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Abstract

:

In order to solve the Sylvester equations more efficiently, a new four parameters positive and skew-Hermitian splitting (FPPSS) iterative method is proposed in this paper based on the previous research of the positive and skew-Hermitian splitting (PSS) iterative method. We prove that when coefficient matrix A and B satisfy certain conditions, the FPPSS iterative method is convergent in the parameter’s value region. The numerical experiment results show that compared with previous iterative method, the FPPSS iterative method is more effective in terms of iteration number IT and runtime.
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1. Introduction


In this paper, we mainly consider the problem of solving the continuous Sylvester equations with the following form:


AX+XB=C,



(1)




where A∈ℂm×m, B∈ℂn×n, C∈ℂm×n are given matrices that satisfy the following conditions:

	(I)

	
A, B, and C are large-scale and sparse matrices;




	(II)

	
At least one of A and B is a non-Hermitian matrix;




	(III)

	
At least one of the positive semidefinite matrices A and B is a positive definite matrix.






The solution of Equation (1) exists and is unique.



This kind of matrix equation has a wide range of applications in scientific computing and engineering fields. Problems like digital image restoration, control systems, electromagnetic field processing, neural networks, and model reduction will eventually involve the solution of large-scale Sylvester equations [1,2,3]. Because the time required to solve the Sylvester equation is related to the speed of solving actual problems, designing an effective method for solving the Sylvester equation is a subject with theoretical research and practical application value.



In the past few decades, scholars have focused on the methods of solving such problems. Therefore, more and more direct and iterative solutions are proposed. However, because the coefficient matrix of the equation to be solved is mostly a large and sparse matrix, the direct method is not applicable compared with the iterative method. In 1952, the conjugate gradient method (CG) was proposed to solve symmetric positive definite linear equations [4].



In 1986, in order to solve the problem of asymmetric coefficient matrix, Saad. Y et al. put forward the famous Generalized Minimal Residual (GMRES) algorithm which has better stability and less storage space than the previous Krylov subspace algorithm [5].



In 2003, Bai Zhongzhi et al. proposed the Hermitian and skew-Hermitian splitting iterative method, namely HSS iterative method [6]. After that, many academicians at home and abroad have improved this kind of method, such as the method based on positive definite and skew-Hermitian splitting of coefficient matrix, i.e., the PSS iteration method [7]; the NSS iteration method in views of normal and skew-Hermitian splitting [8]; and according to various preconditioning technique, the preconditioned HSS iterative method [9,10], lopsided HSS iterative method [11], modified generalization HSS iterative method [12], and so on.



The HSS iterative method and its variants have many mature and effective extensions to solve continuous Sylvester equation.



In 2011, based on the Hermitian splitting and skew-Hermitian splitting of coefficient matrices, Bai et al. applied HSS iteration method to solve continuous Sylvester equation for the first time [6].



In 2013, Wang Xiang and others solved Sylvester equation by PSS iteration method [13].



In 2014, Zheng Qingqing and others used NSS iteration method to solve Sylvester equation [14].



In 2015, MHSS iteration method and GHSS iteration method were proposed successively [15,16].



In 2017, PMHSS iteration method was proposed [17].



It can be seen that most of the methods for solving Sylvester equation are improved and generalized based on HSS iteration method and there is still room for research on the promotion and application of PSS algorithms. Based on the above reasons, in order to further improve the solving speed of Sylvester equation, a new four-parameter PSS iteration method, namely FPPSS iteration method is proposed to solve the continuous Sylvester equation. The parameters that minimize the upper bound of the spectral radius of the iteration matrix are derived, and the effectiveness and stability of the iteration method are proved by numerical experiments.



The structure in this paper is as follows. In Section 2, the iterative scheme of the FPPSS iterative method for solving the large-scale continuous Sylvester equation with non-Hermitian positive definite/semidefinite matrix is given, and the exact range of parameters for guaranteeing the convergence of the FPPSS iterative method is theoretically calculated. Moreover, optimal iterative parameters that bring the upper bound of the spectral radius of the iterative matrix to a minimum are derived. In Section 3, numerical experiments compare the FPPSS iterative method with the PSS iterative method to demonstrate the effectiveness and stability of FPPSS. Finally, in Section 4, some conclusions are given.




