation (11) has the form

φ(ζ) =
N

∑
i=0

qiP i(ζ), qM ̸= 0, (12)

where q0, q1, q2, ...., qN−1 and qN are undefined constants to be determined and P solves
the following nonlinear elliptic function equation that is an ordinary equation:

(P ′)2 = α1P4 + α2P2 + α3, (13)

where α1, α2, and α3 are real numbers. Equation (13) has several solutions for α1, α2 and α3

as follows (Table 1).
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Table 1. The solutions of Equation (13) for distinct values α1, α2 and α3.

Case α1 α2 α3 P(ζ)

1 ß2 −(1+ß2) 1 sn(ζ)

2 ß2 −(1+ß2) 1 cd(ζ)

3 1 −(ß2 + 1) ß2 ns(ζ)

4 1 −(ß2 + 1) ß2 dc(ζ)

5 (1−ß2) 2ß2 − 1 −ß2 nc(ζ)

6 (1−ß2) 2−ß2 1 sc(ζ)

7 1 2−ß2 (1−ß2) cs(ζ)

8 1 2ß2 − 1 −ß2(1−ß2) ds(ζ)

9 1
4

(1−2ß2)
2

1
4 ns(ζ)± cs(ζ)

10 1
4

(ß2−2)
2

ß2

4
ns(ζ)± ds(ζ)

11 1−ß2

4
(1+ß2)

2
(1−ß2)

4
nc(ζ)± sc(ζ)

12 ß2

4
(ß2−2)

2
ß2

4

√
1 − ß2(sd(ζ)± cd(ζ))

13 ß2

4
(ß2−2)

2
1
4

sn(ζ)
1±dn(ζ)

14 (1−ß2)2

4
ß2+1

2
1
4 ds(ζ)± cs(ζ)

15 1 2 − 4ß2 1 sn(ζ)dn(ζ)
cn(ζ)

16 ß4 2 1 sn(ζ)cn(ζ)
dn(ζ)

17 1 ß2 + 2 (1− 2ß2+ß4)
dn(ζ)cn(ζ)

sn(ζ)

18 (1−ß2)
4

(1+ß2)
2

(1−ß2)
4

cn(ζ)
1±sn(ζ)

19 1
4

(1−2ß2)
2

1
4

sn(ζ)
1±cn(ζ)

Where cn(ζ) = cn(ζ,ß), ds(ζ) = ds(ζ,ß), sn(ζ) = sn(ζ,ß), sc(ζ) = sc(ζ,ß), dn(ζ) =
dn(ζ,ß), are the Jacobi elliptic functions (JEFs) for 0 <ß< 1.

JEFs generate the following hyperbolic functions when ß→ 1:

dn(ζ) → sech(ζ), ns(ζ) → coth(ζ),

cs(ζ) → csch(ζ), cn(ζ) → sech(ζ),

sn(ζ) → tanh(ζ), ds → csch(ζ).

JEFs generate the following trigonometric functions when ß→ 0:

sc(ζ) → tan(ζ), cs(ζ) → cot(ζ),

ds(ζ) → csc(ζ), ds → csc(ζ),

dn(ζ) → 1, sn(ζ) → sin(ζ),

ns(ζ) → csc(ζ), cn(ζ) → cos(ζ).

4. Exact Solutions of the SWZS
First, let us equate φ′′ with φ3 in Equation (11) to calculate the parameters N as

N + 2 = 3N ⇒ N = 1.
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With N = 1, Equation (12) takes the form

φ(ζ) = q0 + q1P(ζ), (14)

Putting Equation (14) into Equation (11), we obtain

+[2α1q1 −
3

2k2 q3
1]P3 + [

−9λ

2k3 q2
1 −

9
2k2 q0q2

1]P2

+[α2q1 −
3λ2

k4 q1 −
9λ

k3 q0q1 −
9

2k2 q2
0q1]P

+[
−3λ2

k4 q0 −
9λ

2k3 q2
0 −

3
2k2 q3

0] = 0.

Inserting each coefficient of the various powers of P j, we have

2α1q1 −
3

2k2 q3
1 = 0,

−9λ

2k3 q2
1 −

9
2k2 q0q2

1 = 0,

α2q1 −
3λ2

k4 q1 −
9λ

k3 q0q1 −
9

2k2 q2
0q1 = 0,

and
−3λ2

k4 q0 −
9λ

2k3 q2
0 −

3
2k2 q3

0 = 0.

