Intelligent Electrochemical Sensing: A New Frontier in On-the-Fly Coffee Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Optical Analysis
2.3. Chemical Analysis
2.3.1. Total Phenolic Content and Antioxidant Activity
2.3.2. TEAC Assay
2.3.3. DPPH Assay
2.4. Sensor Analysis
2.4.1. Electronic Interface
2.4.2. Noise Considerations
2.4.3. Firmware and Software
2.4.4. The Operating Principle: Cyclic Voltammetry
2.5. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Coffee Organization. Coffee Market Report. January 2024. Available online: https://www.icocoffee.org/documents/cy2023-24/cmr-0124-e.pdf (accessed on 12 April 2024).
- International Coffee Organization, Statistics on Coffee. 2021. Available online: https://www.ico.org/documents/cy2022-23/annual-review-2021-2022-e.pdf (accessed on 12 April 2024).
- European Market Potential for Specialty Coffee. September 2020. Available online: https://www.cbi.eu/market-information/coffee/specialty-coffee/market-potential#which-trends-offer-opportunities-in-the-european-specialty-coffee-market (accessed on 8 May 2024).
- Velásquez, S.; Peña, N.; Bohórquez, J.C.; Gutierrez, N.; Sacks, G.L. Volatile and Sensory Characterization of Roast Coffees—Effects of Cherry Maturity. Food Chem. 2019, 274, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Specialty Coffee Association (SCA). The Washed Arabica Green Coffee Defect Guide; Specialty Coffee Association Research Center: Santa Ana, CA, USA, 2018. [Google Scholar]
- de Barbosa, M.S.G.; Scholz, M.B.; Kitzberger, C.S.G.; de Benassi, M.T. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Cordoba, N.; Moreno, F.L.; Osorio, C.; Velasquez, S.; Ruiz, Y. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Int. Food Res. 2021, 141, 110141. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Rao, N.Z. The effect of time, roasting temperature, and grind size on caffeine and chlorogenic acid concentrations in cold brew coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef]
- Seninde, D.R.; Chambers, E.; Chambers, D. Determining the Impact of Roasting Degree, Coffee to Water Ratio and Brewing Method on the Sensory Characteristics of Cold Brew Ugandan Coffee. Food Res. Int. 2020, 137, 109667. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Perren, R.; Escher, F. Water content of roasted coffee: Impact on grinding behaviour, extraction, and aroma retention. Eur. Food Res. Technol. 2008, 227, 1357–1365. [Google Scholar] [CrossRef]
- Bekedam, E.K.; Schols, H.A.; Van Boekel, M.A.J.S.; Smit, G. Incorporation of chlorogenic acids in coffee brew melanoidins. J. Agric. Food. Chem. 2008, 56, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.M.; Coimbra, M.A. Melanoidins from Coffee Infusions. Fractionation, Chemical Characterization, and Effect of the Degree of Roast. J. Agric. Food. Chem. 2007, 55, 3967–3977. [Google Scholar] [CrossRef] [PubMed]
- Perrone, D.; Farah, A.; Donangelo, C.M. Influence of Coffee Roasting on the Incorporation of Phenolic Compounds into Melanoidins and Their Relationship with Antioxidant Activity of the Brew. J. Agric. Food. Chem. 2012, 60, 4265–4275. [Google Scholar] [CrossRef]
- Pilipczuk, T.; Kusznierewicz, B.; Zielinska, D.; Bartoszek, A. The Influence of Roasting and Additional Processing on the Content of Bioactive Components in Special Purpose Coffees. J. Food Sci. Technol. 2015, 52, 5736–5744. [Google Scholar] [CrossRef]
- Carcea, M.; Danesi, I.; De Gara, L.; Diretto, G.; Fanali, C.; Raffo, A.; Turfani, V. Chemical composition and sensory profile of the Italian espresso coffee powder and beverage under different roasting conditions. Eur. Food Res. Technol. 2023, 249, 1287–1301. [Google Scholar] [CrossRef]
- Flament, I.; Bessière-Thomas, Y. Coffee Flavor Chemistry; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Clifford, M.N. Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J. Sci. Food Agric. 1999, 79, 362–372. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food. Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef] [PubMed]
- Parras, P.; Martínez-Tomé, A.M.; Jiménez, M.A.M. Antioxidant Capacity of Coffees of Several Origins Brewed Following Three Different Procedures. Food Chem. 2007, 102, 582–592. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.Á.; Ames, J.M.; Leake, D.S. Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. Eur. Food Res. Technol. 2008, 227, 1017–1024. [Google Scholar] [CrossRef]
