Recent Advances in DNA Systems for In Situ Telomerase Activity Detection and Imaging
Abstract
:1. Introduction
2. Fluorescence-Based Imaging and Nanomaterial-Assisted Delivery for In Situ Telomerase Activity Detection
3. Luminescent Nanomaterials for Enhanced In Situ Telomerase Activity Detection
4. Programmable DNA Systems for Cancer Diagnostics and Biosensing
4.1. DNA Logic Gates for Multi-Target Detection
4.2. DNA Walkers in Multi-Target Biosensing
5. Conclusions
- Enhancing the real-time monitoring capabilities of biosensors: Integrating advanced nanomaterials with DNA-based probes holds significant potential to improve detection efficiency. Additionally, developing non-invasive imaging techniques for in vivo applications will be critical for clinical translation. However, there remains considerable potential for improving the biological safety and efficiency of delivery materials, which will aid in better understanding telomerase behavior throughout the cell cycle.
- Developing innovative DNA probes: Due to the limited detection fragments of telomerase DNA, further development of probes targeting other sequences is needed. This can be achieved by analyzing and understanding telomerase-related DNA, allowing for more accurate detection of telomerase activity.
- Expanding multiplexed biosensing systems: Although it is now possible to distinguish normal cells from cancer cells, accurately differentiating between various cancer cell types remains challenging. Detecting telomerase activity alongside other biomarkers could offer deeper insights into telomerase’s role in aging and disease and provide new strategies for precise, cell-line-targeted therapies.
Author Contributions
Funding
Conflicts of Interest
References
- Blackburn, E.H. Structure and Function of Telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef]
- Aubert, G.; Lansdorp, P.M. Telomeres and Aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Dionne, I.; Wellinger, R.J. Cell Cycle-Regulated Generation of Single-Stranded G-Rich DNA in the Absence of Telomerase. Proc. Natl. Acad. Sci. USA 1996, 93, 13902–13907. [Google Scholar] [CrossRef] [PubMed]
- Monsen, R.C.; Chakravarthy, S.; Dean, W.L.; Chaires, J.B.; Trent, J.O. The Solution Structures of Higher-Order Human Telomere G-Quadruplex Multimers. Nucleic Acids Res. 2021, 49, 1749–1768. [Google Scholar] [CrossRef] [PubMed]
- Cooke, H.J.; Brown, W.R.A.; Rappold, G.A. Hypervariable Telomeric Sequences from the Human Sex Chromosomes Are Pseudoautosomal. Nature 1985, 317, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Gardasevic, T.; Noy, A. The Impact of Sequence Periodicity on DNA Mechanics: Investigating the Origin of A-Tract’s Curvature. Nanoscale 2024, 16, 18410–18420. [Google Scholar] [CrossRef]
- Suvorova, Y.M.; Korotkova, M.A.; Korotkov, E.V. Comparative Analysis of Periodicity Search Methods in DNA Sequences. Comput. Biol. Chem. 2014, 53, 43–48. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Elsner, J.B.; Tsonis, P.A. Periodicity in DNA Coding Sequences: Implications in Gene Evolution. J. Theor. Biol. 1991, 151, 323–331. [Google Scholar] [CrossRef]
- Shiekh, S.; Feldt, D.; Jack, A.; Kodikara, S.G.; Alfehaid, J.; Pasha, S.; Yildiz, A.; Balci, H. Protection of the Telomeric Junction by the Shelterin Complex. J. Am. Chem. Soc. 2024, 146, 25158–25165. [Google Scholar] [CrossRef]
- Ghilain, C.; Gilson, E.; Giraud-Panis, M.J. Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021, 10, 1753. [Google Scholar] [CrossRef] [PubMed]