By solving the above equations, we have

q0 =
−λ

k
, q1 = ±2k

√
α1

3
, and α2 =

−3λ2

2k4 . (15)

Plugging (15) into Equation (14), we obtain the following solution for the traveling
wave Equation (11):

φ(ζ) =
−λ

k
± 2k

√
α1

3
P(ζ). (16)

Using Equation (10), we have

ψ(ζ) =
λ2

2k2 − 2k2α1

3
P2(ζ). (17)

Consequently, substituting Equations (16) and (17) into Equation (2), we have the
solutions of the SWZS (1) as follows:

Φ =
{

−λ
k ± 2k

√
α1
3 P(ζ)

}
eϖB− 1

2 ϖ2t,

Ψ =
{

λ2

2k2 − 2k2α1
3 P2(ζ)

}
eϖB− 1

2 ϖ2t,

(18)

where ζ = kx + λt.
There are many cases for the solutions of Equation (15) relying on α1 as follows:
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Case 1: If α1 =ß2, α2 = −
(

1 + ß2
)

and α3 = 1, then P(ζ) = sn(ζ), and Equation (18)
takes the form

Φ =

−λ

k
± 2k

√
ß2

3
sn(ζ)

eϖB− 1
2 ϖ2t, (19)

Ψ =

{
λ2

2k2 − 2k2ß2

3
sn2(ζ)

}
eϖB− 1

2 ϖ2t. (20)

If ß→ 1, then Equations (19) and (20) become

Φ =

{
−λ

k
± 2k

√
1
3

tanh(ζ)

}
eϖB− 1

2 ϖ2t, (21)

Ψ =

{
λ2

2k2 − 2k2

3
tanh2(ζ)

}
eϖB− 1

2 ϖ2t. (22)

Case 2: If α1 =ß2, α2 = −
(

1 + ß2
)

and α3 = 1, then P(ζ) = cd(ζ), and Equation (18)
takes the form

Φ =

−λ

k
± 2k

√
ß2

3
cd(ζ)

eϖB− 1
2 ϖ2t, (23)

Ψ =

{
λ2

2k2 − 2k2ß2

3
cd2(ζ)

}
eϖB− 1

2 ϖ2t. (24)

Case 3: If α1 = 1, α2 = −
(

1 + ß2
)

and α3 =ß2, then P(ζ) = ns(ζ), and Equation (18)
takes the form

Φ =

{
−λ

k
± 2k

√
1
3

ns(ζ)

}
eϖB− 1

2 ϖ2t, (25)

Ψ =

{
λ2

2k2 − 2k2

3
ns2(ζ)

}
eϖB− 1

2 ϖ2t. (26)

If ß→ 1, then Equations (25) and (26) become

Φ =

{
−λ

k
± 2k

√
1
3

coth(ζ)

}
eϖB− 1

2 ϖ2t, (27)

Ψ =

{
λ2

2k2 − 2k2

3
coth2(ζ)

}
eϖB− 1

2 ϖ2t. (28)

However, if ß→ 0, then Equations (25) and (26) become

Φ =

{
−λ

k
± 2k

√
1
3

csc(ζ)

}
eϖB− 1

2 ϖ2t, (29)

Ψ =

{
λ2

2k2 − 2k2

3
csc2(ζ)

}
eϖB− 1

2 ϖ2t. (30)

Case 4: If α1 = 1, α2 = −
(

1 + ß2
)

and α3 =ß2, then P(ζ) = dc(ζ), and Equation (18)
takes the form
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Φ =

{
−λ

k
± 2k

√
1
3

dc(ζ)

}
eϖB− 1

2 ϖ2t, (31)

Ψ =

{
λ2

2k2 − 2k2

3
dc2(ζ)

}
eϖB− 1

2 ϖ2t. (32)

If ß→ 0, then Equations (31) and (32) become

Φ =

{
−λ

k
± 2k

√
1
3

sec(ζ)

}
eϖB− 1

2 ϖ2t, (33)

Ψ =

{
λ2

2k2 − 2k2

3
sec2(ζ)

}
eϖB− 1

2 ϖ2t. (34)

Case 5: If α1 = 1−ß2, α2 = 2ß2 − 1 and α3 = −ß2, then P(ζ) = nc(ζ), and Equa-
tion (18) takes the form

Φ =

−λ

k
± 2k

√
1 − ß2

3
nc(ζ)

eϖB− 1
2 ϖ2t, (35)

