Dry Eye Para-Inflammation Treatment: Evaluation of a Novel Tear Substitute Containing Hyaluronic Acid and Low-Dose Hydrocortisone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment
2.2. Outcomes Evaluation
2.3. Statistical Analysis
3. Results
3.1. Symptoms Evaluation
3.2. Ocular Surface Assessment
3.3. Evaluation of Safety Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aragona, P.; Giannaccare, G.; Mencucci, R.; Rubino, P.; Cantera, E.; Finocchiaro, C.Y.; Vaccaro, S.; Aiello, F.; Antoniazzi, E.; Barabino, S.; et al. The Management of Dry Eye Disease: Proceedings of Italian Dry Eye Consensus Group Using the Delphi Method. J. Clin. Med. 2022, 11, 6437. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Rouen, P.A.; White, M.L. Dry Eye Disease: Prevalence, Assessment, and Management. Home Healthc. Now 2018, 36, 74–83. [Google Scholar] [CrossRef]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
- Rhee, M.K.; Mah, F.S. Inflammation in Dry Eye Disease: How Do We Break the Cycle? Ophthalmology 2017, 124, S14–S19. [Google Scholar] [CrossRef]
- Roszkowska, A.M.; Oliverio, G.W.; Aragona, E.; Inferrera, L.; Severo, A.A.; Alessandrello, F.; Spinella, R.; Postorino, E.I.; Aragona, P. Ophthalmologic Manifestations of Primary Sjögren’s Syndrome. Genes 2021, 12, 365. [Google Scholar] [CrossRef]
- Barabino, S.; Aragona, P.; di Zazzo, A.; Rolando, M.; with the Contribution of Selected Ocular Surface Experts from the Società Italiana di Dacriologia e Superficie Oculare. Updated definition and classification of dry eye disease: Renewed proposals using the nominal group and Delphi techniques. Eur. J. Ophthalmol. 2021, 31, 42–48. [Google Scholar] [CrossRef]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-Del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef]
- O’Neil, E.C.; Henderson, M.; Massaro-Giordano, M.; Bunya, V.Y. Advances in dry eye disease treatment. Curr. Opin. Ophthalmol. 2019, 30, 166–178. [Google Scholar] [CrossRef]
- Baudouin, C.; Irkeç, M.; Messmer, E.M.; Benítez-Del-Castillo, J.M.; Bonini, S.; Figueiredo, F.C.; Geerling, G.; Labetoulle, M.; Lemp, M.; Rolando, M.; et al. Clinical impact of inflammation in dry eye disease: Proceedings of the ODISSEY group meeting. Acta Ophthalmol. 2018, 96, 111–119. [Google Scholar] [CrossRef]
- Rodríguez Calvo-de-Mora, M.; Domínguez-Ruiz, C.; Barrero-Sojo, F.; Rodríguez-Moreno, G.; Antúnez Rodríguez, C.; Ponce Verdugo, L.; Hernández Lamas, M.D.C.; Hernández-Guijarro, L.; Villalvilla Castillo, J.; Fernández-Baca Casares, I.; et al. Autologous versus allogeneic versus umbilical cord sera for the treatment of severe dry eye disease: A double-blind randomized clinical trial. Acta Ophthalmol. 2022, 100, e396–e408. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, A.M.; Spinella, R.; Oliverio, G.W.; Postorino, E.I.; Signorino, G.A.; Rusciano, D.; Aragona, P. Effects of the Topical Use of the Natural Antioxidant Alpha-Lipoic Acid on the Ocular Surface of Diabetic Patients with Dry Eye Symptoms. Front. Biosci. (Landmark Ed.) 2022, 27, 202. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, J.M.; Alonso-Aliste, F.; Borroni, D.; Amián-Cordero, J.; De-Hita-Cantalejo, C.; Capote-Puente, R.; Bautista-Llamas, M.J.; Sánchez-González, M.C.; Rodríguez-Calvo-de-Mora, M.; Rocha-de-Lossada, C. Plasma Rich in Growth Factors (PRGF) in Transepithelial Photorefractive Keratectomy (TPRK). J. Clin. Med. 2021, 10, 1939. [Google Scholar] [CrossRef]
