
mathematics

Article

Web Traffic Time Series Forecasting Using LSTM Neural
Networks with Distributed Asynchronous Training

Roberto Casado-Vara 1,* , Angel Martin del Rey 2 , Daniel Pérez-Palau 3 and Luis de-la-Fuente-Valentín 3

and Juan M. Corchado 1

����������
�������

Citation: Casado-Vara, R.;

Martin del Rey, A.; Pérez-Palau, D.;

de-la-Fuente-Valentín, L.;

Corchado, J.M. Web Traffic Time

Series Forecasting Using LSTM

Neural Networks with Distributed

Asynchronous Training. Mathematics

2021, 9, 421. https://doi.org/

10.3390/math9040421

Academic Editor: Zeev Volkovich,

Oleg Granichin, Dvora

Toledano-Kitai and Paolo Crippa

Received: 30 December 2020

Accepted: 17 February 2021

Published: 21 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 BISITE Research Group, University of Salamanca, 37008 Salamanca, Spain; corchado@usal.es
2 Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics,

University of Salamanca, 37008 Salamanca, Spain; delrey@usal.es
3 Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Av. La Paz 137,

26006 Logroño, Spain; daniel.perez@unir.net (D.P.-P.); luis.delafuente@unir.net (L.d.-l.-F.-V.)
* Correspondence: rober@usal.es

Abstract: Evaluating web traffic on a web server is highly critical for web service providers since,
without a proper demand forecast, customers could have lengthy waiting times and abandon that
website. However, this is a challenging task since it requires making reliable predictions based on
the arbitrary nature of human behavior. We introduce an architecture that collects source data and
in a supervised way performs the forecasting of the time series of the page views. Based on the
Wikipedia page views dataset proposed in a competition by Kaggle in 2017, we created an updated
version of it for the years 2018–2020. This dataset is processed and the features and hidden patterns
in data are obtained for later designing an advanced version of a recurrent neural network called
Long Short-Term Memory. This AI model is distributed training, according to the paradigm called
data parallelism and using the Downpour training strategy. Predictions made for the seven dominant
languages in the dataset are accurate with loss function and measurement error in reasonable ranges.
Despite the fact that the analyzed time series have fairly bad patterns of seasonality and trend,
the predictions have been quite good, evidencing that an analysis of the hidden patterns and the
features extraction before the design of the AI model enhances the model accuracy. In addition,
the improvement of the accuracy of the model with the distributed training is remarkable. Since
the task of predicting web traffic in as precise quantities as possible requires large datasets, we
designed a forecasting system to be accurate despite having limited data in the dataset. We tested the
proposed model on the new Wikipedia page views dataset we created and obtained a highly accurate
prediction; actually, the mean absolute error of predictions regarding the original one on average
is below 30. This represents a significant step forward in the field of time series prediction for web
traffic forecasting.

Keywords: web traffic forecast; time series forecast; LSTM; parameter averaging; Downpour strategy;
pattern extraction

1. Introduction

The majority of web resources provide customers with transactions of various kinds.
As an example, the network communication which is forwarded at the user’s request
creates a phone conversation, the game provider addresses the player’s request, the web
application handles the HTTP GET request as a consequence of the website’s response,
media applications spread content according to the user’s demand, etc. The request time
will strongly influence on the quality perceived by the end-user. Due to the high response
time, numerous platforms have lost their users. However, the response time is the time
between when the application receives the request and the time when the reply is sent. This
cannot be removed. It is mainly affected by the following sources: cache, disk, geometry
data, network bandwidth, network congestion, change in request arrival data, request

Mathematics 2021, 9, 421. https://doi.org/10.3390/math9040421 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0198-696X
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0002-0129-662X
https://orcid.org/0000-0001-9727-315X
https://doi.org/10.3390/math9040421
https://doi.org/10.3390/math9040421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040421
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/421?type=check_update&version=2

Mathematics 2021, 9, 421 2 of 21

queuing, unexpected usage and flow patterns. In the case of web services, the response
time is too long to be assumed by customers, and developers have been able to diagnose
situations where the response time is too long. Better service is often associated with higher
customer satisfaction [1].

This problem, web congestion, can be mathematically modeled with the time series in
which the values of the series are the dates with the required granularity (usually daily)
and the number of page views that the web server has had. Analyzing these time series
will provide information about web traffic features such as trend and seasonality for the
daily dataset. Time series forecasting (TSF) is an important field of application and covers
many different fields, ranging from economic trend indicators and weather forecasting to
demand driven power plant construction. This topic has a strong research precedent and
has received the attention of several scientists throughout the world [2,3]. Not only are
there numerous academic papers on this topic but also many competitions. These activities
encouraged the developments of forecasting methods for several real world time series. In
this study, we checked the Kaggle dataset web traffic forecasting competition to analyze
the visit pages in the Wikipedia categorized by language [4–6]. Once this was done, we
created a new current version of the Wikipedia web traffic dataset with webpages and
their page views on the most visited pages for each language from 1 January 2018 to 31
December 2020.

The purpose of this research is to design and develop a deep learning-based platform
to analyze and forecast online web traffic of a considered web-server. Emphasis is placed in
feature extraction and pattern detection in the analysis, which allows the design of a Long
Short-Term Memory (LSTM) to forecast the flow of page views on websites in the short
and medium term. The hypothesis of this research was the possibility of enhancing the
operation of the web servers by identifying the demand for views of the web pages. Time-
series being an important concept in statistics and machine learning is often less explored
by data scientist enthusiasts including us. To change the winds, we decided to work on
one of the most burning time series problem of today, “predicting web traffic”. Actually,
we strongly consider that this web traffic forecasting approach will help website servers
to effectively address disruptions. Our implemented technique can be widely applied to
various fields such as financial markets, weather forecasting, audio and video processing.
Furthermore, figuring out the traffic patterns of a website will increase customer satisfaction
and open up new potential business opportunities. Although time series analysis and
forecasting have been well researched, the number of research papers on applying LSTM
on real-time real data to this area is still limited. We intuitively asked if this extraction of
time series patterns such as seasonality or trend would improve the design of TSF methods.
However, according to our research, we found that the number of papers on this and
similar topics is far less fewer those dealing with images, audio, etc. On the other hand,
the web traffic data could also be modeled as time series, so we decided to investigate the
possibilities of applying pattern extraction to the design of a LSTM for TSF.