2. The Four-Parameter PSS Iterative Method


In order to further improve the convergence speed of the PSS iterative method, a four-parameter PSS iterative method, namely FPPSS iterative method, is proposed to solve the continuous Sylvester equation.



Now, we use P(V) and S(V) to represent the positive and skew-Hermitian part of matrix V∈ℂn×n, respectively. Obviously, matrix V has positive definite and skew-Hermitian splitting, i.e., PSS iterative method [7]:


V=P(V)+S(V).











Analogy to the PSS method, the matrix A and B have the following forms of splitting:


A=(α1I+P(A))−(α1I−S(A))=(β1I+S(A))−(β1I−P(A)),B=(α2I+P(B))−(α2I−S(B))=(β2I+S(B))−(β2I−P(B)),








where αj(j=1,2) are given non-negative constants and βj(j=1,2) are positive constants, I is the identity matrix with the appropriate dimension.



Then Equation (1) can be equivalently rewritten as:


{(α1I+P(A))X+X(α2I+P(B))=(α1I−S(A))X+X(α2I−S(B))+C,(β1I+S(A))X+X(β2I+S(B))=(β1I−P(A))X+X(β2I−P(B))+C.











In the assumption (I)–(III), we can observe that matrices α1I+P(A) and −(α2I+P(B)) have no common eigenvalues, while matrices β1I+S(A) and −(β2I+S(B)) also have no common eigenvalues, so the above two equations have a unique solution for any given right end, which results in the following four-parameter positive definite and skew-Hermitian splitting iterative method for solving the continuous Sylvester equation (1), namely the FPPSS iterative method.



Theorem 1.

Given any initial matrixX(0)∈ℂm×n, fork=0,1,2,…,X(k+1)∈ℂm×nis calculated in the following format until the iteration sequence{X(k)}k=0∞satisfies the convergence condition:


{(α1I+P(A))X(k+12)+X(k+12)(α2I+P(B))   =(α1I−S(A))X(k)+X(k)(α2I−S(B))+C,(β1I+S(A))X(k+1)+X(k+1)(β2I+S(B))   =(β1I−P(A))X(k+12)+X(k+12)(β2I−P(B))+C,



(2)




whereαj(j=1,2)are given non-negative constants andβj(j=1,2)are positive constants,Iis the identity matrix with the appropriate dimension.





Let P(A), P(B) and S(A), S(B) be the positive definite and skew-Hermitian parts of matrices A and B, respectively.



Let


λmax(P(A))=maxλj∈sp(P(A)){|λj|}, μmax(P(B))=maxμk∈sp(P(B)){|μk|},λmin(P(A))=minλj∈sp(P(A)){|λj|}, μmin(P(B))=minμk∈sp(P(B)){|μk|},ξmax(S(A))=maxiξj∈sp(S(A)){|ξj|}, ζmax(S(B))=maxiζk∈sp(S(B)){|ζk|},ξmin(S(A))=miniξj∈sp(S(A)){|ξj|}, ζmin(S(B))=miniζk∈sp(S(B)){|ζk|},








with i=−1 and


Θmax=λmax(P(A))+μmax(P(B)), ϒmax=ξmax(S(A))+ζmax(S(B)),Θmin=λmin(P(A))+μmin(P(B)), ϒmin=ξmin(S(A))+ζmin(S(B)).











In addition, let A=P+S, in which


P=P(A)=I⊗P(A)+P(B)T⊗I, S=S(A)=I⊗S(A)+S(B)T⊗I.



(3)







According to [18], Θmax, ϒmax and Θmin, ϒmin are the upper and lower bounds of the eigenvalues of matrices P and S, respectively.



The convergence theorem of the FPPSS iterative method for solving the continuous Sylvester Equation (1) is proved as follows.



Theorem 2.