- Parliament, T.H. An Overview of Coffee Roasting. In Caffeinated Beverages: Health Benefits, Physiological Effects and Chemistry; ACS Symposium Series 754; American Chemical Society: Washington, DC, USA, 2000; pp. 188–201. [Google Scholar]
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Lavorenti Rocha, M.; de Souza Gil, E. Electrochemical Behavior and Determination of Major Phenolic Antioxidants in Selected Coffee Samples. Food Chem. 2016, 190, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Niseteo, T.; Komes, D.; Belšcak-Cvitanović, A.; Horžić, D.; Budeč, M. Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food Chem. 2012, 134, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Uslu, N. The Influence of Decoction and Infusion Methods and Times on Antioxidant Activity, Caffeine Content and Phenolic Compounds of Coffee Brews. Eur. Food Res. Technol. 2022, 248, 2021–2030. [Google Scholar] [CrossRef]
- Kucera, L.; Papoušek, R.; Kurka, O.; Barták, P.; Bednár, P. Study of Composition of Espresso Coffee Prepared from Various Roast Degrees of Coffea Arabica L. Coffee Beans. Food Chem. 2016, 199, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Moreno, C. Methods Used to Evaluate the Free Radical Scavenging Activity in Food and Biological Systems. Food Sci. Technol. Int. 2002, 3, 121–137. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food. Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Gibson, P.G.; Garg, M.L. Fatty Acids in Asthma and Inflammation. J. Sci. Food Agric. 2006, 86, 2057. [Google Scholar] [CrossRef]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the Determination of Biological Antioxidant Capacity In Vitro: A Review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Antioxidant Measurement and Applications. ACS Symp. Ser. 2007, 956, 36. [Google Scholar]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food. Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Tonto, T.C.; Cimini, S.; Grasso, S.; Zompanti, A.; Santonico, M.; De Gara, L.; Locato, V. Methodological pipeline for monitoring post-harvest quality of leafy vegetables. Sci. Rep. 2023, 13, 20568. [Google Scholar] [CrossRef]
- Iaccheri, E.; Laghi, L.; Cevoli, C.; Berardinelli, A.; Ragni, L.; Romani, S.; Rocculi, P. Different Analytical Approaches for the Study of Water Features in Green and Roasted Coffee Beans. J. Food Eng. 2015, 146, 28–35. [Google Scholar] [CrossRef]
- Tripetch, P.; Borompichaichartkul, C. Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant activity in arabica green coffee beans (Coffea arabica L. cv. Catimor). J. Stored Prod. Res. 2019, 84, 101510. [Google Scholar] [CrossRef]
- Arslan-Tontul, S. Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT 2020, 119, 108859. [Google Scholar] [CrossRef]
- Jones, J.; Magri, R.; Rios, R.; Jones, M. The Detection of Caffeine and Cotinine in Umbilical Cord Tissue Using Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2011, 3, 1310–1315. [Google Scholar] [CrossRef]
- López-Martinez, L.; López-de-Alba, P.L.; Garcia-Campos, R.; León-Rodriguez, L.M. Simultaneous Determination of Methylxanthines in Coffees and Teas by UV-Vis Spectrophotometry and Partial Least Squares. Anal. Chim. Acta 2003, 493, 83–94. [Google Scholar] [CrossRef]
- Regan, F.; Shakalisava, Y. Rapid Simultaneous Determination of Alkylxanthines by Capillary Zone Electrophoresis and Its Applications in Analysis of Pharmaceuticals and Food Samples. Anal. Chim. Acta 2005, 540, 103–110. [Google Scholar] [CrossRef]
- Blasco, A.J.; Crevillén, A.G.; González, M.C.; Escarpa, A. Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems. Electroanalysis 2007, 19, 2275–2286. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Hsu, C.F. Characterization of Polyphenols in Green, Oolong, and Black Teas, and in Coffee, Using Cyclic Voltammetry. Food Chem. 2003, 82, 501–512. [Google Scholar] [CrossRef]
- Lino, F.M.A.; Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and Spectrometric Determination of Antioxidant Capacity of Selected Wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- Greco, G.; Carmona, E.N.; Sberveglieri, G.; Genzardi, D.; Sberveglieri, V. A New Kind of Chemical Nanosensors for Discrimination of Espresso Coffee. Chemosensors 2022, 10, 186. [Google Scholar] [CrossRef]