To provide an optimal solution to this problem, an architecture was designed to collect
data through a scrapper that gathers the pages’ view data. The architecture performs the
pre-processing of these data, discovering the features and finding the patterns embedded in
these data. Finally, applying all the knowledge discovered in the analysis step, a LSTM was
designed to fit the problem of forecasting the web traffic of the chosen page. To validate
the architecture and the artificial intelligence model based on deep learning, the wikipedia
web traffic dataset competition suggested by Kaggle in 2017 was retrofitted with data from
2018 to 2020. In this case, it was done for Wikipedia website, however with minimum
changes it could be used on other websites or computer networks as well.

We made the forecast of each of the Wikipedia page views difference by language
where we applied pattern detection techniques to design a distributed architecture with
several LSTM, which were trained asynchronously using the strategy called Downpour,
which make a TSF with a relatively low error for each of the languages that have been
taken into consideration in the work.

Mathematics 2021, 9, 421 3 of 21

The paper’s contributions are summarized as follows:

• Effectively captured seasonality patterns and long-term trends for supporting the
design of the LSTM

• Architecture for supervised web traffic forecasting using advanced AI models
• Training systems with a parameter server that enhance the asynchronously LSTM

train using the Downpour strategy
• Good quality forecasts in long time horizon achieved in the seven dominant languages

of the dataset

The remainder of the paper is divided as follows. Section 2 provides the state of the art
of Artificial Intelligence (AI) models for web traffic forecasting. The proposed distributed
architecture and the LSTM model are presented in Section 3. Results and discussion are
placed in Section 4. Finally, the conclusions and the future work are shown in Section 5.

2. Related Work

Over the years, the forecasting area has been affected by the fact that experts have
dismissed neural networks (NNs) as being non-competitive, and NN enthusiasts have
introduced several new and sophisticated NN architectures, mostly without strong em-
pirical evaluations as compared to simplified univariate statistical methods. Especially,
this notion was supported by many time series prediction contests such as the M3, NN3
and NN5 competitions [7–9]. Subsequently, NNs have been classified as not convenient
for forecasting. There are several possible reasons for the weak performance of NNs in
the past, one of them being that the individual time series involved were often simply
too short to be modeled through sophisticated methods. Alternatively, the time series
features may have evolved over time, so that even longer time series may not contain
enough relevant data to fit a complicated model [10,11]. Thus, for modeling series through
complex methods, it is critical that they are of appropriate length, as well as produced
from a relatively robust system. Furthermore, NNs are widely criticized for their black
box nature. Thus, forecasting experts have historically preferred to use easier statistics
methods [12].

However, at present, we are experiencing a big data world. Companies have collected
a great deal of data over the years, which holds important insight into their business
patterns. Big data in the time series context do not always mean that an individual time
series carries significant amounts of detail. Rather, they usually indicate that there are many
associated time series in a given field. Within that context, univariate prediction methods
that consider individual time series separately can fail to provide reliable predictions.
They become unavailable in the context of big data where a single model could learn
simultaneously from many similar time-series. Moreover, even more sophisticated models
such as the NNs profit as much as possible from the access to massive quantities of
data [13,14]. It is in this new field of growth of scientific interest in the NN that the
Recurrent Neural Networks (RNN) come into play. With this new type of neural networks
specialized in the sequence prediction problem, results never seen before in the field of
language and time series analysis begin to be achieved [15]. However, the RNNs have
serious memory problems, which were solved with the inclusion in the research world of
the LSTM. This new type of RNN has a new internal memory (cell state) in addition to the
usual hidden state of the RNN. This makes it easier for the training of LSTMs to avoid the
problems of vanishing or exploding gradients [16].

Since time series have components of seasonality, LSTM can be used in a predictive
context. For example, if a given monthly time series has a yearly seasonality, the prediction
of the value for the immediate next month benefits more from the value of the same exact
month of the previous year. Suilin et al. did an outstanding work for the Kaggle challenge
of Wikipedia’s web traffic forecast encompassing this idea [17]. Although this dataset has
been widely used for the prediction of time series related to web traffic, it has not been
deepened in the design of the LSTM with few data, since it is assumed by the researchers
that other models such as ARIMA are more efficient in these cases. Other research work at

Mathematics 2021, 9, 421 4 of 21

TSF has led to more complex schemes that do not take into account the seasonal component
for prediction [18]. Qin et al. proposed an RNN for multivariate forecasting problems.
In this model, different weights are assigned to the different driving series according
to their importance in contributing to the forecast at each time stage. This model was
widely validated by the authors comparing it with ARIMA, NARX RNN, Encoder Decoder,
Attention RNN, Input Attention RNN and the Dual Stage Attention RNN [19].

More recent work has delved into the model proposed by Qin et al. In [20], the
authors claimed that their model can handle the inherent characteristics of the spatial-
temporal series. In recent years, the tendency of researchers is to stack RNN or stack
LSTM to achieve the required result in FTS problems. However, we found a gap in the
literature with FTS prediction models in time series with limited data [21]. Due to the gap
detected in the state of the art in the prediction of time series with little data, we proposed a
supervised architecture based on LSTM that is trained through distributed data parallelism
and following the Downpour strategy.