SupposeA∈ℂm×mandB∈ℂn×nare positive semidefinite matrices, and at least one of them is a positive definite matrix.αj(j=1,2)are given non-negative constants andβj(j=1,2)are positive constants. Let:


M(α,β)=(βI+S)−1(βI−P)(αI+P)−1(αI−S),



(4)




and


α=α1+α2, β=β1+β2,



(5)




then the upper bound of the spectral radiusρ(M(α,β))of the iterative matrix (4) of the iterative method (2) is:


σ(α,β)=maxΘ|β−Θα+Θ|⋅maxϒα2+ϒ2β2+ϒ2.



(6)







In the meantime, if parametersαandβsatisfy:


(α,β)∈∪ℓ=14Ωℓ,



(7)




with


Ω1={(α,β)|α≤β≤β∗(α)},Ω2={(α,β)|β≥max{α,β∗(α)},ϕ1(α,β)>0},Ω3={(α,β)|β∗(α)≤β≤α},Ω4={(α,β)|β<min{α,β∗(α)},ϕ2(α,β)>0},








where functionsϕ1(α,β),ϕ2(α,β)andβ∗(α)are as follows:


ϕ1(α,β)=(β−α)(Θmin2−ϒmax2)+2αβΘmin+2ϒmax2Θmin,ϕ2(α,β)=(β−α)(Θmax2−ϒmin2)+2αβΘmax+2ϒmin2Θmax,β∗(α)=α(Θmax+Θmin)+2ΘmaxΘmin2α+Θmax+Θmin∈[Θmin,Θmax],



(8)




we can prove thatσ(α,β)<1, that is, the FPPSS iterative method (2) converges to the exact solutionX∗of the continuous Sylvester Equation (1).





Proof. 

By Kronecker product, the FPPSS iterative method (2) can be transformed into


{[I⊗(α1I+P(A))+(α2I+P(B))T⊗I]x(k+12)   =[I⊗(α1I−S(A))+(α2I−S(B))T⊗I]x(k)+c,[I⊗(β1I+S(A))+(β2I+S(B))T⊗I]x(k+1)   =[I⊗(β1I−P(A))+(β2I−P(B))T⊗I]x(k+12)+c,



(9)




and Equation (9) can be further turned into:


{[(α1+α2)I+I⊗P(A)+P(B)T⊗I]x(k+12)   =[(α1+α2)I−I⊗S(A)−S(B)T⊗I]x(k)+c,[(β1+β2)I+I⊗S(A)+S(B)T⊗I]x(k+1)   =[(β1+β2)I−I⊗P(A)−P(B)T⊗I]x(k+12)+c,



(10)




which can be rewritten equivalently as:


{[αI+P]x(k+12)=[αI−S]x(k)+c,[βI+S]x(k+1)=[βI−P]x(k+12)+c.



(11)







After the Formula (11) is reorganized, we can get:


x(k+1)=[(βI+S)−1(βI−P)(αI+P)−1(αI−S)]x(k)+[(α+β)(βI+S)−1(αI+P)−1]c=M(α,β)x(k)+N(α,β)c,



(12)




where M(α,β) is an iterative matrix.



According to the [19], P is a positive definite matrix, S is a Skew-Hermitian matrix, α is a non-negative constant, and β is a normal number.



The spectral radius of the iterative matrix M(α,β) satisfies:


ρ(M(α,β))=ρ((βI+S)−1(βI−P)(αI+P)−1(αI−S))≤‖(βI+S)−1(βI−P)(αI+P)−1(αI−S)‖2.



(13)







Because


(βI+S)−1(βI−P)(αI+P)−1(αI−S)








is similar to:


(βI−P)(αI+P)−1(αI−S)(βI+S)−1,








(13) can be rewritten as:


ρ(M(α,β))=ρ((βI+S)−1(βI−P)(αI+P)−1(αI−S))≤‖(βI−P)(αI+P)−1(αI−S)(βI+S)−1‖2≤‖(βI−P)(αI+P)−1‖2‖(αI−S)(βI+S)−1‖2=‖V1(α)‖2‖V2(α)‖2.