- Escarpa, A. Food electroanalysis: Sense and simplicity. Chem Rec. 2012, 12, 72–91. [Google Scholar] [CrossRef]
- Maddaloni, L.; Grasso, S.; De Gara, L.; Pennazza, G.; Zompanti, A.; Rapa, M.; Ruggieri, R.; Vinci, G.; Santonico, M. An Electrochemical Sensor for Monitoring Biogenic Amines in Anchovies as Quality and Safety Index. Sens. Actuators B Chem. 2021, 347, 130648. [Google Scholar] [CrossRef]
- Baptestini, F.M.; Corrêa, P.C.; De Oliveira, G.H.H.; Cecon, P.R.; Soares, N.F.F. Kinetic modeling of water sorption by roasted and ground coffee. Acta Sci. Agron. 2017, 39, 273–281. [Google Scholar] [CrossRef]
- Correa, P.; Oliveira, G.; Oliveira, A.; Vargas-Elías, G.; Baptestini, F. Particle size and roasting on water sorption in conilon coffee during storage. Coffee Sci. 2016, 11, 221–233. [Google Scholar]
- Qin, J.; Lu, R. Measurement of the Absorption and Scattering Properties of Turbid Liquid Foods Using Hyperspectral Imaging. Appl. Spectrosc. 2007, 61, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Mytilinaios, I.; Salih, M.; Schofield, H.K.; Lambert, R.J.W. Growth Curve Prediction from Optical Density Data. Int. J. Food Microbiol. 2012, 154, 169–176. [Google Scholar] [CrossRef]
- Sik, B. Development and Validation of a Green High Performance Liquid Chromatographic Method for the Determination of Some Artificial Sweeteners and Caffeine in Soft Drinks. Food Anal. Methods 2012, 5, 1443–1452. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons: New York, NY, USA, 2002; Volume 6, pp. I1.1.1–I1.1.8. [Google Scholar]
- Spagnuolo, L.; Della Posta, S.; Fanali, C.; Dugo, L.; De Gara, L. Antioxidant and Antiglycation Effects of Polyphenol Compounds Extracted from Hazelnut Skin on Advanced Glycation End-Products (AGEs) Formation. Antioxidants 2021, 10, 424. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Jangle, S.N. Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. Int. J. Pharm. Sci. Drug Res. 2012, 4, 143–146. [Google Scholar] [CrossRef]
- Mutz, Y.S.; do Rosario, D.; Silva, L.R.; Galvan, D.; Stefano, J.S.; Janegitz, B.C.; Conte-Junior, C.A. Lab-made 3D printed electrochemical sensors coupled with chemometrics for Brazilian coffee authentication. Food Chem. 2023, 403, 134411. [Google Scholar] [CrossRef] [PubMed]
- Yardım, Y.; Keskin, E. & Şentürk, Z. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode. Talanta 2013, 116, 1010–1017. [Google Scholar]
- Juárez-Gómez, J.; Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Romero-Romo, M.; Palomar-Pardavé, M. Novel electrochemical method to evaluate the antioxidant capacity of infusions and beverages, based on in situ formation of free superoxide radicals. Food Chem. 2020, 332, 127409. [Google Scholar] [CrossRef] [PubMed]
- Lopetcharat, K.; Kulapichitr, F.; Suppavorasatit, I.; Chodjarusawad, T.; Phatthara-aneksin, A.; Pratontep, S.; Borompichaichartkul, C. Relationship between overall difference decision and electronic tongue: Discrimination of civet coffee. J. Food Eng. 2016, 180, 60–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, S.; Di Loreto, M.V.; Zompanti, A.; Ciarrocchi, D.; De Gara, L.; Pennazza, G.; Vollero, L.; Santonico, M. Intelligent Electrochemical Sensing: A New Frontier in On-the-Fly Coffee Quality Assessment. Chemosensors 2025, 13, 24. https://doi.org/10.3390/chemosensors13010024
Grasso S, Di Loreto MV, Zompanti A, Ciarrocchi D, De Gara L, Pennazza G, Vollero L, Santonico M. Intelligent Electrochemical Sensing: A New Frontier in On-the-Fly Coffee Quality Assessment. Chemosensors. 2025; 13(1):24. https://doi.org/10.3390/chemosensors13010024
Chicago/Turabian StyleGrasso, Simone, Maria Vittoria Di Loreto, Alessandro Zompanti, Davide Ciarrocchi, Laura De Gara, Giorgio Pennazza, Luca Vollero, and Marco Santonico. 2025. "Intelligent Electrochemical Sensing: A New Frontier in On-the-Fly Coffee Quality Assessment" Chemosensors 13, no. 1: 24. https://doi.org/10.3390/chemosensors13010024
APA StyleGrasso, S., Di Loreto, M. V., Zompanti, A., Ciarrocchi, D., De Gara, L., Pennazza, G., Vollero, L., & Santonico, M. (2025). Intelligent Electrochemical Sensing: A New Frontier in On-the-Fly Coffee Quality Assessment. Chemosensors, 13(1), 24. https://doi.org/10.3390/chemosensors13010024