- Londoño Vallejo, J.A. Telomere Length Heterogeneity and Chromosome Instability. Cancer Lett. 2004, 212, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Jennings, B.J.; Ozanne, S.E.; Hales, C.N. Nutrition, Oxidative Damage, Telomere Shortening, and Cellular Senescence: Individual or Connected Agents of Aging? Mol. Genet. Metab. 2000, 71, 32–42. [Google Scholar] [CrossRef]
- Whittemore, K.; Vera, E.; Martínez-Nevado, E.; Sanpera, C.; Blasco, M.A. Telomere Shortening Rate Predicts Species Life Span. Proc. Natl. Acad. Sci. USA 2019, 116, 15122–15127. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Losada, M.; González, R.; Peropadre, A.; Gil-Gálvez, A.; Tena, J.J.; Baonza, A.; Estella, C. Coordination between Cell Proliferation and Apoptosis after DNA Damage in Drosophila. Cell Death Differ. 2022, 29, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, U.; Paulo, J.A.; Godes, M.; Roychoudhury, S.; Prew, M.S.; Ben-Nun, Y.; Yu, E.W.; Budhraja, A.; Opferman, J.T.; Chowdhury, D.; et al. Targeting MCL-1 Triggers DNA Damage and an Anti-Proliferative Response Independent from Apoptosis Induction. Cell Rep. 2023, 42, 113176. [Google Scholar] [CrossRef] [PubMed]
- Moix, S.; Sadler, M.C.; Kutalik, Z.; Auwerx, C. Breaking down Causes, Consequences, and Mediating Effects of Telomere Length Variation on Human Health. Genome Biol. 2024, 25, 125. [Google Scholar] [CrossRef]
- Horikawa, I.; Cable, P.L.; Afshari, C.; Barrett, J.C. Cloning and Characterization of the Promoter Region of Human Telomerase Reverse Transcriptase Gene. Cancer Res. 1999, 59, 826–830. [Google Scholar]
- Lingner, J.; Hughes, T.R.; Shevchenko, A.; Mann, M.; Lundblad, V.; Cech, T.R. Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase. Science 1997, 276, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, F.S.; Blackburn, E.H. An Antiapoptotic Role for Telomerase RNA in Human Immune Cells Independent of Telomere Integrity or Telomerase Enzymatic Activity. Blood 2014, 124, 3675–3684. [Google Scholar] [CrossRef]
- Kao, T.L.; Huang, Y.C.; Chen, Y.H.; Baumann, P.; Tseng, C.K. LARP3, LARP7, and MePCE Are Involved in the Early Stage of Human Telomerase RNA Biogenesis. Nat. Commun. 2024, 15, 5955. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.C.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; He, L.; Zhu, H.; Li, Y.; Pu, W.; Han, M.; Zhao, H.; Liu, K.; Li, Y.; et al. A Suite of New Dre Recombinase Drivers Markedly Expands the Ability to Perform Intersectional Genetic Targeting. Cell Stem Cell 2021, 28, 1160–1176. [Google Scholar] [CrossRef]
- Roake, C.M.; Chen, L.; Chakravarthy, A.L.; Ferrell, J.E.; Raffa, G.D.; Artandi, S.E. Disruption of Telomerase RNA Maturation Kinetics Precipitates Disease. Mol. Cell 2019, 74, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Theimer, C.A.; Jády, B.E.; Chim, N.; Richard, P.; Breece, K.E.; Kiss, T.; Feigon, J. Structural and Functional Characterization of Human Telomerase RNA Processing and Cajal Body Localization Signals. Mol. Cell 2007, 27, 869–881. [Google Scholar] [CrossRef]
- Ghanim, G.E.; Sekne, Z.; Balch, S.; Van Roon, A.-M.M.; Nguyen, T.H.D. 2.7 Å Cryo-EM Structure of Human Telomerase H/ACA Ribonucleoprotein. Nat. Commun. 2024, 15, 746. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, G.E.; Fountain, A.J.; Van Roon, A.M.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of Human Telomerase Holoenzyme with Bound Telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Zemora, G.; Handl, S.; Waldsich, C. Human Telomerase Reverse Transcriptase Binds to a Pre-Organized hTR in Vivo Exposing Its Template. Nucleic Acids Res. 2016, 44, 413–425. [Google Scholar] [CrossRef]