3. Proposed Model

In this section, we describe the proposed architecture for network traffic forecasting.
This architecture is modularly designed, distributed and scalable such that with minimal
modifications needed it can be easily adapted and used for network traffic predictions,
regardless of whether it is a closed computer network or a website. This architecture
follows the design pattern from bottom to top, as can be seen in Figure 1. It is mainly
divided into three major layers: data extraction, its transformation by extracting its features
and data loading as a time series in the deep learning layer to make predictions. In this
study, we focused on the prediction of the Wikipedia web traffic stream has worldwide
on some selected topics by the authors. For designing and testing our data analysis and
forecasting model of the network traffic page views, we used the dataset ’Wikipedia web
traffic’ used in other recent works [22,23]. even though the Wikipedia web traffic helps us
in the design of our model, we created a new version of this dataset since we developed
our own wikipedia scrapper in order to build our own Wikipedia’s top 1000 page views
dataset from all the language available in the List of ISO 639− 1 codes.

Figure 1. Proposed architecture for supervised web traffic forecasting.

Mathematics 2021, 9, 421 5 of 21

3.1. Data Collection, Cleansing and Curation

The first step is to develop a scrapper to collect network traffic data from the network
APIs. Figure 2 shows the diagram of this scrapper. These data are stored in CSV format
by the crawler, which makes it available for preparing data within the architecture. The
crawler takes information from wikipedia’s API, requesting for each of the projects, such
as en.wikipedia.org, ja.wikipedia.org, de.wikipedia.org, fr.wikipedia.org, zh.wikipedia.org,
ru.wikipedia.org and es.wikipedia.org, the top 1000 websites during each month of the
year 2020. Then, for each project, a list of popular websites is created, removing duplicate
ones. Finally, for each of the recovered websites, the daily number of visits from 2015 to
2020 is extracted, both inclusive, taking into account all agents (human and bot accesses)
and types of access (web, mobile or desktop). For enhancing the process, data from each
project difference by language are obtained in a separate thread, which are backed up
periodically to avoid loss of information in case of error, and then combined with all the
data at the end of the process. It should be pointed out that this improvement does not
mean a substantial increase in the consumption of computer resources, since most of the
time the threads are waiting for the responses to the HTTP requests they perform.

Figure 2. Architecture for dataset generation via concurrent scraping techniques. In the architecture,
the scraper creates one thread per Wikipedia’s project. Then, in each thread, the most relevant
websites for the targeted project are extracted, and subsequently the views for each website (in the
selected time window) are extracted. It is worth highlighting that, after downloading the views
for each article, the current progress of data is stored to ensure the data are saved in case of failure.
Finally, when all the views data are extracted, they are merged into a single dataset.

In addition, in this layer of the architecture, we developed a Python script to pre-
process these data, removing the wrong values or filling the empty positions with 0 s.
This process is known as data curation and involves cleaning data and providing the
appropriate structure to submit them to the next layers of the architecture.

3.2. Feature Extraction and Pattern Recognition

As a previous step to the design of an AI model, it is strongly suggested to perform an
analysis of data for an in-depth understanding, extracting the features and identifying the
hidden patterns. This may help to define the core layers of the AI model such that its data
and outcomes are significantly better than a trial-and-error designed neural network. This
section explains the methods of analysis and pattern recognition that have been performed.

Mathematics 2021, 9, 421 6 of 21

For this purpose, the Python data analysis libraries such as numpy, pandas and seaborn
were used.

3.2.1. Top Page Views in Different Languages

During the first part of the exploratory analysis, the page views were shown in an
aggregated form, separated by language. Figure 3 shows the form of the time series as
well as many other data such as some peaks that indicate a large number of visits even in
several languages. The most viewed pages are the main portal pages of Wikipedia, and
each page has its unique trend features. In addition, there are some weird spikes as well.
Thus, we here asked ourselves if the traffic is influenced by page language, which is clearly
shown in Figure 3.

Figure 3. Wikipedia page views web traffic time series difference by languages.

3.2.2. Periodic Structure of Page Views Time Series

Once we have the time series with the processed data, we usually analyze its periodical
structure. This analysis is usually done by the Fast Fourier Transform Python function. In
this analysis, we move from the time domain to the frequency domain in which we can see
the harmonics of the time series.

In Figure 4, there are clear peaks at 1/7, 2/7 and 3/7. They are likely to be the weekly
trends as we have seven days per week. In addition, there are trends in longer terms
(smaller frequency) depend on the language.

3.2.3. Distribution of Web Traffic by Languages

A probability distribution is a statistical function that describes all the possible values
and likelihoods that a random variable can take within a given range. Perhaps the most
common probability distribution is the normal distribution, or “bell curve”, although
several distributions exist that are commonly used. Typically, the data generating process
of some phenomenon will dictate its probability distribution. This process is called the
probability density function. This analysis is useful to find the ranges of congestion that the
web server will have to handle for stress test designs and its daily work. Figure 5 shows
the distribution function difference by language.

Mathematics 2021, 9, 421 7 of 21

Figure 4. FFT applied to Wikipedia page views web traffic time series difference by languages.

Figure 5. Density distribution of the page views values of the updated Wikipedia dataset difference
by languages.

3.2.4. Testing for Seasonality

For testing the seasonality, we use the following two functions: ACF is an autocorrela-
tion (full) function which provides us with autocorrelation results of any series with its
delayed values. It describes, quite simply, exactly how closely the present series value is
related to its previous values. A time series has components such as trend and seasonality.
The ACF addresses all of these factors while searching for correlations, which makes it a
“fully autocorrelated graph”.PACF is a partial autocorrelation function. Essentially, rather
than locating present correlations with time delays similar to ACF, the residuals are cor-
related with the next time delay value, thus it is “partial” and not “complete” since we
remove the fluctuations previously found until the next correlation is found. Consequently,
if there is some hidden knowledge in the residue that can be modeled by the next gap, we
could obtain a strong correlation and we will maintain that next gap as a feature while

Mathematics 2021, 9, 421 8 of 21

modeling. Keep in mind that while modeling we do not want to keep too many features
that are correlated since that can create multicollinearity problems. Therefore, we need to
maintain only the outstanding features. The seasonality analysis is shown in Figure 6.