Ψ =

{
λ2

2k2 − 2k2(1 − ß2)

3
nc2(ζ)

}
eϖB− 1

2 ϖ2t. (36)

If ß→ 0, then Equations (35) and (36) become Equations (33) and (34), respectively.
Case 6: If α1 = 1−ß2, α2 = 2−ß2 and α3 = 1, then P(ζ) = sc(ζ), and Equation (18)

takes the form

Φ =

−λ

k
± 2k

√
1 − ß2

3
sc(ζ)

eϖB− 1
2 ϖ2t, (37)

Ψ =

{
λ2

2k2 − 2k2(1 − ß2)

3
sc2(ζ)

}
eϖB− 1

2 ϖ2t. (38)

If ß→ 0, then Equations (37) and (38) become

Φ =

{
−λ

k
± 2k

√
1
3

tan(ζ)

}
eϖB− 1

2 ϖ2t, (39)

Ψ =

{
λ2

2k2 − 2k2

3
tan2(ζ)

}
eϖB− 1

2 ϖ2t. (40)

Case 7: If α1 = 1, α2 = 2−ß2 and α3 = 1−ß2, then P(ζ) = cs(ζ), and Equation (18)
takes the form

Φ =

{
−λ

k
± 2k

√
1
3

cs(ζ)

}
eϖB− 1

2 ϖ2t, (41)

Ψ =

{
λ2

2k2 − 2k2

3
cs2(ζ)

}
eϖB− 1

2 ϖ2t. (42)

If ß→ 1, then Equations (41) and (42) become

Φ =

{
−λ

k
± 2k

√
1
3

csch(ζ)

}
eϖB− 1

2 ϖ2t, (43)

Ψ =

{
λ2

2k2 − 2k2

3
csch2(ζ)

}
eϖB− 1

2 ϖ2t. (44)
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However, if ß→ 0, then Equations (41) and (42) become

Φ =

{
−λ

k
± 2k

√
1
3

cot(ζ)

}
eϖB− 1

2 ϖ2t, (45)

Ψ =

{
λ2

2k2 − 2k2

3
cot2(ζ)

}
eϖB− 1

2 ϖ2t. (46)

Case 8: If α1 = 1, α2 = 2ß2 − 1 and α3 = −ß2(1−ß2), then P(ζ) = ds(ζ), and
Equation (18) takes the form

Φ =

{
−λ

k
± 2k

√
α1

3
ds(ζ)

}
eϖB− 1

2 ϖ2t, (47)

Ψ =

{
λ2

2k2 − 2k2α1

3
ds2(ζ)

}
eϖB− 1

2 ϖ2t. (48)

Case 9: If α1 = 1
4 , α2 = 1−2ß2

2 and α3 = 1
4 , then P(ζ) = ns(ζ) ± cs(ζ), and Equa-

tion (18) takes the form

Φ =

{
−λ

k
± k

√
1
3
(ns(ζ)± cs(ζ))

}
eϖB− 1

2 ϖ2t, (49)

Ψ =

{
λ2

2k2 − k2

6
(ns(ζ)± cs(ζ))2

}
eϖB− 1

2 ϖ2t. (50)

Case 10: If α1 = 1
4 , α2 = ß2−2

2 and α3 = ß2

4 , then P(ζ) = ns(ζ)± ds(ζ), and Equa-
tion (18) takes the form

Φ =

{
−λ

k
± k

√
1
3
(ns(ζ)± ds(ζ))

}
eϖB− 1

2 ϖ2t, (51)

Ψ =

{
λ2

2k2 − k2

6
(ns(ζ)± ds(ζ))2

}
eϖB− 1

2 ϖ2t. (52)

If ß→ 1, then Equations (49) and (50) [or Equations (51) and (52)] become

Φ =

{
−λ

k
± k

√
1
3
(coth(ζ)± csch(ζ))

}
eϖB− 1

2 ϖ2t, (53)

Ψ =

{
λ2

2k2 − k2

6
(coth(ζ)± csch(ζ))2

}
eϖB− 1

2 ϖ2t. (54)

However, if ß→ 0, then Equations (49) and (50) [or Equations (51) and (52)] become

Φ =

{
−λ

k
± k

√
1
3
(csc(ζ)± cot(ζ))

}
eϖB− 1

2 ϖ2t, (55)

Ψ =

{
λ2

2k2 − k2

6
(csc(ζ)± cot(ζ))2

}
eϖB− 1

2 ϖ2t. (56)