- Martínez-Balsalobre, E.; García-Castillo, J.; García-Moreno, D.; Naranjo-Sánchez, E.; Fernández-Lajarín, M.; Blasco, M.A.; Alcaraz-Pérez, F.; Mulero, V.; Cayuela, M.L. Telomerase RNA-Based Aptamers Restore Defective Myelopoiesis in Congenital Neutropenic Syndromes. Nat. Commun. 2023, 14, 5912. [Google Scholar] [CrossRef]
- Venteicher, A.S.; Abreu, E.B.; Meng, Z.; McCann, K.E.; Terns, R.M.; Veenstra, T.D.; Terns, M.P.; Artandi, S.E. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science 2009, 323, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Weng, P.J.; Yang, W. Flexibility of Telomerase in Binding the RNA Template and DNA Telomeric Repeat. Proc. Natl. Acad. Sci. USA 2022, 119, e2116159118. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.M.; Cech, T.R. Reversing Time: Origin of Telomerase. Cell 1998, 92, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Muppirala, M.; Gupta, V.; Swarup, G. Emerging Role of Tyrosine Phosphatase, TCPTP, in the Organelles of the Early Secretory Pathway. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1125–1132. [Google Scholar] [CrossRef]
- Blasco, M.A.; Rizen, M.; Greider, C.W.; Hanahan, D. Differential Regulation of Telomerase Activity and Telomerase RNA during Multi-Stage Tumorigenesis. Nat. Genet. 1996, 12, 200–204. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Jian, Y.; Gu, L.; Zhang, D.; Zhou, H.; Wang, Y.; Xu, Z. The Regulations of Telomerase Reverse Transcriptase (TERT) in Cancer. Cell Death Dis. 2024, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.R.; Myllymäki, M.; Redd, R.; Padmanaban, S.; Karunakaran, D.; Tesmer, V.; Tsai, F.D.; Gibson, C.J.; Rana, H.Q.; Zhong, L.; et al. The Clinical and Functional Effects of TERT Variants in Myelodysplastic Syndrome. Blood 2021, 138, 898–911. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, J.; Cech, T.R. Finding the End: Recruitment of Telomerase to Telomeres. Nat. Rev. Mol. Cell Biol. 2013, 14, 69–82. [Google Scholar] [CrossRef]
- Stoecklin, G.; Bukau, B. Telling Right from Wrong in Life—Cellular Quality Control. Nat. Rev. Mol. Cell Biol. 2013, 14, 613–615. [Google Scholar] [CrossRef]
- Wang, Y.; Gallagher-Jones, M.; Sušac, L.; Song, H.; Feigon, J. A Structurally Conserved Human and Tetrahymena Telomerase Catalytic Core. Proc. Natl. Acad. Sci. USA 2020, 117, 31078–31087. [Google Scholar] [CrossRef]
- Wan, F.; Ding, Y.; Zhang, Y.; Wu, Z.; Li, S.; Yang, L.; Yan, X.; Lan, P.; Li, G.; Wu, J.; et al. Zipper Head Mechanism of Telomere Synthesis by Human Telomerase. Cell Res. 2021, 31, 1275–1290. [Google Scholar] [CrossRef]
- Smith, E.M.; Pendlebury, D.F.; Nandakumar, J. Structural Biology of Telomeres and Telomerase. Cell. Mol. Life Sci. 2020, 77, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Autexier, C.; Lue, N.F. The Structure and Function of Telomerase Reverse Transcriptase. Annu. Rev. Biochem. 2006, 75, 493–517. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Xiong, E.; Tian, T.; Zhu, D.; Ju, H.; Zhou, X. A CRISPR-Driven Colorimetric Code Platform for Highly Accurate Telomerase Activity Assay. Biosens. Bioelectron. 2021, 172, 112749. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, R.; Wei, Y.; Zhang, Y.; Zhao, X.; Xu, Z. Sensitive Multicolor Visual Detection of Telomerase Activity Based on Catalytic Hairpin Assembly and Etching of Au Nanorods. Biosens. Bioelectron. 2018, 122, 247–253. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Y.; Situ, B.; Zheng, L. Fluorescence Sensing Telomerase Activity: From Extracellular Detection to in Situ Imaging. Sens. Actuators B 2018, 273, 853–861. [Google Scholar] [CrossRef]