Figure 6. Auto-correlation (left) and partial auto-correlation (right) of the time series of the Wikipedia
dataset difference by languages.

3.3. Deep Learning for Network Traffic Forecast

Since we are working with time series, we have to design an AI model for forecasting
the new expected values. To accomplish this task, the following possible options are
available: RNN, LSTM, GRU and TCN. Recurrent architectures are designed to process
input sequences quite efficiently. Since the memory problems of RNNs and the problems
with vanishing or exploding gradient computations were demonstrated, LSTMs and Gated
Recurrent Units (GRU) became highly popular among researchers. For this reason, at the
beginning of our research, we ruled out using an RNN model in our model for forecasting
web traffic on Internet servers. LSTM iterates a sequence element by element to learn
which sequence of elements leads to which type of result. To control the operation of
LSTMs, they have two internal states: cell state (which transmits intermediate results

Mathematics 2021, 9, 421 9 of 21

from one iteration step to another, finally presenting the final result) and hidden state
(which provides a snapshot of the result of the current iteration step). GRUs are a model
of recurrent networks that were designed as a lighter and faster alternative to LSTMs. To
achieve this, the cell state and the hidden state are merged into a single hidden state for
each iteration. However, GRU could not achieve the same performance as LSTMs unless
they are enhanced with residual connections, which would mean using the ResNet neural
network. For this reason, at the beginning of our research, we decided not to use the GRU,
since it implied the need to use the ResNet to achieve good results and that meant having
to have greater resources to achieve similar efficiency to LSTMs.

Temporal convolutional networks (TCNs) are a new type of neural network for work-
ing with sequences. TCN employs techniques such as multiple layers of dilated convo-
lutions and padding of input sequences to handle different sequence lengths and detect
dependencies between elements that are not next to each other, but are located at different
places in a sequence. TCN researchers have shown that their implementation is capable of
outperforming standard RNNs in the analysis of long time series. However, Bai et al. [24]
showed the data storage problems of TCNs during training and validation. LSTMs only
maintain their two internal states (cell state and hidden state) and receive the input to
generate the prediction. In contrast, TCNs need to take the raw sequence up to the effective
length of the history, thus requiring larger memory during evaluation. For practical pur-
poses, this means that TCNs are very effective for extremely long time series, while they
perform not as well on short time series as they do on long time series. In our research,
as previously outlined, the time series in our dataset have a length of 1000 days, which
implies that they are quite short. Considering the above reasons, we decided that our time
series forecasting model should be based on LSTM. In this subsection, we detail how a
LSTM works and then design and develop our LSTM model.

3.3.1. Long Short-Term Memory: An Overview

The LSTM emerged as an architecture aimed at solving the “memory” problems of the
RNN vanilla. In practice, RNN present problems to learn relationships with distant time
step elements (i.e., not close to the current time step). This causes most of the theoretical
potential of RNNs being lost. LSTMs are explicitly designed to try to solve this problem.
To do this, they have an internal cell state (ct) as well as the conventional hidden state (ht),
which represents a kind of “information highway” over time, as shown in Figure 7.

Figure 7. Single LSTM cell with the “information highway” highlighted.

In Figure 8, a diagram of the operation of a LSTM can be seen considering the current
state, the previous one and the next state. This kind of RNN is an upgraded version of the

Mathematics 2021, 9, 421 10 of 21

vanilla RNNs, despite the complexity of the LSTM architecture, one can find the differences
with RNN in the mathematical formulation which allow us for developing LSTM with just
only a few changes with the RNN code. RNN involve the following equation for finding
their hidden state in each new iteration of the RNN is shown in Equation (1).

ht = tanh
(

W
(

ht−1
xt

))
(1)

where ht is the current hidden state, W is the parameter matrix with the embedding weights,
ht−1 is the last hidden state and xt is the new input of the RNN. On the other hand, LSTMs
have by far the most complex equation regarding the present RNN models. They have a
hidden state (ht) as well as their own new hidden state called cell state (ct). Both hidden
states allow the LSTM for having a good operation such as language model, text prediction
and time series forecasting. The equation to calculate these two hidden states is shown in
Equation (2).

i
f
o
g

 =

σ
σ
σ

tanh

W
(

ht−1
xt

)
(2)

Looking at the formula of the LSTM, we see that we have many new elements. Instead
of computing directly “h”, we now get four different vectors called gates, namely i, f , o
and g, which are then combined to obtain the cell state ct and the hidden state ht. Products
that are seen within the vectors in the formula are elemental matrix products. The values
of i, f and o are applied after a sigmoid activation function, which means that they have
values ranging from 0 to 1. Therefore, they act as gates that retain (values close to 1) or
eliminate (values close to 0) information. They are detailed as follows:

• f is called forget gate and, once it is multiplied by the previous cell state (ct−1), it
represents how much we have to forget about the values stored in it.

• i is called input gate and it represents how much we have to write in ct. The values to
write in c are given by g, which comes from applying tanh in the a vanilla RNN.

• ct is obtained as a combination of “how much we remember from the past” (f · ct−1)
and “how much new information we want to add” (i · g); this relationship can be
found in Equation (3).

ct = (f · ct−1) + (i · g) (3)

• o is called output gate and reveals how much of our internal ct state we have to show
in the new hidden state ht+1.

The operation of a LSTM is slightly confusing and complex. However, its outstanding
performance in practice has been essential to the popularity of the LSTM in the machine
learning community.

Figure 8. LSMT sequence cells. In this figure, a detailed scheme of a single LSTM cell is shown. In
addition, the information flow and the hidden state and cell state flows are highlighted.