(14)







(1) Consider: ‖V1(α)‖2=‖(βI−P)(αI+P)−1‖2


‖V1(α)‖22=maxλ{[(βI−P)(αI+P)−1]T[(βI−P)(αI+P)−1]}=maxλ{(αI+P)−T(βI−P)T(βI−P)(αI+P)−1}=maxλ{[(αI+P)T]−1(βI−P)T(βI−P)(αI+P)−1},



(15)




for


[(αI+P)T]−1(βI−P)T(βI−P)(αI+P)−1








is similar to:


(βI−P)T(βI−P)(αI+P)−1[(αI+P)T]−1,








(15) can be rewritten as:


‖V1(α)‖22=maxλ{(βI−P)T(βI−P)(αI+P)−1[(αI+P)T]−1}=maxλ{[(βI−P)T(βI−P)][(αI+P)T(αI+P)]−1}=maxλ{[(βI−PT)(βI−P)][(αI+PT)(αI+P)]−1}=maxλ{[β2I−β(P+PT)+PTP][α2I+α(P+PT)+PTP]−1}.



(16)




(16) can be equivalently rewritten as


‖V1(α)‖22=maxλ[β2I−β(P+PT)+PTP]λ[α2I+α(P+PT)+PTP]=maxβ2−2βΘ+Θ2α2+2αΘ+Θ2=max(β−Θα+Θ)2,



(17)




so ‖V1(α)‖2=maxΘ|β−Θα+Θ|.



(2) Consider ‖V2(α)‖2=‖(αI−S)(βI+S)−1‖2



In the same way as the proof process of ‖V1(α)‖2=‖(βI−P)(αI+P)−1‖2, we can get


‖V2(α)‖22=maxλ[α2I−α(S+ST)+STS]λ[β2I+β(S+ST)+STS]=maxα2+ϒ2β2+ϒ2,



(18)




so ‖V2(α)‖=maxϒα2+ϒ2β2+ϒ2.



Bring (17) and (18) into (14), we get:


ρ(M(α,β))≤maxΘ|β−Θα+Θ|⋅maxϒα2+ϒ2β2+ϒ2,



(19)




which gives the upper bound σ(α,β)=maxΘ|β−Θα+Θ|⋅maxϒα2+ϒ2β2+ϒ2 of the spectral radius of the iterative matrix M(α,β).



In the following, similar to the Theorem 2.2 of the literature [20] to prove the process idea, we can get:


maxΘ|β−Θα+Θ|=max{|β−Θmaxα+Θmax|,|β−Θminα+Θmin|},



(20)




absorb the absolute value symbol on the right side of (20) to get:


β−Θminα+Θmin=Θmax−βα+Θmax.



(21)







It can be solved from the Formula (21) that:


β∗(α)=α(Θmax+Θmin)+2ΘmaxΘmin2α+Θmax+Θmin∈[Θmin,Θmax].



(22)







Simultaneously we have:


‖V1(α)‖2=maxΘ|β−Θα+Θ|={Θmax−βΘmax+α,β<β∗(α),β−ΘminΘmin+α,β≥β∗(α).



(23)







The same reason can be used to obtained:


‖V2(α)‖=maxϒα2+ϒ2β2+ϒ2={α2+ϒmax2β2+ϒmax2,α≤β,α2+ϒmin2β2+ϒmin2,α>β.



(24)







At this point we can divide the area Ω={(α,β)|α≥0,β>0} into the following four parts according to (23) and (24):


Ω1={(α,β)|α≤β<β∗(α)}, Ω2={(α,β)|β≥max{α,β∗(α)}},Ω3={(α,β)|β∗(α)≤β≤α}, Ω4={(α,β)|β<min{α,β∗(α)}}.











From (19), (23), and (24) we can know:



(1) For (α,β)∈Ω1={(α,β)|α≤β≤β∗(α)},


ρ(M(α,β))≤Θmax−βΘmax+α⋅α2+ϒmax2β2+ϒmax2<1.











(2) For (α,β)∈Ω2={(α,β)|β≥max{α,β∗(α)}},


ρ(M(α,β))≤β−ΘminΘmin+α⋅α2+ϒmax2β2+ϒmax2,



(25)




to make (25) less than 1, if and only if


ϕ1(α,β)=(β−α)(Θmin2−ϒmax2)+2αβΘmin+2ϒmax2Θmin>0.