- Ling, P.; Lei, J.; Ju, H. Nanoscaled Porphyrinic Metal–Organic Frameworks for Electrochemical Detection of Telomerase Activity via Telomerase Triggered Conformation Switch. Anal. Chem. 2016, 88, 10680–10686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Ge, S.; Zhang, L.; Wang, X.; Yu, J. DNAzyme-Mediated Biodeposition Coupling Adjustable Cascade Electric Fields for Photoelectrochemical Telomerase Activity Monitoring. ACS Sens. 2023, 8, 3538–3546. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, J.; Shi, B.; Xu, C.; Zhao, S. An Ultrasensitive Chemiluminescence Strategy Based on a Microchip Platform for Telomerase Detection at a Single-Cell Level. Chem. Commun. 2021, 57, 3095–3098. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, M.; Huang, H.; Mazar, A.; Iqbal, Z.; Yuan, C.; Huang, M. An ELISA Method Detecting the Active Form of suPAR. Talanta 2016, 160, 205–210. [Google Scholar] [CrossRef]
- Cengiz, M.; Sezer, C.V.; Gür, B.; Bayrakdar, A.; İzgördü, H.; Alanyalı, F.; Öziç, C.; Kutlu, H.M. The Role of Ceranib-2 and Its Nanoform on the Decrease of Telomerase Levels in Human Non-Small Cell Cancer. Mol. Biol. Rep. 2024, 51, 889. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Fan, T.; Zhao, J.; Ding, Z.; Lin, Z.; Sun, S.; Tan, C.; Liu, F.; Jiang, H.; et al. A Visualized Automatic Particle Counting Strategy for Single-cell Level Telomerase Activity Quantification. VIEW 2023, 4, e298. [Google Scholar] [CrossRef]
- Duan, R.; Lou, X.; Xia, F. The Development of Nanostructure Assisted Isothermal Amplification in Biosensors. Chem. Soc. Rev. 2016, 45, 1738–1749. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Huang, H.; Huang, D.; Luo, F.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H. Sensitive Detection of Telomerase Activity in Cancer Cells Using Portable pH Meter as Readout. Biosens. Bioelectron. 2018, 121, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Latham, S.; Hughes, E.; Budgen, B.; Morley, A. Inhibition of the PCR by Genomic DNA. PLoS ONE 2023, 18, e0284538. [Google Scholar] [CrossRef] [PubMed]
- Acharya, K.R.; Dhand, N.K.; Whittington, R.J.; Plain, K.M. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium Avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions. Front. Microbiol. 2017, 8, 115. [Google Scholar] [CrossRef]
- Yao, C.; Ou, J.; Tang, J.; Yang, D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc. Chem. Res. 2022, 55, 2043–2054. [Google Scholar] [CrossRef]
- Wang, W.; Lin, M.; Wang, W.; Shen, Z.; Wu, Z.S. DNA Tetrahedral Nanostructures for the Biomedical Application and Spatial Orientation of Biomolecules. Bioact. Mater. 2024, 33, 279–310. [Google Scholar] [CrossRef]
- Cao, X.; Sun, Y.; Lu, P.; Zhao, M. Fluorescence Imaging of Intracellular Nucleases—A Review. Anal. Chim. Acta 2020, 1137, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Ebrahimi, S.B.; Mirkin, C.A. Nucleic-Acid Structures as Intracellular Probes for Live Cells. Adv. Mater. 2020, 32, 1901743. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Yin, F.; Liu, Y.; Xu, S.; Jiang, W.; Wang, R.; Xue, Q. In Situ Generation Spatial Confinement Fluorescence RNA for Sensitive and Stable Imaging of Telomerase RNA in Cells. Sens. Actuators B 2021, 345, 130414. [Google Scholar] [CrossRef]