Mathematics 2021, 9, 421 11 of 21

3.3.2. Downpour Strategy for Distributed Training of the LSTM Model

Since our dataset for page views of the Wikipedia from 2018 to 2020 has seven domi-
nant languages (Spanish, ‘es’; English, ‘en’; German, ‘de’; French, ‘fr’; Russian, ‘ru’; Chinese,
‘zh’; Japanese, ‘jp’), we decided the best way to train our LSTM is through distributed
training. We designed a LSTM with the web traffic dataset from Wikipedia for the competi-
tion proposed by Kaggle. Once we finished the design of the LSTM, we made a copy of
the LSTM on seven virtual machines and another parameter server node within an AWS
g3s.xlarge environment. There are two remarkable agents in this architecture:

• Parameter server: It is in charge of maintaining the most current version of the LSTM
model. Its main purpose is to receive the hyper-parameters of each of the workers,
update them and send them back for retraining. The operation of this parameter
server is ruled by Equation (4).

Wi+1 =
1
7

7

∑
j=1

Wi+1,j (4)

• Workers: Virtual machines that have a copy of the LSTM model and train a part
of the entire dataset. When they finish each iteration of the training, they send the
hyper-parameters to the parameter server and wait for the response with the new ones
for training again the LSTM.

The artificial intelligence layer of the architecture was designed such that the LSTM
could be trained in an asynchronous way with as many copies as necessary (one for each
of the dominant languages in the dataset). Figure 9 shows a diagram of the operation of
the Parameter Averaging method.

The operation of the parameter averaging model, which is embedded in our LSTM, to
train an instance of the LSTM for the specific problem of the TSF distinguished by each
language is summarized in the following steps:

1. The parameters in the workers’ LSTM are initialized with a normal distribution of
mean 0 and standard deviation 0.1.

2. The parameter server spreads a copy of the current parameters to each worker.
3. Each worker performs training on its subset of data.
4. Each worker sends the new parameters of the model it has obtained by training to the

parameter server.
5. The parameter server waits to receive all the parameters from all the workers. Once

received, the new current parameters of the model are set as the average of all received
parameters.

6. Return to Step 2 and repeat the process for the selected number of epochs.

Parameter averaging has the problem that one has to wait until all the workers finish
their iteration to update the parameters and make an update of the model. To solve
this problem, we propose to use the distributed training strategy of parameter averaging
called Downpour. In this strategy, the parameter server receives the parameter values of
each worker asynchronously and uses them to make an immediate update of the stored
parameters of the model. The new parameters are returned to the workers. Intuitively,
one may think that this strategy is not optimal, since the parameters become outdated as
soon as a new worker sends its own, but in practice it has proven to be a highly efficient
distributed training system [25–27].

Mathematics 2021, 9, 421 12 of 21

Figure 9. Distributed training of the seven workers with the parameter server updating the hyper-
parameters of these LSTM difference by language.

3.3.3. LSTM Designed Model

Designing the LSTM was a challenge due to the limited data available. We had page
views of 1085 days during 2018–2020. Furthermore, in the exploration of the dataset, it was
seen that there were seven dominant languages in the dataset. Despite what one might
intuitively think, each of the time series built for each wikipedia page view separated by
language can be trained with the same LSTM, although it is important to keep in mind that
each of the seven LSTMs could have different training parameters, which would mean a
high training cost. To prevent this from being a problem, different techniques were used
to improve the efficiency of the LSTM, although the result is that the LSTM is very deep
and this is reflected in very high training times. For this reason, it was decided to use
asynchronous distributed training using the Downpour strategy. A detailed scheme of the
LSTM can be seen in Figure 10.

Figure 10. LSTM hidden layers. Data come from the scrapper, and then we expand the dimension to
fit with the input of the Conv1D layer. Three attached LSTM layer are placed after the Conv1D layer
but with batch normalization function before data input in the LSTM layer. Finally, there is a fully
connected neural network to comply the design of our AI model.

Mathematics 2021, 9, 421 13 of 21

We used TensorFlow and keras Python libraries for machine learning with additional
connected supportive libraries to implement the proposed framework and to ensure their
prediction performance. We also designed a Python function called “windowed_dataset”.
This is an auxiliary function that was used in some parts of our model for running the time
series in small time windows that improve the accuracy for the functions that are being
used. Since the time series present in our problem have a time component and a page
views component, the first layer of our neural network is a dimensional expansion layer
to transform that array into a new element suitable as input to our neural network. We
used the TensorFlow function called “expand_dim”. This function will not add or reduce
elements in a tensor, it just changes the shape by adding 1 to dimensions. For example, if
we are performing TensorFlow’s Conv1D operation on vectors of rank 2, we need to feed
them with rank three. Thus, since our data had dimension 2 (time and page views), we
had to add one more dimension to make the time series fit with the Conv1D layer input.
To improve the learning path of our model, a three-layer LSTM was placed after a Conv1D
layer to make a convolution of the time series. After this, there are the three bidirectional
LSTMs stacked, with the dropout and recurrent dropout regulator to reduce the overfiting
as much as possible. The bidirectional LSTM was chosen because the LSTM scans data in
both directions and in this way the learning process is improved in datasets with limited
data. A batch normalization layer is used before the input of the stacked LSTMs to force
the input data into a normal distribution shape, which helps to reduce the overfitting as
well. Finally, there is a fully connected neural network with three hidden layers with Relu
activation function, and a last layer with a single neuron in the whole layer is used to
provide the result of the neural network. The optimizer that was used is Adam and the
loss function is Huber. Our model was trained with a window size of 15 and a batch size of
5. The shuffle buffer was set at 1000 and trained for 200 epochs. Despite the thoroughness
of the design of the neural network and all its internal layers, the time series of the page
views in English at the end of the training had a high MAE. Although the LSTM did a good
forecast, to check if the MAE improved with more epoch, we trained it with 500 and 1000
epochs, having as a result that it improved notably. Since the training is distributed and
there are seven time series, the parameter server had to do the training in 200 epochs, since
six out of seven time series had an accuracy above 94%, while the time series of the page
views in English had 87% accuracy. In future work, we will investigate an asynchronous
training strategy that will improve the Downpour strategy. For the training and validation
purpose of the proposed AI model, we split the entire dataset into an 80:20 ratio, with 80%
utilized for the training and 20% for testing or validating.