(3) For (α,β)∈Ω3={(α,β)|β∗(α)≤β≤α},


ρ(M(α,β))≤β−Θminα+Θmin⋅α2+ϒmin2β2+ϒmin2<βα⋅αβ=1.











(4) For (α,β)∈Ω4={(α,β)|β<min{α,β∗(α)}},


ρ(M(α,β))≤Θmax−βΘmax+α⋅α2+ϒmin2β2+ϒmin2,



(26)




to make (26) less than 1, if and only if:


ϕ2(α,β)=(β−α)(Θmax2−ϒmin2)+2αβΘmax+2ϒmin2Θmax>0.











In summary, we can draw the conclusion:


ρ(M(α,β))≤σ(α,β)<1, ∀(α,β)∈∪ℓ=14Ωℓ.











Theorem 2 is verified. □





Theorem 3.

The theoretical optimal parameter that makesσ(α,β)the minimum is:


(α∗,β∗)=argminα,β{σ(α,β)}={(α1,β∗(α1)), ΘmaxΘmin≤ϒmin2,(α0,β∗(α0)), ϒmin2<ΘmaxΘmin<ϒmax2,(α2,β∗(α2)), ΘmaxΘmin≥ϒmax2, 








where


α1=ϒmin2−ΘmaxΘmin+(ϒmin2+Θmax2)(ϒmin2+Θmin2)Θmax+Θmin,α0=ΘmaxΘmin,α2=ϒmax2−ΘmaxΘmin+(ϒmax2+Θmax2)(ϒmax2+Θmin2)Θmax+Θmin.











The upper bound of the spectral radius of the corresponding iterative matrix is:


σ(α∗,β∗)={σ(α1), ΘmaxΘmin≤ϒmin2,σ(α0), ϒmin2<ΘmaxΘmin<ϒmax2,σ(α2), ΘmaxΘmin≥ϒmax2, 








where


σ(α)=σ(α,β∗(α))={β∗(α)−Θminα+Θmin⋅α2+ϒmin2β∗(α)2+ϒmin2, α>α0,β∗(α)−Θminα+Θmin⋅α2+ϒmax2β∗(α)2+ϒmax2, α≤α0.













Proof. 

From (23) and (24) we can know:


σ(α,β)={Θmax−βΘmax+α⋅α2+ϒmax2β2+ϒmax2, (α,β)∈Ω1,β−ΘminΘmin+α⋅α2+ϒmax2β2+ϒmax2, (α,β)∈Ω2,β−Θminα+Θmin⋅α2+ϒmin2β2+ϒmin2, (α,β)∈Ω3,Θmax−βΘmax+α⋅α2+ϒmin2β2+ϒmin2, (α,β)∈Ω4,



(27)




we can observe from (27) that σβ′(α,β)<0 when (α,β)∈Ω1 and (α,β)∈Ω4, σβ′(α,β)>0 when (α,β)∈Ω2 and (α,β)∈Ω3, then at β=β∗(α), σβ′(α,β) has a minimum value and is also the minimum value.



Substitute β=β∗(α) into (27), then:


σ(α)=σ(α,β∗(α))={β∗(α)−Θminα+Θmin⋅α2+ϒmin2β∗(α)2+ϒmin2, α>α0,β∗(α)−Θminα+Θmin⋅α2+ϒmax2β∗(α)2+ϒmax2, α≤α0,



(28)




obviously, computing the minimum value of (27) is converted to solving the minimum value of (28).



Find the derivative number for (28) and get:


σ′(α)={c1(α)η1(α), α>α0,c2(α)η2(α), α<α0,



(29)




where c1(α) and c2(α) are two positive function, and:


η1(α)=(Θmax+Θmin)α2+2α(ΘmaxΘmin−ϒmin2)−ϒmin2(Θmax+Θmin),η2(α)=(Θmax+Θmin)α2+2α(ΘmaxΘmin−ϒmax2)−ϒmax2(Θmax+Θmin).



(30)







It can be observed that η1(α) is similar to η2(α) format and has a positive root and a negative root. The positive roots are denoted as α1 and α2, respectively, and because of ϒmax>ϒmin, α1<α2. Also note that Θmax+Θmin≥0.