Case 11: If α1 = 1−ß2

4 , α2 = 1+ß2

2 and α3 = 1−ß2

4 , then P(ζ) = nc(ζ) ± sc(ζ), and
Equation (18) takes the form
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Φ =

−λ

k
± k

√
1 − ß2

3
(nc(ζ)± sc(ζ))

eϖB− 1
2 ϖ2t, (57)

Ψ =

{
λ2

2k2 − k2(1 − ß2)

6
(nc(ζ)± sc(ζ))2

}
eϖB− 1

2 ϖ2t. (58)

If ß→ 0, then Equations (57) and (58) become

Φ =

{
−λ

k
± k

√
1
3
(sec(ζ)± tan(ζ))

}
eϖB− 1

2 ϖ2t, (59)

Ψ =

{
λ2

2k2 − k2

6
(sec(ζ)± tan(ζ))2

}
eϖB− 1

2 ϖ2t. (60)

Case 12: If α1 = ß2

4 , α2 = ß2−2
2 and α3 = ß2

4 , then P(ζ) =
√

1 − ß2(sd(ζ)± cd(ζ)),
and Equation (18) takes the form

Φ =

−λ

k
± k

√
ß2

3

√
1 − ß2(sd(ζ)± cd(ζ))

eϖB− 1
2 ϖ2t, (61)

Ψ =

{
λ2

2k2 − k2ß2(1 − ß2)

6
(sd(ζ)± cd(ζ))2

}
eϖB− 1

2 ϖ2t. (62)

Case 13: If α1 = ß2

4 , α2 = ß2−2
2 and α3 = 1

4 , then P(ζ) = sn(ζ)
1±dn , and Equation (18) takes

the form

Φ =

−λ

k
± k

√
ß2

3

(
sn(ζ)

1 ± dn(ζ)

)eϖB− 1
2 ϖ2t, (63)

Ψ =

{
λ2

2k2 − k2ß2

6

(
sn(ζ)

1 ± dn(ζ)

)2
}

eϖB− 1
2 ϖ2t. (64)

If ß→ 1, then Equations (63) and (64) become

Φ =

{
−λ

k
± k

√
1
3

(
tanh(ζ)

1 ± sech(ζ)

)}
eϖB− 1

2 ϖ2t, (65)

Ψ =

{
λ2

2k2 − k2

6

(
tanh(ζ)

1 ± sech(ζ)

)2
}

eϖB− 1
2 ϖ2t. (66)

Case 14: If α1 =
(1−ß2)

2

4 , α2 = ß2+1
2 and α3 = 1

4 , then P(ζ) = (ds(ζ)± cs(ζ)), and
Equation (18) has the form

Φ =

{
−λ

k
± k

(
1 − ß2

)√1
3
(ds(ζ)± cs(ζ))

}
eϖB− 1

2 ϖ2t, (67)

Ψ =

 λ2

2k2 −
k2
(

1 − ß2
)2

6
(ds(ζ)± cs(ζ))2

eϖB− 1
2 ϖ2t. (68)

If ß→ 0, then Equations (67) and (68) become
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Φ =

{
−λ

k
± k

√
1
3
(sec(ζ)± tan(ζ))

}
eϖB− 1

2 ϖ2t, (69)

Ψ =

{
λ2

2k2 − k2

6
(sec(ζ)± tan(ζ))2

}
eϖB− 1

2 ϖ2t. (70)

Case 15: If α1 = 1, α2 = 2 − 4ß2 and α3 = 1, then P(ζ) = sn(ζ)dn(ζ)
cn(ζ) , and Equation (18)

takes the form

Φ =

{
−λ

k
± 2k

√
1
3

sn(ζ)dn(ζ)
cn(ζ)

}
eϖB− 1

2 ϖ2t, (71)

Ψ =

{
λ2

2k2 − 2k2

3
sn2(ζ)dn2(ζ)

cn2(ζ)

}
eϖB− 1

2 ϖ2t. (72)

Case 16: If α1 =ß4, α2 = 2 and α3 = 1, then P(ζ) = sn(ζ)cn(ζ)
dn(ζ) , and Equation (18) takes

the form

Φ =

−λ

k
± 2k

√
ß4

3
sn(ζ)cn(ζ)

dn(ζ)

eϖB− 1
2 ϖ2t, (73)

Ψ =

{
λ2

2k2 − 2k2ß4

3
sn2(ζ)cn2(ζ)

dn2(ζ)