3.3.4. LSTM Hyperparameter Tuning

The optimal hyperparameters for the LSTM were determined through one of the up-
coming techniques in the field of AI. This technique involves defining the neural networks
as functions in Python whose parameters are the hyperparameters of the neural network.
In this work, based on our previous experience designing LSTMs for the task of time
series prediction, we designed the LSTM architecture as shown in Figure 10. The next step
consists in creating lists with the range of values that the hyperparameters of our LSTM
can take, such as the number of filters of the Conv1D layer, the number of inner units of
each one of the LSTM layers, the dropout rate, etc. Finally, the training and validation loop
is created in which all the different versions of our LSTM are executed and as a result a log
is obtained with all the loss and MAE of each of the models that have been trained in the
loop. Once finished, the most optimal model is searched and thus concludes the process
to determine the most optimal hyperparameters of our LSTM model. A summary of this
process can be found in Figure 11.

Mathematics 2021, 9, 421 14 of 21

Figure 11. Detailed LSTM hyperparameter tuning process.

Once the hyperparameter tuning process was completed, the optimal values were
determined. The hyperparameters we used in our experiment can be found in Table 1.

Table 1. Optimal hyperparameters value list of our LSTM model.

Hyperparameter Name Hyperparameter Value

Conv1D—filters 32
Conv1D—kernel_size 4

LSTM1—units 180
LSTM1—dropout rate 0.2

LSTM1—recurrent_dropout rate 0.25

LSTM2—units 150
LSTM2—dropout rate 0.25

LSTM2—recurrent_dropout rate 0.25

LSTM3—units 100
LSTM3—dropout rate 0.3

LSTM3—recurrent_dropout rate 0.25

3.4. Model Evaluation Metric

To evaluate the performance of the proposed model, the Mean Absolute Error (MAE)
was selected. MAE is used to quantify the difference between two continuous variables
such as an original time series and a time series forecasted by our model. Analyzing these
two time series relative to Wikipedia web traffic, MAE is used to evaluate the accuracy of a
forecasting technique by comparing the predicted values with the observed values. We
selected the evaluation method according to Equation (5). MAE is a technique widely used
by researchers to evaluate the accuracy of their LSTM-based models [28,29].

MAE =
1
N

N

∑
i=1
|Yreali −Ypredi| (5)

4. Experimental Results and Discussion

In the experiment, we chose Python, TensorFlow and Keras (deep learning framework)
for develop our LSTM model. The proposed model was run and evaluated on windows
7 AWS virtual machines with Intel Core i7-7700, 16 G RAM, GTX 1060 GPU, as well as
re-evaluated on Google cloud platform (google colab) with TPU.

Mathematics 2021, 9, 421 15 of 21

We set the number of training epochs of the distributed system to 200 for the execution
of the simulations of the distributed training system of our LSTM model. The hyperparam-
eters of the layers were initialized following a normal distribution (mean = 0, stdv = 0.1)
and the simulations were initialized. As shown in Figure 12, the forecast results (orange
line) of the differentiated page views for each language fit quite well with the original time
series (blue line). It is remarkable that our model is not able to predict the largest peaks
that occur in the time series since they assume anomalous behavior of the time series. This
is due to the fact that Wikipedia customers are unpredictable since they are human beings
with their own decision-making capacity and freedom of action.

Figure 12. Forecasting (orange) of the Wikipedia web traffic page views difference by language in contrast with the original
time series (blue).

For the purpose of validating the forecast of the designed LSTM, dataset was divided
with 800 days in the training set and 250 days in the validation set (80:20 ratio). Figure 13
shows the zoomed forecast of each of the time series in those last 250 days. Although the
accuracy is good, the model is not able to predict the anomalous behavior of the time series
due to an increase of the visits to the Wikipedia due to some important event that occurs

Mathematics 2021, 9, 421 16 of 21

in the world. In the case of the time series of the visits to the French Wikipedia, in the
last 50 days, there is a remarkable prediction error that makes us think that those days
something out of the ordinary happened that elevated the consultations to the Wikipedia
due to some news of current importance in France. It is interesting to note the time series
of the Russian Wikipedia; the LSTM was able to predict the final peak but with far fewer
page views than actually occurred. Despite the fact that we designed the LSTM based on
our findings about the extraction of features and hidden patterns in data, the limitations of
LSTM in time series forecasting without proper seasonality and trend is slightly noticeable.
Therefore, we think that our model is a bit more accurate than some of the state-of-the-art
models for web traffic prediction [30–33]. However, we will investigate in future work the
influence of news in social media such as Twitter or Instagram on page views web traffic.

Figure 13. Zoomed forecasting (orange) of the Wikipedia web traffic page views difference by language in contrast with the
original time series (blue).

Mathematics 2021, 9, 421 17 of 21

For concluding the results section, we make a discussion of MAE and the loss Huber
function to test the accuracy of our model. The graphical values are shown in Figure 14
for the LSTM forecasting after 200 epochs. Intuitively, one can think that the MAE and the
loss are good because they decrease at a good rate and end up stabilizing at relatively low
values. However, this is not entirely true, as some of them did improve these indicators
considerably with 500 and 1000 epochs. Table 2 shows the values of the MAE and loss in
the different tests that were done before 200 was selected as the number of training epoch.
Although all models perform satisfactorily with 200 epochs, some, such as the English
model, may have been more accurate if 500 epochs or more had been used.

Figure 14. Loss and MAE of our proposed AI model difference by language.

Table 2. MAE in the several train of the LSTM with different epoch. We only performed 500 epochs
of training with the English page view time series since it has a high MAE in contrast with the other
time series’ MAEs.