Bring α=α0 into (30) to get:


η1(α0)=(Θmax+Θmin)2(ΘmaxΘmin−ϒmin2),η2(α0)=(Θmax+Θmin)2(ΘmaxΘmin−ϒmax2).



(31)







According to (31), we can find:



(1) When ΘmaxΘmin≤ϒmin2, we have η1(α0)<0 and η2(α0)<0, then there are α0<α1<α2, at this time σ(α,β) takes the minimum at (α1,β∗(α1)).



(2) When ϒmin2<ΘmaxΘmin<ϒmax2, we have η1(α0)>0 and η2(α0)<0,then there are α1<α0<α2, at this time σ(α,β) takes the minimum at (α0,β∗(α0)).



(3) When ΘmaxΘmin≥ϒmax2, we have η1(α0)>0 and η2(α0)>0,then there are α1<α2<α0, at this time σ(α,β) takes the minimum at (α2,β∗(α2)).



In summary, Theorem 3 is verified. □






3. Numerical Experiments


In this part, we use numerical experiments to compare the FPPSS iterative method, PSS iterative method and HSS iterative method for solving the continuous Sylvester Equation (1) in term of iteration steps (IT) and computing time (CPU).



In the implementation of the algorithm, for the convenience of calculation, the initial matrix X(0) is taken as a zero matrix, and the iterative stopping criterion is ‖C−AX(k)−X(k)B‖F‖C‖F≤10−6. In addition, in each step of the iterative method, the subproblem is solved by the direct method in [20].



Example 1.

In order to generate large and sparse matrices A and B, we established them in the following ways which can also be seen in [13]:


A=(10112101⋱⋱⋱21011210),B=(811381⋱⋱⋱381138).













Table 1 and Table 2 lists the numerical results of FPPSS, PSS, and HSS iterative method using experimental optimal iterative parameters. α1∗, β1∗, and α∗ (where β∗=α∗) represent the experimental quasi-optimal parameters of the FPPSS, PSS, and HSS iterative methods, respectively.



Example 2.

The continuous Sylvester equation (1) withm=nand the matrices:


{A=diag(1,2,…,n)+10−3LT,B=2−tI+diag(1,2,…n)+10−3LT+2−tL,








withLthe strictly lower triangular matrix having ones in the lower triangle part andtis a problem parameter to be specified in actual computations.





Table 3 and Table 4 lists the numerical results of FPPSS, PSS, and HSS iterative method using experimental optimal iterative parameters. α1∗, β1∗, and α∗ (where β∗=α∗) represent the experimental quasi-optimal parameters of the FPPSS, PSS, and HSS iterative methods, respectively.



Example 3.

Consider Equation (1), wherem=n,A=B=M+qN+100(n+1)2IandM, N∈ℝn×nare the following three diagonal matrices.





M=tridiag(−1,−2,−1) and N=tridiag(0.5,0,−0.5),Table 5 and Table 6 list the numerical results of FPPSS and PSS iterative method using experimental optimal iterative parameters. α1∗ (where α1∗=α2∗), β1∗ (where β1∗=β2∗) and α∗ (where β∗=α∗) represent the experimental quasi-optimal parameters of the FPPSS, PSS, and HSS iterative methods, respectively.



From the above three examples, we can see that although the runtime of FPPSS iteration method is slightly higher than that of previous iteration method when the dimension of coefficient matrices is small, but lower when the dimension is large. And the iteration steps of FPPSS iteration method are less than that of previous iteration method regardless of the dimension of coefficient matrices. When the matrix dimension is high, the results can still be calculated in a shorter runtime and less iteration steps. Through the above numerical experiments, it is proved that FPPSS iteration method is an effective improved algorithm.