- Roberti, G.; Oddone, F.; Agnifili, L.; Katsanos, A.; Michelessi, M.; Mastropasqua, L.; Quaranta, L.; Riva, I.; Tanga, L.; Manni, G. Steroid-induced glaucoma: Epidemiology, pathophysiology, and clinical management. Surv. Ophthalmol. 2020, 65, 458–472. [Google Scholar] [CrossRef]
- Barabino, S.; Montaldo, E.; Mingari, M.C.; Mazzotta, C.; Giuffrida, S.; Rolando, M. Is there a role for tapered topical dose steroidal treatment for dry eye disease? A randomized, pilot study. Eur. J. Ophthalmol. 2020, 32, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Thorne, J.E.; Woreta, F.A.; Dunn, J.P.; Jabs, D.A. Risk of cataract development among children with juvenile idiopathic arthritis-related uveitis treated with topical corticosteroids. Ophthalmology 2010, 117, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Castagna, I.; Roszkowska, A.M.; Alessandrello, F.; Oliverio, G.W.; Tumminello, G.; Gallizzi, R.; Conti, G.; Aragona, P. Juvenile idiopathic arthritis-associated uveitis: A retrospective analysis from a centre of South Italy. Int. Ophthalmol. 2020, 40, 335–342. [Google Scholar] [CrossRef]
- Oliverio, G.W.; Spinella, R.; Postorino, E.I.; Inferrera, L.; Aragona, E.; Aragona, P. Safety and Tolerability of an Eye Drop Based on 0.6% Povidone-Iodine Nanoemulsion in Dry Eye Patients. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2021, 37, 90–96. [Google Scholar] [CrossRef]
- Rolando, M.; Barabino, S. The Subtle Role of Para-inflammation in Modulating the Progression of Dry Eye Disease. Ocul. Immunol. Inflamm. 2021, 29, 811–816. [Google Scholar] [CrossRef]
- Perez, V.L.; Stern, M.E.; Pflugfelder, S.C. Inflammatory basis for dry eye disease flares. Exp. Eye Res. 2020, 201, 108294. [Google Scholar] [CrossRef] [PubMed]
- Terao, M.; Katayama, I. Local cortisol/corticosterone activation in skin physiology and pathology. J. Dermatol. Sci. 2016, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Bucolo, C.; Fidilio, A.; Fresta, C.G.; Lazzara, F.; Platania, C.B.M.; Cantarella, G.; Di Benedetto, G.; Burgaletto, C.; Bernardini, R.; Piazza, C.; et al. Ocular Pharmacological Profile of Hydrocortisone in Dry Eye Disease. Front. Pharmacol. 2019, 10, 1240. [Google Scholar] [CrossRef]
- Kallab, M.; Szegedi, S.; Hommer, N.; Stegmann, H.; Kaya, S.; Werkmeister, R.M.; Schmidl, D.; Schmetterer, L.; Garhöfer, G. Topical Low Dose Preservative-Free Hydrocortisone Reduces Signs and Symptoms in Patients with Chronic Dry Eye: A Randomized Clinical Trial. Adv. Ther. 2020, 37, 329–341. [Google Scholar] [CrossRef]