Language 1 Epoch 50 Epoch 100 Epoch 200 Epoch 500 Epoch

English 1775.5438 433.1056 274.1371 209.2002 132.2613
Spanish 324.9516 95.8202 69.0222 47.1441 -
German 180.6219 44.3626 33.1456 21.5006 -
French 196.4905 54.6633 35.5870 23.0779 -
Russian 212.3684 61.8643 45.2639 29.6669 -
Chinese 121.0158 37.2384 27.3859 17.4330 -
Japanese 289.1507 73.9427 54.6819 37.0835 -

It is possible that by augmenting the epochs and reducing the MAE considerably the
time series forecast is becoming more accurate. However, regardless of what one intuitively
thinks, the results show that this is not entirely certain. It should be noticed that these time
series do not have good seasonality or trends; therefore, as they are based human behaviors,
these data have a great influence on the sudden changes in the time series which can be
seen in the significant peaks shown in the time series in this section. Figures 15 and 16
show this in deep analysis.

Mathematics 2021, 9, 421 18 of 21

Figure 15. Loss and MAE for the comparison of 200 and 500 epochs on English Wikipedia page views
time series.

Figure 16. Zoomed version of the comparison of the forecast of the 200 and 500 epochs on English
Wikipedia page views time series.

Mathematics 2021, 9, 421 19 of 21

5. Conclusions and Future Work

In this study, we developed an architecture for web traffic forecasting based on
artificial intelligence with LSTM for time series forecasting. For this purpose, we created
a new dataset to validate our model and extracted the features and hidden patterns to
enhance the design of the LSTM. A distributed training system was designed according to
the concept of data parallelism along the lines of the Downpour asynchronous training
strategy. Despite the limitations of our research such as a dataset with relatively limited
data and the unpredictable nature of human behavior, we experimentally verified that
the forecasting results of our AI model are pretty accurate and close to the real values.
Moreover, we achieved quite good results in the training of the LSTM despite the limited
data we had. In future works, the aim is to deepen in hidden pattern extraction for
improving the efficiency of the LSTM and to study how human behavior affects the web
traffic. To improve the performance of our model, we will investigate the unsupervised
model proposed in previous papers (e.g., [34,35]).

Author Contributions: Conceptualization, R.C.-V. and A.M.d.R.; methodology, R.C.-V., A.M.d.R. and
D.P.-P.; software, R.C.-V. and L.d.-l.-F.-V.; validation, R.C.-V., D.P.-P. and L.d.-l.-F.-V.; formal analysis,
R.C.-V. and A.M.d.R.; investigation, R.C.-V., A.M.d.R., D.P.-P., L.d.-l.-F.-V. and J.M.C.; resources,
J.M.C.; data curation, R.C.-V. and D.P.-P.; writing—original draft preparation, R.C.-V., A.M.d.R.,
D.P.-P., L.d.-l.-F.-V. and J.M.C.; writing—review and editing, R.C.-V., A.M.d.R., D.P.-P., L.d.-l.-F.-V.
and J.M.C.; visualization, R.C.-V. and D.P.-P.; supervision, J.M.C.; project administration, J.M.C.;
and funding acquisition, J.M.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was partially Supported by the project “Intelligent and sustainable mobility
supported by multi-agent systems and edge computing (InEDGEMobility): Towards Sustainable
Intelligent Mobility: Blockchain-based framework for IoT Security”, Reference: RTI2018-095390-B-
C32, financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State
Research Agency (AEI) and the European Regional Development Fund (FEDER).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
TSF Time Series Forecast
FFT Fast Fourier Transform
MAE Mean average error
ACF Auto-correlation Function
PACF Partial Auto-correlation Function
AI Artificial Intelligence

References
1. Chen, D.; Gao, M.; Liu, A.; Chen, M.; Zhang, Z.; Feng, Y. A Recurrent Neural Network Based Approach for Web Service QoS

Prediction. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu,
China, 25–28 May 2019; pp. 350–357.

2. Zhou, K.; Wang, W.; Huang, L.; Liu, B. Comparative study on the time series forecasting of web traffic based on statistical model
and Generative Adversarial model. Knowl.-Based Syst. 2020, 213, 106467. [CrossRef]

3. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J.
Forecast. 2020, 36, 54–74. [CrossRef]

4. Yang, Y.; Lu, S.; Zhao, H.; Ju, X. Predicting Monthly Pageview of Wikipedia Pages by Neighbor Pages. In Proceedings of the 2020
3rd International Conference on Big Data Technologies, Qingdao, China, 18–20 September 2020; pp. 112–115.

http://doi.org/10.1016/j.knosys.2020.106467
http://dx.doi.org/10.1016/j.ijforecast.2019.04.014

Mathematics 2021, 9, 421 20 of 21

5. Bojer, C.S.; Meldgaard, J.P. Kaggle forecasting competitions: An overlooked learning opportunity. Int. J. Forecast. 2020. [CrossRef]
6. Fry, C.; Brundage, M. The M4 Forecasting Competition-A Practitioner’s View. Int. J. Forecast. 2019. [CrossRef]
7. De Gooijer, J.G.; Hyndman, R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [CrossRef]
8. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways

forward. PLoS ONE 2018, 13, e0194889. [CrossRef]
9. Montero-Manso, P.; Athanasopoulos, G.; Hyndman, R.J.; Talagala, T.S. Fforma: Featurebased forecast model averaging. Int. J.

Forecast. 2020, 36, 86–92. [CrossRef]
10. Rangapuram, S.S.; Seeger, M.W.; Gasthaus, J.; Stella, L.; Wang, Y.; Januschowski, T. Deep state space models for time series

forecasting. Adv. Neural Inf. Process. Syst. 2018, 31, 7785–7794.
11. Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J.

2018, 3, 334–340. [CrossRef]
12. Tyralis, H.; Papacharalampous, G. Variable selection in time series forecasting using random forests. Algorithms 2017, 10, 114.

[CrossRef]
13. Chen, W.C.; Chen, W.H.; Yang, S.Y. A big data and time series analysis technology-based multi-agent system for smart tourism.