4. Conclusions


In this paper, a new four-parameter positive and skew-Hermitian iterative method, namely the FPPSS iterative method, is applied to solve the Sylvester equation of the form AX+XB=C, which is a generalization of the classical PSS iterative method [7]. This paper proves that when the parameters satisfy certain conditions, the iterative sequence generated by the FPPSS method converges to the unique solution of the Sylvester equation, and the PSS method is a special case of the FPPSS method. We also give the theoretical optimal sum of the parameters that minimize the upper bound of the spectral radius of the iterative matrix. In addition, it can be seen from the experimental data that the FPPSS iterative method is superior to the PSS and HSS iterative method in most cases in CPU and IT, which indicates that the newly constructed FPPSS iterative method is an effective iterative method for solving the Sylvester equation.
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Table 1. IT and CPU for four parameters positive and skew-Hermitian splitting (FPPSS), positive and skew-Hermitian splitting (PSS), and Hermitian and skew-Hermitian splitting iterative method (HSS) for Example 1 when using experimental quasi-optimal parameters.






Table 1. IT and CPU for four parameters positive and skew-Hermitian splitting (FPPSS), positive and skew-Hermitian splitting (PSS), and Hermitian and skew-Hermitian splitting iterative method (HSS) for Example 1 when using experimental quasi-optimal parameters.





	
Method

	
FPPSS

	
PSS

	
HSS




	
n

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
n = 8

	
6

	
1.312

	
16

	
1.153

	
15

	
1.249




	
n = 16

	
6

	
1.318

	
16

	
1.147

	
16

	
1.166




	
n = 32

	
6

	
1.332

	
17

	
1.298

	
16

	
1.250




	
n = 64

	
6

	
1.424

	
17

	
1.559

	
16

	
1.495




	
n = 128

	
6

	
2.230

	
17

	
3.134

	
16

	
3.655




	
n = 256

	
6

	
8.406

	
17

	
19.187

	
16

	
26.811




	
n = 512

	
6

	
86.889

	
17

	
192.139

	
16

	
230.645




	
n=1024

	
6

	
818.956

	
-

	
-

	
-

	
-
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Table 2. The practical optimal value for FPPSS, PSS, and HSS for Example 1.






Table 2. The practical optimal value for FPPSS, PSS, and HSS for Example 1.





	
Method

	
FPPSS

	
PSS

	
HSS




	
n

	
α1∗

	
β1∗

	
α∗=β∗

	
α∗=β∗






	
n = 8

	
0.3794

	
9

	
4.7843

	
4.7843




	
n = 16

	
0.4275

	
9

	
4.7750

	
4.7750




	
n = 32

	
0.4402

	
9

	
4.7714

	
4.7714




	
n = 64

	
0.4434

	
9

	
4.7702

	
4.7702




	
n = 128

	
0.4442

	
9

	
4.7698

	
4.7698




	
n = 256

	
0.4444

	
9

	
4.7697

	
4.7697




	
n = 512

	
0.4444

	
9

	
4.7697

	
4.7697




	
n=1024

	
0.4444

	
9

	
-

	
-
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Table 3. IT and CPU for FPPSS, PSS, and HSS for Example 2 when using experimental quasi-optimal parameters.
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Method

	
FPPSS

	
PSS

	
HSS




	
n

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
n=8

	
2

	
1.280

	
40

	
1.132

	
30

	
1.368




	
n=16

	
3

	
1.335

	
54

	
1.317

	
44

	
1.200




	
n=32

	
3

	
1.399

	
73

	
1.702

	
65

	
1.443




	
n=64

	
3

	
1.383

	
100

	
3.305

	
93

	
3.493




	
n=128

	
4

	
1.863

	
139

	
22.177

	
134

	
27.289




	
n=256

	
5

	
6.862

	
196

	
361.342

	
191

	
438.372




	
n=512

	
6

	
69.461

	
-

	
-

	
-

	
-




	
n=1024

	
8

	
1122.085

	
-

	
-

	
-

	
-
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Table 4. The practical optimal value for FPPSS, PSS, and HSS for Example 2.
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Method

	
FPPSS

	
PSS

	
HSS




	
n

	
α1∗

	
β1∗

	
α∗=β∗

	
α∗=β∗






	
n=8

	
9.9114×10−6

	
2.5500

	
1.4142

	
1.4142




	
n=16

	
3.7485×10−5

	
2.7500

	
2.0000

	
2.0000




	
n=32

	
1.4448×10−4

	
2.8678

	
2.8284

	
2.8284




	
n=64

	
5.6589×10−4

	
2.9323

	
4.0000

	
4.0000




	
n=128

	
0.0022

	
2.9675

	
5.6569

	
5.6569




	
n=256

	
0.0089

	
2.9912

	
8.0000

	
8.0000




	
n=512

	
0.0351

	
3.0259

	
-

	
-




	
n=1024

	
0.1358

	
3.1305

	
-

	
-
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Table 5. IT and CPU for FPPSS, PSS, and HSS for Example 3 when using experimental quasi-optimal parameters.
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Method