}
eϖB− 1

2 ϖ2t. (74)

If ß→ 1, then Equations (73) and (74) become

Φ =

{
−λ

k
± 2k

√
1
3

tanh(ζ)

}
eϖB− 1

2 ϖ2t, (75)

Ψ =

{
λ2

2k2 − 2k2

3
(tanh(ζ))2

}
eϖB− 1

2 ϖ2t. (76)

Case 17: If α1 = 1, α2 =ß2 + 2, and α3 = 1 − 2ß2+ß4, then P(ζ) = dn(ζ)cn(ζ)
sn(ζ) , and

Equation (18) takes the form

Φ =

{
−λ

k
± 2k

√
1
3

dn(ζ)cn(ζ)
sn(ζ)

}
eϖB− 1

2 ϖ2t, (77)

Ψ =

{
λ2

2k2 − 2k2dn2(ζ)cn2(ζ)

3sn2(ζ)

}
eϖB− 1

2 ϖ2t. (78)

If ß→ 1, then Equations (77) and (78) become

Φ =

{
−λ

k
± 2k

√
1
3

sech(ζ)csch(ζ)

}
eϖB− 1

2 ϖ2t, (79)

Ψ =

{
λ2

2k2 − 2k2

3
(sech(ζ)csch(ζ))2

}
eϖB− 1

2 ϖ2t. (80)

Case 18: If α1 = 1
4 , α2 = 1−2ß2

2 and α3 = 1
4 , then P(ζ) = sn(ζ)

1±cn(ζ) , and Equation (18)
takes the form

Φ =

{
−λ

k
± k

√
1
3

sn(ζ)
1 ± cn(ζ)

}
eϖB− 1

2 ϖ2t, (81)

Ψ =

{
λ2

2k2 − k2

6
sn2(ζ)

(1 ± cn(ζ))2

}
eϖB− 1

2 ϖ2t. (82)
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If ß→ 0, then Equations (81) and (82) become

Φ =

{
−λ

k
± k

√
1
3
(csc(ζ)± cot(ζ))

}
eϖB− 1

2 ϖ2t, (83)

Ψ =

{
λ2

2k2 − k2

6
(csc(ζ)± cot(ζ))2

}
eϖB− 1

2 ϖ2t. (84)

Case 19: If α1 = 1−ß2

4 , α2 = 1+ß2

2 and α3 = 1−ß2

4 , then P(ζ) = cn(ζ)
1±sn(ζ) , and Equa-

tion (18) takes the form

Φ =

−λ

k
± k

√
1 − ß2

3
cn(ζ)

1 ± sn(ζ)

eϖB− 1
2 ϖ2t, (85)

Ψ =

{
λ2

2k2 − k2(1 − ß2)

6
cn2(ζ)

(1 ± sn(ζ))2

}
eϖB− 1

2 ϖ2t. (86)

If ß→ 0, then Equations (85) and (86) become

Φ =

{
−λ

k
± k

√
1
3
(sec(ζ)± tan(ζ))

}
eϖB− 1

2 ϖ2t, (87)

Ψ =

{
λ2

2k2 − k2

6
(sec(ζ)± tan(ζ))2

}
eϖB− 1

2 ϖ2t. (88)

Remark 1. If we substitute ϖ = 0, k = 1 and λ = ± 1
3

√
6 in (29), (30), (33), (34), (43),

(44), (69), (70), (83) and (84), then we have the same trigonometric function solutions stated
in [13], while if we substitute ϖ = 0, k = 1 and λ = 2

3

√
3 in (21), (22), (27), (28), (39), (40), (59),

and (60), then we have the same hyperbolic function solutions stated in [13].

5. Physical Meaning and Effect of Noise
Physical meaning: Obtaining exact solutions for stochastic Wu–Zhang systems is

of utmost importance as it enables us to accurately predict and control the behavior of
these systems under uncertainty. Different types of exact solutions, including periodic
solitons, kink solitons, bright soliton, dark soliton and singular solitons, for Equation (1)
are obtained here. Solitons are self-reinforcing solitary waves that maintain their shape and
speed as they propagate through a medium. By obtaining exact soliton solutions of the
Wu–Zhang system, researchers can better understand the dynamics of these waves and
how they interact with their environment.