- Rolando, M.; Villella, E.; Loreggian, L.; Marini, S.; Loretelli, C.; Fiorina, P.; Barabino, S. Long-Term Activity and Safety of a Low-Dose Hydrocortisone Tear Substitute in Patients with Dry Eye Disease. Curr. Eye Res. 2023, 48, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Borroni, D.; Paytuví-Gallart, A.; Sanseverino, W.; Gómez-Huertas, C.; Bonci, P.; Romano, V.; Giannaccare, G.; Rechichi, M.; Meduri, A.; Oliverio, G.W.; et al. Exploring the Healthy Eye Microbiota Niche in a Multicenter Study. Int. J. Mol. Sci. 2022, 23, 10229. [Google Scholar] [CrossRef]
- Cagini, C.; Muzi, A.; Castellucci, G.; Ragna, G.; Lupidi, M.; Alabed, H.B.R.; Pellegrino, R.M. Kinetics of hydrocortisone sodium phosphate penetration into the human aqueous humor after topical application. Int. J. Clin. Pract. 2021, 75, e14987. [Google Scholar] [CrossRef]
- Pult, H.; Nichols, J.J. A review of meibography. Optom. Vis. Sci. Off. Public Am. Acad. Optom. 2012, 89, E760–E769. [Google Scholar] [CrossRef]
- Di Zazzo, A.; Micera, A.; Coassin, M.; Varacalli, G.; Foulsham, W.; De Piano, M.; Bonini, S. InflammAging at Ocular Surface: Clinical and Biomolecular Analyses in Healthy Volunteers. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1769–1775. [Google Scholar] [CrossRef]
- Forrester, J.V. Bowman lecture on the role of inflammation in degenerative disease of the eye. Eye 2013, 27, 340–352. [Google Scholar] [CrossRef]
- Susarla, R.; Liu, L.; Walker, E.A.; Bujalska, I.J.; Alsalem, J.; Williams, G.P.; Sreekantam, S.; Taylor, A.E.; Tallouzi, M.; Southworth, H.S.; et al. Cortisol biosynthesis in the human ocular surface innate immune response. PLoS ONE 2014, 9, e94913. [Google Scholar] [CrossRef] [PubMed]
- Hynnekleiv, L.; Magno, M.; Vernhardsdottir, R.R.; Moschowits, E.; Tønseth, K.A.; Dartt, D.A.; Vehof, J.; Utheim, T.P. Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmol. 2022, 100, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benítez-del-Castillo, J.; Boboridis, K.G.; Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016, 100, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Bonzano, C.; Borroni, D.; Lancia, A.; Bonzano, E. Doxycycline: From Ocular Rosacea to COVID-19 Anosmia. New Insight Into the Coronavirus Outbreak. Front. Med. 2020, 7, 200. [Google Scholar] [CrossRef]
- Romano, V.; Levis, H.J.; Gallon, P.; Lace, R.; Borroni, D.; Ponzin, D.; Ruzza, A.; Kaye, S.B.; Ferrari, S.; Parekh, M. Biobanking of Dehydrated Human Donor Corneal Stroma to Increase the Supply of Anterior Lamellar Grafts. Cornea 2019, 38, 480–484. [Google Scholar] [CrossRef]
Group 1 (HA 0.2% + HC 0.001%) | Group 2 (HA 0.15% + TH 3%) | p-Value | |
---|---|---|---|
Age, years | 59.6 ± 7.5 | 60.2 ± 8.1 | 0.31 |
Male/Female ratio | 7/12 | 5/14 | 0.24 |
OSDI, score | 45.5 ± 28.1 | 44.8 ± 27.4 | 0.72 |
SANDE, score | 57.1 ± 21.4 | 55.5 ± 20.3 | 0.52 |
NIBUT, s | 7.1 ± 6.7 | 7.7 ± 7.2 | 0.85 |
TMH, mm | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.74 |
LLT, nm | 63.1 ± 15.5 | 64.2 ± 14.8 | 0.39 |