	
FPPSS

	
PSS

	
HSS




	
q

	
n

	
IT

	
CPU

	
IT

	
CPU

	
IT

	
CPU






	
q=1

	
n=8

	
8

	
1.302

	
20

	
1.192

	
28

	
1.124




	

	
n=16

	
15

	
1.344

	
39

	
1.298

	
47

	
1.334




	

	
n=32

	
34

	
1.439

	
81

	
1.673

	
93

	
1.874




	

	
n=64

	
62

	
3.029

	
164

	
6.281

	
203

	
7.193




	

	
n=128

	
104

	
13.175

	
-

	
-

	
-

	
-




	

	
n=256

	
175

	
256.191

	
-

	
-

	
-

	
-




	
q=10

	
n=8

	
9

	
1.385

	
23

	
1.268

	
33

	
1.227




	

	
n=16

	
14

	
1.464

	
43

	
1.259

	
60

	
1.436




	

	
n=32

	
21

	
1.501

	
83

	
1.647

	
123

	
2.041




	

	
n=64

	
30

	
2.119

	
166

	
5.409

	
251

	
10.950




	

	
n=128

	
44

	
9.310

	
-

	
-

	
-

	
-




	

	
n=256

	
67

	
152.779

	
-

	
-

	
-

	
-




	
q=100

	
n=8

	
11

	
1.544

	
24

	
1.290

	
39

	
1.151




	

	
n=16

	
25

	
1.502

	
43

	
1.472

	
69

	
1.291




	

	
n=32

	
61

	
1.824

	
84

	
1.585

	
133

	
1.900




	

	
n=64

	
91

	
4.032

	
167

	
6.187

	
265

	
10.966




	

	
n=128

	
123

	
25.951

	
-

	
-

	
-

	
-




	

	
n=256

	
182

	
365.007

	
-

	
-

	
-

	
-
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Table 6. The practical optimal value for FPPSS, PSS, and HSS for Example 3.
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Method

	
FPPSS

	
PSS

HSS




	
q

	
n

	
α1∗

	
β1∗

	
α∗=β∗

	
α∗=β∗






	
q=1

	
n=8

	
0.2730

	
3.2346

	
1.3163

	
1.3163




	

	
n=16

	
0.4119

	
2.3460

	
0.6010

	
0.6401




	

	
n=32

	
0.4737

	
2.0918

	
0.3209

	
0.3209




	

	
n=64

	
0.4930

	
2.0237

	
0.1617

	
0.1617




	

	
n=128

	
0.4982

	
2.0060

	
-

	
-




	

	
n=256

	
0.4995

	
2.0015

	
-

	
-




	
q=10

	
n=8

	
3.2346

	
3.2346

	
1.3163

	
1.3163




	

	
n=16

	
2.3460

	
2.3460

	
0.6401

	
0.6401




	

	
n=32

	
2.0918

	
2.0918

	
0.3209

	
0.3209




	

	
n=64

	
2.0237

	
2.0237

	
0.1617

	
0.1617




	

	
n=128

	
2.0060

	
2.0060

	
-

	
-




	

	
n=256

	
2.0015

	
2.0015

	
-

	
-




	
q=100

	
n=8

	
3.2346

	
3.2346

	
1.3163

	
1.3163




	

	
n=16

	
2.3460

	
2.3460

	
0.6401

	
0.6401




	

	
n=32

	
2.0918

	
2.0918

	
0.3209

	
0.3209




	

	
n=64

	
2.0237

	
2.0237

	
0.1617

	
0.1617




	

	
n=128

	
2.0060

	
2.0060

	
-

	
-




	

	
n=256

	
2.0015

	
2.0015

	
-

	
-
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