Furthermore, exact soliton solutions of the Wu–Zhang system allow for the prediction
and manipulation of wave behavior in various applications. For example, in the field of
optics, solitons play a crucial role in maintaining the coherence and stability of light pulses
in fiber optic communications. By studying the exact soliton solutions of the Wu–Zhang
system, researchers can develop more efficient methods for transmitting and controlling
light waves in optical devices. This knowledge can lead to advancements in areas such as
telecommunications, laser technology, and imaging systems.

Effect of Noise: Noise plays an essential role in the dynamics of the Wu–Zhang
system in quantum mechanics. By studying the effects of noise on the system’s behavior,
researchers can gain valuable insights into its properties and develop strategies to mitigate
the impact of noise on its performance. Experimental studies have confirmed the theoretical
predictions about the effects of noise on entanglement generation and quantum phase
transitions in the Wu–Zhang system, highlighting the importance of noise in understanding
and controlling quantum systems.
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Now, let us show the effect of noise on the exact solution of the SWZS (1). To illustrate
the behavior of some of the discovered solutions, many figures are provided, including
Equations (19)–(22) as follows:

Now, Figures 1–4 show that there are several kinds of solutions, such as periodic
solutions, kink solutions, singular solutions and so on, when the multiplicative noise is
neglected (i.e., when ϖ = 0). The surface becomes flatter after brief transit patterns when
noise is added, and its amplitude is raised by ϖ = 0.1, 0.3, 1, 2. This indicates that the
solutions of SWZS (1) are influenced by multiplicative white noise and are kept stable
around zero.

(a) ϖ = 0 (b) ϖ = 0.1

(c) ϖ = 0.4 (d) ϖ = 1

(e) ϖ = 2 (f) ϖ = 0, 0.1, 0.3, 1, 2

Figure 1. (a−c) display 3D shape of solution Φ(x, t) in Equation (19) with ß= 0.5, k = 1, λ = −2, x ∈
[−4, 4], t ∈ [0, 2] and ϖ = 0, 0.1, 0.3, 1, 2 (d) shows 2D shape of Equation (19) with different ϖ.
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(a) ϖ = 0 (b) ϖ = 0.1

(c) ϖ = 0.4 (d) ϖ = 1

(e) ϖ = 2 (f) ϖ = 0, 0.1, 0.3, 1, 2

Figure 2. (a−e) display Figure 3D shape of solution Ψ(x, t) in Equation (20) with ß= 0.5, k = 1, λ =

−2, x ∈ [−4, 4], t ∈ [0, 2] and ϖ = 0, 0.1, 0.3, 1, 2 (f) shows 2D shape of Equation (20) with different ϖ.
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(a) ϖ = 0 (b) ϖ = 0.1

(c) ϖ = 0.4 (d) ϖ = 1

(e) ϖ = 2 (f) ϖ = 0, 0.1, 0.3, 1, 2

Figure 3. (a−e) display Figure 3D shape of solution Φ(x, t) in Equation (21) with k = 1, λ = −2, x ∈
[−4, 4], t ∈ [0, 2] and ϖ = 0, 0.1, 0.3, 1, 2 (f) shows 2D shape of Equation (21) with different ϖ.
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(a) ϖ = 0 (b) ϖ = 0.1

(c) ϖ = 0.4 (d) ϖ = 1

(e) ϖ = 2 (f) ϖ = 0, 0.1, 0.3, 1, 2

Figure 4. (a−c) display Figure 3D shape of solution Ψ(x, t) in Equation (22) with k = 1, λ = −2, x ∈
[−4, 4], t ∈ [0, 2] and ϖ = 0, 0.1, 0.3, 1, 2 (d) shows 2D shape of Equation (22) with different ϖ.

6. Conclusions
In this paper, the stochastic Wu–Zhang system (1) perturbed by multiplicative white

noise in the Itô sense was considered. We obtained novel hyperbolic, trigonometric, and el-
liptic stochastic solutions by applying a mapping approach. In the absence of noise, we
obtained some previously obtained solutions of SWZS (1) such as the solutions stated
in [13]. Since the Wu–Zhang system has significant uses in quantum mechanics, these
solutions may be used to analyze a wide range of significant physical phenomena. Ad-
ditionally, the MATLAB program was used to demonstrate the effects of the noise term
on the analytical solution of the SWZS (1). We showed that the solutions of SWZS (1)
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were stabilized at zero by multiplicative white noise. In further work, we can obtain the
solutions for the Wu–Zhang system with different fractional derivative operators such as
the Caputo fractional derivative, Riemann–Liouville fractional derivative and M-truncated
derivative [25,26].
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