Appl. Sci. 2018, 8, 947. [CrossRef]
14. Boone, T.; Ganeshan, R.; Jain, A.; Sanders, N.R. Forecasting sales in the supply chain: Consumer analytics in the big data era. Int.

J. Forecast. 2019, 35, 170–180. [CrossRef]
15. Madan, R.; SarathiMangipudi, P. Predicting computer network traffic: A time series forecasting approach using DWT, ARIMA

and RNN. In Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2–8
August 2018; pp. 1–5.

16. Le, P.; Zuidema, W. Quantifying the vanishing gradient and long distance dependency problem in recursive neural networks and
recursive LSTMs. arXiv 2016, arXiv:1603.00423.

17. Suilin, A. kaggle-web-traffic. 2017. Available online: https://github.com/Arturus/kaggle-web-traffic/ (accessed on 19 November
2018).

18. Cinar, Y.G.; Mirisaee, H.; Goswami, P.; Gaussier, E.; Aït-Bachir, A.; Strijov, V. Position-based content attention for time series
forecasting with sequence-to-sequence rnns. In Proceedings of the International Conference on Neural Information Processing,
Guangzhou, China, 14–18 November 2017; Springer: Cham, Switzerland, 2017; pp. 533–544.

19. Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; Cottrell, G. A dual-stage attention-based recurrent neural network for time
series prediction. arXiv 2017, arXiv:1704.02971.

20. Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. Geoman: Multi-level attention networks for geo-sensory time series prediction. In
Proceedings of the 2018 International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, 13–19 July
2018; pp. 3428–3434.

21. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top.
2019, 228, 2313–2324. [CrossRef]

22. Miyaguchi, A.; Chakrabarti, S.; Garcia, N. Forecasting Wikipedia Page Views with Graph Embeddings. 2019. Available online:
http://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26647399.pdf (accessed on 30 November 2020).

23. Wunnava, V.P. Exploration of Wikipedia traffic data to analyze the relationship between multiple pages. Master’s Thesis,
University of North Carolina, Chapel Hill, NC, USA, May 2020.

24. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

25. Srinivasan, A.; Jain, A.; Barekatain, P. An analysis of the delayed gradients problem in asynchronous sgd. In Proceedings of the
6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

26. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.; Senior, A.; et al. Large scale
distributed deep networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1223–1231.

27. Talyansky, R.; Kisilev, P.; Melamed, Z.; Peterfreund, N.; Verner, U. Asynchronous SGD without gradient delay for efficient
distributed training. In Proceedings of the International Conference on Learning Representations (ICLR 2019), New Orleans, LA,
USA, 6–9 May 2019.

28. Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long short-term memory
network and convolutional neural network. Energies 2018, 11, 3493. [CrossRef]

29. Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind power short-term prediction based on LSTM and discrete
wavelet transform. Appl. Sci. 2019, 9, 1108. [CrossRef]

30. Liu, Z.; Yan, Y.; Hauskrecht, M. A flexible forecasting framework for hierarchical time series with seasonal patterns: A case study
of web traffic. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 889–892.

31. Shelatkar, T.; Tondale, S.; Yadav, S.; Ahir, S. Web Traffic Time Series Forecasting using ARIMA and LSTM RNN. In Proceedings of
the ITM Web of Conferences 2020; EDP Sciences: Ulis, France, 2020; Volume 32, p. 03017.

32. Petluri, N.; Al-Masri, E. Web Traffic Prediction of Wikipedia Pages. In Proceedings of the 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5427–5429.

http://dx.doi.org/10.1016/j.ijforecast.2020.07.007
http://dx.doi.org/10.1016/j.ijforecast.2019.02.013
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://dx.doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/10.1016/j.ijforecast.2019.02.011
http://dx.doi.org/10.1016/j.fcij.2018.10.003
http://dx.doi.org/10.3390/a10040114
http://dx.doi.org/10.3390/app8060947
http://dx.doi.org/10.1016/j.ijforecast.2018.09.003
https://github.com/Arturus/kaggle-web-traffic/
http://dx.doi.org/10.1140/epjst/e2019-900046-x
http://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26647399.pdf
http://dx.doi.org/10.3390/en11123493
http://dx.doi.org/10.3390/app9061108

Mathematics 2021, 9, 421 21 of 21

33. Du, S., Pandey, M., & Xing, C. Modeling Approaches for Time Series Forecasting and Anomaly Detection. Technical Report. 2017.
Available online: http://cs229.stanford.edu/proj2017/final-reports/5244275.pdf (accessed on 30 November 2020).

34. Ragno, R.; Papa, R.; Patsilinakos, A.; Vrenna, G.; Garzoli, S.; Tuccio, V.; Fiscarelli, E.; Selan, L.; Artini, M. Essential oils against
bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Sci. Rep.
2020, 10, 1–11. [CrossRef]

35. Ieracitano, C.; Paviglianiti, A.; Campolo, M.; Hussain, A.; Pasero, E.; Morabito, F.C. A novel automatic classification system based
on hybrid unsupervised and supervised machine learning for electrospun nanofibers. IEEE/CAA J. Autom. Sin. 2020, 8, 64–76.

http://cs229.stanford.edu/proj2017/final-reports/5244275.pdf
http://dx.doi.org/10.1038/s41598-020-59553-8

	Introduction
	Related Work
	Proposed Model
	Data Collection, Cleansing and Curation
	Feature Extraction and Pattern Recognition
	Top Page Views in Different Languages
	Periodic Structure of Page Views Time Series
	Distribution of Web Traffic by Languages
	Testing for Seasonality

	Deep Learning for Network Traffic Forecast
	Long Short-Term Memory: An Overview
	Downpour Strategy for Distributed Training of the LSTM Model
	LSTM Designed Model
	LSTM Hyperparameter Tuning

	Model Evaluation Metric

	Experimental Results and Discussion
	Conclusions and Future Work
	References