- Liang, H.; Chen, X.; Jin, R.; Ke, B.; Barz, M.; Ai, H.; Nie, Y. Integration of Indocyanine Green Analogs as Near-Infrared Fluorescent Carrier for Precise Imaging-Guided Gene Delivery. Small 2020, 16, 1906538. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Xiong, J.; Xu, H.; Xiang, G.; Fan, M.; Zhou, K.; Lin, Y.; Chen, X.; Xie, L.; et al. Delivery of pOXR1 through an Injectable Liposomal Nanoparticle Enhances Spinal Cord Injury Regeneration by Alleviating Oxidative Stress. Bioact. Mater. 2021, 6, 3177–3191. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, R.; He, J.; Yu, L.; Li, X.; Zhang, J.; Li, S.; Zhang, C.; Kagan, J.C.; Karp, J.M.; et al. Ultrasound-Responsive Low-Dose Doxorubicin Liposomes Trigger Mitochondrial DNA Release and Activate cGAS-STING-Mediated Antitumour Immunity. Nat. Commun. 2023, 14, 3877. [Google Scholar] [CrossRef]
- Li, H.; Liu, Q.; Crielaard, B.J.; De Vries, J.W.; Loznik, M.; Meng, Z.; Yang, X.; Göstl, R.; Herrmann, A. Fast, Efficient, and Targeted Liposome Delivery Mediated by DNA Hybridization. Adv. Healthc. Mater. 2019, 8, 1900389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, X.; Qiu, X.; Chen, Y.; Wang, T.; Lv, L.; Guo, X.; Yang, F.; Tang, M.; Gu, W.; et al. High-Fidelity Sensitive Tracing Circulating Tumor Cell Telomerase Activity. Anal. Chem. 2024, 96, 5527–5536. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; et al. A Tubular DNA Nanodevice as a siRNA/Chemo-Drug Co-delivery Vehicle for Combined Cancer Therapy. Angew. Chem. 2021, 133, 2626–2630. [Google Scholar] [CrossRef]
- Degors, I.M.S.; Wang, C.; Rehman, Z.U.; Zuhorn, I.S. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors. Acc. Chem. Res. 2019, 52, 1750–1760. [Google Scholar] [CrossRef]
- Qian, R.; Ding, L.; Ju, H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. [Google Scholar] [CrossRef]
- Li, L.; Xing, H.; Zhang, J.; Lu, Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc. Chem. Res. 2019, 52, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Ding, L.; Yan, L.; Lin, M.; Ju, H. A Robust Probe for Lighting Up Intracellular Telomerase via Primer Extension To Open a Nicked Molecular Beacon. J. Am. Chem. Soc. 2014, 136, 8205–8208. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Shen, P.F.; Fu, J.H.; Yang, F.R.; Chen, Z.P.; Yu, R.Q. A Target-Triggered Fluorescence-SERS Dual-Signal Nano-System for Real-Time Imaging of Intracellular Telomerase Activity. Talanta 2024, 269, 125469. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.T.; Pan, Q.S.; Liu, C.; Hu, Y.L.; Chen, T.T.; Chu, X. An Intelligent Nanodevice Based on the Synergistic Effect of Telomerase-Triggered Photodynamic Therapy and Gene-Silencing for Precise Cancer Cell Therapy. Nanoscale 2020, 12, 10380–10389. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Ma, Y.; Han, Z.; Zhang, M.; Chen, H.; Gu, Y. A Telomerase-Responsive DNA Icosahedron for Precise Delivery of Platinum Nanodrugs to Cisplatin-Resistant Cancer. Angew. Chem. 2018, 130, 5487–5491. [Google Scholar] [CrossRef]
- Park, S.; Song, S.; Kim, S.S.; Song, J. Charge Modulation Layer and Wide-Color Tunability in a QD-LED with Multiemission Layers. Small 2021, 17, 2007397. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, J.; Pu, C.; Lei, H.; Zhu, M.; Qin, H.; Peng, X. Surface and Intrinsic Contributions to Extinction Properties of ZnSe Quantum Dots. Nano Res. 2020, 13, 824–831. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, G.; Wu, G.; Fan, J.; He, Z.; Huang, W. A Novel Nano-Beacon Based on DNA Functionalized QDs for Intracellular Telomerase Activity Monitoring. Sens. Actuators B 2020, 304, 127385. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Z.; Zhang, X.; Zhang, Y.; Zou, X.; Ma, F.; Zhang, C. Entropy-Driven Self-Assembly of Single Quantum Dot Sensor for Catalytic Imaging of Telomerase in Living Cells. Anal. Chem. 2022, 94, 18092–18098. [Google Scholar] [CrossRef]