TBUT, s | 3.2 ± 1.1 | 3.4 ± 1.4 | 0.61 |
CFS, score | 2.2 ± 0.7 | 2.1 ± 0.8 | 0.59 |
Meibography, score | 1.6 ± 0.4 | 1.7 ± 0.5 | 0.41 |
IOP, mmHg | 16.1 ± 2.6 | 16.5 ± 2.9 | 0.21 |
Group 1 (HA 0.2% + HC 0.001%) | |||||
---|---|---|---|---|---|
Baseline | 1Mo | 2Mo | 3Mo | p-Value | |
OSDI, score | 45.5 ± 28.1 | 16.7 ± 7.1 | 13.3 ± 5.9 | 10.2 ± 4.3 | 0.002 |
SANDE, mm | 57.1 ± 21.4 | 42.1 ± 18.9 | 40.4 ± 16.8 | 36.2 ± 15.9 | 0.01 |
NIBUT, s | 7.1 ± 6.7 | 11.4 ± 7.4 | 12.3 ± 6 | 14.9 ± 5.4 | <0.0001 |
TMH, mm | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.27 ± 0.2 | 0.28 ± 0.14 | 0.5 |
LLT, nm | 63.1 ± 15.5 | 79.1 ± 19.3 | 82.2 ± 17.2 | 89.2 ± 14.9 | <0.0001 |
TBUT, s | 3.2 ± 1.1 | 3.9 ± 1.3 | 4.3 ± 1.2 | 4.9 ± 1.4 | 0.01 |
CFS, score | 2.2 ± 0.7 | 2.1 ± 0.8 | 2.0 ± 0.8 | 1.8 ± 0.7 | 0.02 |
Meibography, score | 1.6 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.5 | 0.58 |
IOP, mmHg | 16.1 ± 2.6 | 16 ± 2.5 | 15.8 ± 2.6 | 15.7 ± 2.7 | 0.38 |
Group 2 (HA 0.15% + TH 3%) | |||||
Baseline | 1Mo | 2Mo | 3Mo | p-value | |
OSDI, score | 44.8 ± 27.4 | 32.7 ± 15.2 | 33.2 ± 15.9 | 27.5 ± 15.1 | 0.01 |
SANDE, mm | 55.5 ± 20.3 | 50.1 ± 19.6 | 48.4 ± 18.3 | 45.4 ± 17.8 | 0.03 |
NIBUT, s | 7.7 ± 7.2 | 9.3 ± 8.8 | 11.4 ± 5.8 | 11.5 ± 5.4 | 0.08 |
TMH, mm | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.29 ± 0.1 | 0.28 ± 0.14 | 0.62 |
LLT, nm | 64.2 ± 14.8 | 64.7 ± 16.2 | 70.4 ± 18.9 | 69.5 ± 16.9 | 0.15 |
TBUT, s | 3.4 ± 1.4 | 3.6 ± 1.3 | 3.9 ± 1.5 | 4.1 ± 1.5 | 0.04 |
CFS, score | 2.1 ± 0.8 | 2.1 ± 0.7 | 2.1 ± 0.8 | 2.0 ± 0.8 | 0.12 |
Meibography, score | 1.7 ± 0.5 | 1.7 ± 0.4 | 1.7 ± 0.5 | 1.6 ± 0.5 | 0.64 |
IOP, mmHg | 16.5 ± 2.9 | 16.2 ± 2.8 | 16.6 ± 2.8 | 15.9 ± 2.3 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borroni, D.; Mazzotta, C.; Rocha-de-Lossada, C.; Sánchez-González, J.-M.; Ballesteros-Sanchez, A.; García-Lorente, M.; Zamorano-Martín, F.; Spinelli, A.; Schiano-Lomoriello, D.; Tedesco, G.R. Dry Eye Para-Inflammation Treatment: Evaluation of a Novel Tear Substitute Containing Hyaluronic Acid and Low-Dose Hydrocortisone. Biomedicines 2023, 11, 3277. https://doi.org/10.3390/biomedicines11123277
Borroni D, Mazzotta C, Rocha-de-Lossada C, Sánchez-González J-M, Ballesteros-Sanchez A, García-Lorente M, Zamorano-Martín F, Spinelli A, Schiano-Lomoriello D, Tedesco GR. Dry Eye Para-Inflammation Treatment: Evaluation of a Novel Tear Substitute Containing Hyaluronic Acid and Low-Dose Hydrocortisone. Biomedicines. 2023; 11(12):3277. https://doi.org/10.3390/biomedicines11123277
Chicago/Turabian StyleBorroni, Davide, Cosimo Mazzotta, Carlos Rocha-de-Lossada, José-María Sánchez-González, Antonio Ballesteros-Sanchez, María García-Lorente, Francisco Zamorano-Martín, Antonio Spinelli, Domenico Schiano-Lomoriello, and Giovanni Roberto Tedesco. 2023. "Dry Eye Para-Inflammation Treatment: Evaluation of a Novel Tear Substitute Containing Hyaluronic Acid and Low-Dose Hydrocortisone" Biomedicines 11, no. 12: 3277. https://doi.org/10.3390/biomedicines11123277