- Jia, Y.; Gao, P.; Zhuang, Y.; Miao, M.; Lou, X.; Xia, F. Facile Probe Design: Fluorescent Amphiphilic Nucleic Acid Probes without Quencher Providing Telomerase Activity Imaging Inside Living Cells. Anal. Chem. 2016, 88, 6621–6626. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, F.; Xu, Q.; Zhang, M.; Lou, X.; Xia, F. Facile, Fast-Responsive, and Photostable Imaging of Telomerase Activity in Living Cells with a Fluorescence Turn-On Manner. Anal. Chem. 2016, 88, 3289–3294. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Xia, L.; Zhuang, Y.; Wang, X.; Du, J.; Zhang, X.; Lou, X.; Xia, F. An AIEgens and Exonuclease III Aided Quadratic Amplification Assay for Detecting and Cellular Imaging of Telomerase Activity. Sci. Bull. 2017, 62, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yao, Q.; Zang, S.; Xie, J. Aggregation-Induced Emission in Luminescent Metal Nanoclusters. Natl. Sci. Rev. 2021, 8, nwaa208. [Google Scholar] [CrossRef]
- Zhou, M.; Du, X.; Wang, H.; Jin, R. The Critical Number of Gold Atoms for a Metallic State Nanocluster: Resolving a Decades-Long Question. ACS Nano 2021, 15, 13980–13992. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yang, H.; Zhang, S.; Liu, Q.; Cao, H.; Luo, J.; Liu, X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. Small 2022, 18, 2204524. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, Z.; Yao, Q.; Xie, J. Luminescent Metal Nanoclusters: Biosensing Strategies and Bioimaging Applications. Aggregate 2021, 2, 114–132. [Google Scholar] [CrossRef]
- Dong, F.; Feng, E.; Zheng, T.; Tian, Y. In Situ Synthesized Silver Nanoclusters for Tracking the Role of Telomerase Activity in the Differentiation of Mesenchymal Stem Cells to Neural Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Wang, Z.; Pu, F.; Ju, E.; Ren, J.; Qu, X. Nucleic Acid-Driven Aggregation-Induced Emission of Au Nanoclusters for Visualizing Telomerase Activity in Living Cells and In Vivo. Mater. Horiz. 2021, 8, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Adleman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef]
- Zadegan, R.M.; Jepsen, M.D.E.; Hildebrandt, L.L.; Birkedal, V.; Kjems, J. Construction of a Fuzzy and Boolean Logic Gates Based on DNA. Small 2015, 11, 1811–1817. [Google Scholar] [CrossRef]
- Peng, R.; Zheng, X.; Lyu, Y.; Xu, L.; Zhang, X.; Ke, G.; Liu, Q.; You, C.; Huan, S.; Tan, W. Engineering a 3D DNA-Logic Gate Nanomachine for Bispecific Recognition and Computing on Target Cell Surfaces. J. Am. Chem. Soc. 2018, 140, 9793–9796. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, S.; Li, J.; Rui, K.; Bi, S.; Zhang, J.R.; Zhu, J.J. Evaluation of Intracellular Telomerase Activity through Cascade DNA Logic Gates. Chem. Sci. 2017, 8, 174–180. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, Z.; Wang, M.; Cui, J.; Miao, P. Construction of Fluorescence Logic Gates Responding to Telomerase and miRNA Based on DNA-Templated Silver Nanoclusters and the Hybridization Chain Reaction. Nanoscale 2022, 14, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, L.; Sun, H.; Xu, S.; Li, K.; Su, X. Screening and Application of Inhibitory Aptamers for DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1. Int. J. Biol. Macromol. 2023, 242, 124918. [Google Scholar] [CrossRef]
- Kovalenko, O.A.; Caron, M.J.; Ulema, P.; Medrano, C.; Thomas, A.P.; Kimura, M.; Bonini, M.G.; Herbig, U.; Santos, J.H. A Mutant Telomerase Defective in Nuclear-cytoplasmic Shuttling Fails to Immortalize Cells and Is Associated with Mitochondrial Dysfunction. Aging Cell 2010, 9, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Madlener, S.; Ströbel, T.; Vose, S.; Saydam, O.; Price, B.D.; Demple, B.; Saydam, N. Essential Role for Mammalian Apurinic/Apyrimidinic (AP) Endonuclease Ape1/Ref-1 in Telomere Maintenance. Proc. Natl. Acad. Sci. USA 2013, 110, 17844–17849. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Lu, X.; Dai, N.; Zhang, S.; Cheng, Y.; Zhang, L.; Yang, Y.; Liu, Y.; Yang, Z.; et al. APE1 Deficiency Promotes Cellular Senescence and Premature Aging Features. Nucleic Acids Res. 2018, 46, 5664–5677. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, S.; Fan, R.; Li, R.; Li, W.; Chen, S.; Lan, F.; Zhu, Y.; Ji, T.; Zhang, Y.; et al. Localized Cas12a-Based Cascade Amplification for Sensitive and Robust Detection of APE1. Talanta 2024, 280, 126773. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhang, H.; Weinfeld, M.; Le, X.C. Development of a DNAzyme Walker for the Detection of APE1 in Living Cancer Cells. Anal. Chem. 2023, 95, 14990–14997. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, J.; Chai, X.; Li, L. A Cooperatively Activatable, DNA-based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew. Chem. Int. Ed. 2021, 60, 14887–14891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Wang, W.; Min, Q.; Zhang, J.; Zhu, J. A Telomerase-Assisted Strategy for Regeneration of DNA Nanomachines in Living Cells. Angew. Chem. Int. Ed. 2023, 62, e202213884. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, J.; Wang, J.; Wu, G.; Su, T.; Fan, L.; Li, J.; Liu, Y.; Yu, D.; Sun, R.; et al. A Reverberating Triple AND Logic Gate Nanomachine for Intracellular Multi-Enzyme Tracking and MicroRNA Detection. Chem. Eng. J. 2024, 498, 155631. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, L.; Ju, H.; Lei, J. Telomerase Triggered DNA Walker with a Superhairpin Structure for Human Telomerase Activity Sensing. Anal. Chem. 2019, 91, 6981–6985. [Google Scholar] [CrossRef] [PubMed]
- Pulcu, G.S.; Mikhailova, E.; Choi, L.S.; Bayley, H. Continuous Observation of the Stochastic Motion of an Individual Small-Molecule Walker. Nat. Nanotechnol. 2015, 10, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhuge, Y.; Zuo, X.; Li, M.; Wang, F. DNA Walkers for Biosensing Development. Adv. Sci. 2022, 9, 2200327. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, L.; Zhu, L.; Lei, J.; Wu, J.; Ju, H. Binding-Induced DNA Walker for Signal Amplification in Highly Selective Electrochemical Detection of Protein. Biosens. Bioelectron. 2017, 96, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Li, S.S.; Liu, Y.J.; Liu, W.W.; Kong, L.Q.; Chai, Y.Q.; Luo, X.L.; Yuan, R. High-Efficiency 3D DNA Walker Immobilized by a DNA Tetrahedral Nanostructure for Fast and Ultrasensitive Electrochemical Detection of MiRNA. Anal. Chem. 2023, 95, 4077–4085. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, D.; Lu, Y.; Liu, S.; Zhang, J.; Pu, Y.; Wei, W. Fluorescence Imaging of FEN1 Activity in Living Cells Based on Controlled-Release of Fluorescence Probe from Mesoporous Silica Nanoparticles. Biosens. Bioelectron. 2022, 214, 114529. [Google Scholar] [CrossRef]
- Zeng, X.; Qu, X.; Zhao, C.; Xu, L.; Hou, K.; Liu, Y.; Zhang, N.; Feng, J.; Shi, S.; Zhang, L.; et al. FEN1 Mediates miR-200a Methylation and Promotes Breast Cancer Cell Growth via MET and EGFR Signaling. FASEB J. 2019, 33, 10717–10730. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, D.; Tang, Y.; Wei, W.; Liu, Y.; Liu, S. Label-Free Imaging of Flap Endonuclease 1 in Living Cells by Assembling Original and Multifunctional Nanoprobe. ACS Appl. Bio Mater. 2020, 3, 4573–4580. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Z.; Qiu, Y.; Bao, Y.; Song, Q.; Zou, B. In Situ Track-Generated DNA Walker for AND-Gate Logic Imaging of Telomerase and Flap Endonuclease 1 Activities in Living Cells. Anal. Chem. 2024, 96, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.; Wang, L.; Ho, Y.; Han, Y.; Li, D.; Zhang, C. Construction of an Enzymatically Controlled DNA Nanomachine for One-Step Imaging of Telomerase in Living Cells. Anal. Chem. 2024, 96, 4647–4656. [Google Scholar] [CrossRef]
- Breaker, R.R.; Joyce, G.F. A DNA Enzyme That Cleaves RNA. Chem. Biol. 1994, 1, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Willner, I.; Shlyahovsky, B.; Zayats, M.; Willner, B. DNAzymes for Sensing, Nanobiotechnology and Logic Gate Applications. Chem. Soc. Rev. 2008, 37, 1153–1165. [Google Scholar] [CrossRef]
- McConnell, E.M.; Cozma, I.; Mou, Q.; Brennan, J.D.; Lu, Y.; Li, Y. Biosensing with DNAzymes. Chem. Soc. Rev. 2021, 50, 8954–8994. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Liao, Y.; Fu, J.H.; Li, Y.Z.; Zhu, Y.L.; Chen, Z.P.; Yu, R.Q. Telomerase-Initiated Three-Dimensional DNAzyme Motor for Monitoring of Telomerase Activity in Living Cells. Biosens. Bioelectron. 2023, 219, 114757. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, T.; Li, X.; Wei, L.; Luo, J.; Bai, L.; Duan, W.J.; Xie, B.; Sun, B.; Chen, J.X.; et al. Dual miRNA-Triggered DNA Walker Assisted by APE1 for Specific Recognition of Tumor Cells. Anal. Chem. 2024, 96, 6774–6783. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Syrjänen, S.; Syrjänen, K. Implications of the P53 Tumor-Suppressor Gene in Clinical Oncology. J. Clin. Oncol. 1995, 13, 1009–1022. [Google Scholar] [CrossRef]
- Nigro, J.M.; Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Hosteller, R.; Cleary, K.; Signer, S.H.; Davidson, N.; Baylin, S.; Devilee, P.; et al. Mutations in the P53 Gene Occur in Diverse Human Tumour Types. Nature 1989, 342, 705–708. [Google Scholar] [CrossRef]
- Zhou, S.; Ran, J.; Man, S.; Zhang, J.; Yuan, R.; Yang, X. Exploring the Effect of Steric Hindrance on Trans-Cleavage Activity of CRISPR-Cas12a for Ultrasensitive SERS Detection of P53 DNA. Anal. Chem. 2024, 96, 10654–10661. [Google Scholar] [CrossRef] [PubMed]
- Xhafa, S.; Di Nicola, C.; Tombesi, A.; Pettinari, R.; Pettinari, C.; Scarpelli, F.; Crispini, A.; La Deda, M.; Candreva, A.; Garufi, A.; et al. Pyrazolone-Based Zn(II) Complexes Display Antitumor Effects in Mutant P53-Carrying Cancer Cells. J. Med. Chem. 2024, 67, 15676–15690. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.R.; Li, D.W.; Qian, R.C.; Ju, H. DNAzyme-Powered DNA Walker for Cooperative Expression Imaging of Mutant P53 and Telomerase in Cancer Cells. Anal. Chem. 2023, 95, 4122–4130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Xiong, W.; Xu, S.; Qian, R. Recent Advances in DNA Systems for In Situ Telomerase Activity Detection and Imaging. Chemosensors 2025, 13, 17. https://doi.org/10.3390/chemosensors13010017
Zhang S, Xiong W, Xu S, Qian R. Recent Advances in DNA Systems for In Situ Telomerase Activity Detection and Imaging. Chemosensors. 2025; 13(1):17. https://doi.org/10.3390/chemosensors13010017
Chicago/Turabian StyleZhang, Shiyi, Wenjing Xiong, Shuyue Xu, and Ruocan Qian. 2025. "Recent Advances in DNA Systems for In Situ Telomerase Activity Detection and Imaging" Chemosensors 13, no. 1: 17. https://doi.org/10.3390/chemosensors13010017
APA StyleZhang, S., Xiong, W., Xu, S., & Qian, R. (2025). Recent Advances in DNA Systems for In Situ Telomerase Activity Detection and Imaging. Chemosensors, 13(1), 17. https://doi.org/10.3390/chemosensors13010017